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Abstract
Han, J, Liu, M, Shi, J, and Li, Y. Construction of a machine learning model to estimate physiological variables of speed skating
athletes under hypoxic training conditions. J Strength Cond Res XX(X): 000–000, 2021—Monitoring changes in athletes’ physi-
ological variables is essential to create a safe and effective hypoxic training plan for speed skating athletes. This research aims to
develop amachine learning estimationmodel to estimate physiological variables of athletes under hypoxic training conditions based
on their physiological measurements collected at sea level. The research team recruited 64 professional speed skating athletes to
participate in a 10-week training program, including 3weeks of sea-level training, followed by 4weeks of hypoxic training and then a
3-week sea-level recovery period. We measured several physiological variables that could reflect the athletes’ oxygen transport
capacity in the first 7 weeks, including red blood cell (RBC) count and hemoglobin (Hb) concentration. The physiological variables
weremeasured once a week and thenmodeled as amathematical model to estimatemeasurements’ changes using themaximum
likelihood method. The mathematical model was then used to construct a machine learning model. Furthermore, the original data
(measured once per week) were used to construct a polynomial model using curve fitting. We calculated and compared the mean
absolute error between estimated values of the 2 models and measured values. Our results show that the machine learning model
estimated RBC count and Hb concentration accurately. The errors of the estimated values were within 5% of the measured values.
Compared with the curve fitting polynomial model, the accuracy of the machine learning model in estimating hypoxic training’s
physiological variables is higher. This study successfully constructed a machine learning model that used physiological variables
measured at the sea level to estimate the physiological variables during hypoxic training.

Key Words:mathematical model, RBC, Hb, LSTM, data analysis

Introduction

Hypoxic training has been widely used in athletes’ training be-
cause it can improve training efficiency (15). Many studies have
investigated hypoxic training’s effect and feasibility in different
sports under different conditions (4,18,27). Many studies have
shown that appropriate hypoxic training can improve physio-
logical variables, such as red blood cells (RBCs) and hemoglobin
(Hb), which are associated with athletes’ performance in some
sports. Hypoxic training is necessary for elite athletes if executed
and monitored properly (15,28). However, hypoxic training be-
yond the athletes’ endurance limit will not benefit the athletes
(23). Instead, excessive hypoxic training may even affect the
athletes’ health and increase the risk of hypoxemia (8,19,26) or
heart disease in athletes (2). Thus, it is crucial to ensure hypoxic
training safety and maximize the training effect by creating an
appropriate training environment and determining a proper
training intensity. Some variables related to oxygen transport
capacity can reflect the impact of hypoxic training on aerobic
endurance performance. Changes in these variables can be used as
references to construct a hypoxic training plan.

From a technical point of view, machine learning–based acquisi-
tion models have attracted extensive attention in sports (5). From a

machine learning perspective, athletes’ physiological variables can be
used to evaluate their aerobic endurance (27). Hypoxic training can
improve sports performance and achieve the best competitive state
for athletes before the competition (4,17).Hypoxic trainingplans are
generally formulated several months in advance. If the athletes’
physiological variables after completion of hypoxic training can be
estimated in advance, it will help develop hypoxic training plans.
Machine learning methods can extract model to estimate the ath-
letes’ physiological variables after participating in hypoxic training.
The model can estimate the physiological variables after completion
of hypoxic training based on the physiological variables of athletes
measured during sea-level training conditions. According to the es-
timated values, the coach can provide a hypoxic training schedule
and exercise guidelines to athletes or seeded players in the same sport
and altitude before the training (10).

From a safety point of view, a lower oxygen concentration level
may not be associated with a better training effect. For example, 1
study compared the hypoxic training effect between athletes
trained in an 1,800-m environment and 2,400-m environment,
respectively (20). They found that the 2 groups of athletes showed
a comparable increase in their blood Hb concentration level de-
spite the difference in training altitude. In traditional hypoxic
training, the coach constructed the training plan based on their
previous experience (20). In a traditional hypoxic training plan, a
coach will ask the athletes to adapt to a hypoxic training envi-
ronment within about a week and gradually change the training
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schedule and duration. This approach is to adjust the hypoxic
load on the athletes progressively and to avoid excessive hypoxic
training. The athletes can drop out from the training at any time
when they experience any discomfort. This approach is secure but
less efficient, and it relies heavily on the experience of the hypoxic
training coach. If each athlete evaluates the changes in athletes’
physiological variables after completion of hypoxic training
through machine learning methods before starting hypoxic
training, efficiency and safety will be improved (21).

“Living high-training low (HiLo)” is a commonly usedmethod
in hypoxic training, in which athletes live in high altitudes with
low oxygen concentration levels, and train in low altitudes with
normal oxygen concentration levels (6). Compared with tradi-
tional hypoxic training with intermittent hypoxic exposure, this
method has been shown to improve aerobic endurance (3) and
reduce side-effects in hypoxic training for athletes (11,16). Thus,
this study adopted this hypoxic training procedure.

This article proposes a machine learning method to estimate the
changes of physiological variables of athletes during hypoxic
training. In this study, first of all, the physiological variables in a
group of speed skating athletes were measured at sea level and
2,300-m simulated altitude environment. Second, a mathematical
model was established to estimate changes in the physiological
variables. This mathematical model was combined with the ma-
chine learning method to build a prediction model to estimate
physiological variables during hypoxic training using data col-
lected at sea-level training. The experimental results show that by
extrapolating from the changes in athletes’ physiological variables
before and during hypoxic training, this method successfully esti-
mated the average values of physiological variables among other
athletes participating in this experiment during hypoxic training
based only on measurements taken before hypoxic training.

Methods

Experimental Approach to the Problem

Figure 1 shows the main technology roadmap of this study, which
includes 3 parts. First of all, we selected high-performance level
athletes to participate in hypoxic training and measured their
physiological variables. Second, mathematical modeling was built
to reflect the physiological variables changes of athletes according
to the collected data. Based on the mathematical model, we get
information on the physiological variable changes. Finally, the
obtained mathematical model was processed and then used in
machine learning. Processing includes acquiring the sequence
(discretization) from the mathematical model and dividing the se-
quence into a sea-level training section and a hypoxic training
section. The purpose of processing was to improve the training
efficiency and performance of machine learning models. The pro-
cessed data were used for deep learning through the long short-
term memory (LSTM) network until an estimation model with a
root-mean-square error (RMSE) less than 0.001 was obtained.

The experimental protocol lasted for 10 weeks, including the first
3 weeks before hypoxic training (pre-HiLo), the 4-week hypoxic
training (HiLo), and the last 3 weeks of recovery (post-HiLo). Data
from the final 3 weeks were used to observe any changes in athletes’
physiological variables and any adverse effects on athletes after the
hypoxic training. The Hypoxic Tent System (SenLuo, China) man-
ufactured by Tianjin Senluo company was used to create a hypoxic
training environment. The oxygen concentration in the cabin was
15.8–16.1%(equivalent to the altitude between2,300and2,500m),
the temperature was 18–23° C, and the air humidity was 30–52%.

Athletes trained daily at sea level during the day and rest in the cabin
with low oxygen concentration level. Athletes left the cabin at 6:00
AM and returned at 10:00 PM and slept for at least 8 hours every
day for 4 consecutive weeks. Figure 2 shows the cabin that was used
to create a hypoxic training environment for athletes.

Subjects

A total of 64 subjects participated in the study, including 32 women
(age5 20.686 3.41 years, body height5 171.006 4.60 cm, body
mass5 60.16 2.49 kg, and training years 5 7.60 6 1.41) and 32
men (age5 19.856 4.35 years, body height5 178.866 5.51 cm,
body mass5 65.64 6 5.72 kg, and training years 5 8.71 6 2.05).
All the subject information (including age, height, weight, etc.) are
measured as Â 6 SE. All athletes were healthy national-level speed
skating athletes with no respiratory, cardiovascular, or endocrine
diseases. All subjects had no history of smoking or drinking. They
participated in physical training every year regularly and had not
undergone any hypoxic training sessions in the past year. All athletes
signed the written informed consent forms before participating. All
athletes were in breaks and had no competition tasks. All experi-
mental protocols were conducted following relevant guidelines and
regulations. This studywasperformedbyCollege of Instrumentation
and Electrical Engineering, Jilin University, Jilin Province, China,
and assisted by Jilin Institute of Physical Education.

Procedures

Blood oxygen transport capacity is the maximum amount of oxygen
the blood can transport. RBC count and Hb concentration are es-
sential parameters to estimate oxygen transport capacity. Increasing
oxygen transport capacity could also improve aerobic endurance
performance (29). Hypoxic training affects the athletes’ aerobic en-
durance performance by affecting oxygen transport capacity (20,30).
In hypoxic training, variables associated with oxygen transport ca-
pacity are often used to indicate the effect of hypoxic training.
Monitoring the changes of these parameters is also crucial for the
safety of hypoxic training. Some studies have shown that adecrease in
blood oxygen saturation leads to an increase in Hb level, counter-
acting the adverse effects of a low blood oxygen level (24). The pri-
mary function of Hb is to transport oxygen molecules from lung to
tissues. Oxygen molecules delivered to muscles will be used to pro-
duce adenosine triphosphate, which is the energy source for muscle
activation during exercise. When the oxygen concentration in the
environment decreases, the body’s relative oxygen uptake decreases,
resulting in a reduced oxygen binding capacity. In response to this
condition, the body increases theRBCcount andHbconcentration to
maintain a consistent blood oxygen transport capacity (15).

Therefore, RBC count and Hb concentration were selected as the
primary physiological variables to reflect the hypoxic training effect.
We used pocH-100I Automatic Tri-classification Blood Analyzer
(Sysmex, Germany) to measure RBC count and Hb concentration in
the experiment. The blood testswere conducted in themorning of the
last day of everyweek during training. The athleteswere sampled in a
fasting state, and theywere asked to lie in bed for 5minutes before the
blood test. We collected each blood sample at the same time every
week to account for potential day-to-day variance.

Establishment of Mathematical Models

Physiological variables were measured by taking blood samples
from athletes. However, the physiological variables measured
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once a week by blood samples can only provide limited in-
formation because of the measurement frequency. This study
established a mathematical model to simulate athletes’ physio-
logical variables and obtained a curve of physiological variables
changing with time-based on the data’s physiological variables.
The changes of the physiological variables across the whole ex-
periment include 3 parts, including the sea-level training period,
transition period from sea level to hypoxic training, and stabilized
period when physiological variables adapt to the lower oxygen
concentration level.

Human physiological variables conform to Gaussian distri-
bution (7). The physiological variables measured in the experi-
ment can be treated as sample points of random signals. The
maximum likelihood method can estimate the random signal’s
overall situation based on samples with known probability

density of data (8,13). The physiological variables of the human
body changes over time can be treated as a continuous variableX.
The sample from X is Xi. The probability density of X can be
expressed as f(x;u), where x is the observed value of the sample,
and u is the probability density function parameter.

During the training at sea level, the athletes were measured 3
times. The samples of measurements were marked asX1,X2, and
X3, and correspondingly, the samples’ observed values were x1,
x2, and x3. The probability that a random point Xi falls in the
point xi neighborhood with a length ofDxiapproximately
equalsf ðxi; uÞ×Dxi. The likelihood of the sample approximately
equals to ∏3

i51 f ðxi; uÞ×Dxi. According to the maximum likeli-
hood estimation method, ∏3

i5 1 f ðxi; uÞ×Dxishould achieve the
maximum value at an estimated value uof parameter u. There-
fore, the likelihood function L(u) of physiological variables is

Figure 1. The technology roadmap for machine learning to estimate physiological variables.

Figure 2. The system (A) used for athlete training and the hypoxic tent system (B) used for athlete rest.
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LðuÞ ¼ ∏
3

i¼1
f ðxi; uÞ×Dxi (1)

.
For a Gaussian distribution of a single variable, its probability

density function can be expressed. Therefore, we can get the
likelihood function of physiological variables. The estimation
function of the sample population can be determined by the for-
mula (2). m is the mean of the sample, and s is the variance of the
sample. 8>>>>><
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According to the sample population’s estimation function, we

can determine the population trend of sea-level training physio-
logical variables. Similarly, this method can also be applied to the
mathematical model of physiological variables after entering the
hypoxic training plateau.

A previous study assessed the changes in physiological vari-
ables during the transition period between training at the sea level
and hypoxic training (25). This study reported that the Hb, HA,
and other physiological variables related to oxygen transport
capacity usually increase at a fast constant rate during the first 2
to 3 weeks of training. Then, the increase rate begins to decline
until reaching a plateau, and lastly, keep steady (25). In our ar-
ticle, we used a polynomial function to represent the mathemat-
ical model of physiological variables’ changes during the
transition from sea level to a hypoxic environment (1,22). The
athletes’ variables before entering hypoxic training and the ath-
letes’ variables in the first 2 weeks during hypoxic training were
selected as the reference to get the mathematical model. The high-
order polynomial function obtained by curve fitting can describe
the changes in physiological variables of hypoxic training in the
transition period to some extent.

Therefore, the variables measured during the experimental
process can be transformed into the above mathematical model.
Figure 3 compares the directly measured RBC counts and the
mathematical model’s values established according to the above
methods. Compared with directly measuring the change of the
original data during the hypoxic training, this mathematical
model has the following advantages: First of all, themathematical

model shows a continuous change in the physiological variables
during training, which offers more information to train the ma-
chine learning model. Secondly, when directly measured data are
used to describe the changes of physiological variables, there is a
certain degree of uncertainty. If a specific measurement has a large
deviation from the group average, it will significantly impact the
general prediction results. The mathematical model can better
reflect the overall change of physiological variables and reduce an
outlying datapoint’s impact in a particular section.

Establishment of the Machine Learning Model to Estimate
Physiological Variables

Two main functions of machine learning are classification and
prediction. As a machine learning method, a recurrent neural
network (RNN) is primarily used to process time series and ex-
tract information about how they change (12,31). People can
obtain the previously described mathematical model by modeling
the changes in physiological variables over time, which can be
converted to a time series. Therefore, people can use RNN to
estimate physiological variables such as RBC count and Hb
concentration.

According to our mathematical model of physiological vari-
ables, each athlete’s physiological variables can be transformed
into a sequence of changes over time. The sequence is denoted
asXi 5 ½x1; x2;⋯; xn�. In the experiment, a series of multiple
physiological variable sequences can be obtained by the mathe-
matical model. For a set of measurements, the sequence
isXi 5 ½x1; x2;⋯; xn�, where n was the length of the sequence. For
a group of measurement results, the first k values in a sequence of
physiological variable measurements belonging to the sea-level
training part of the sequence were taken as input. The first k
values in a sequence refer to the part of sea-level training in the
sequence transformed from the mathematical model. The average
value of m values in a sequence after the physiological variable
measurements during hypoxic training stabilized was taken as
output. The m values refer to the partial sequence reflecting
physiological variables’ changes during the plateau period of
hypoxic training. Cross-validation is used in this study to assess a
machine learning model’s accuracy (14).

Machine learning requires multiple rounds of training to ob-
tain a model that could estimate physiological variables accu-
rately. Long short-term memory network is a particular RNN,

Figure 3. Comparison of the measured RBC count data and the curve of the mathematical
model. RBC 5 red blood cell.
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which performs better than traditional RNN in long sequence
learning (9). The estimation model of physiological variables
obtained through machine learning is based on the LSTM net-
work. For the sequence, Xi 5 ½x1; x2;⋯; xn�changes with time,
where xt is the value any time in the sequence, and the variable
physiological information is updated according to LSTM.
Therefore, the input gate function is:

it ¼ sðWi×½ht21; xt�1 btÞ; (3)

C ¼ tanhðWC×½ht2 1; xt�1 btÞ: (4)

s is the activation function, which is a rectified linear unit in
this study.Wi andWC are the input gate’s weight matrices, and bt
and bC are the bias vectors. The input gate will record the feature
information of the current input variable xt in the LSTM network
as the network’s physiological variables are updated.The function
of forget gate is

ft ¼ s
�
Wf ×½ht21; xt�1 bf

�
: (5)

Wf is the weight matrix of the forgotten gate, and bf is the bias
vector of the forgot gate. Changes in the physiological variables
are continuous. A forget gate is used to eliminate some un-
necessary information selectively to avoid excessive effects from
the previous input on the current input physiological variables.-
Status update function

Ct ¼ ft×Ct21 1 it×Ct: (6)

The status update function is used to update information about
the physiological variables currently stored in the LSTMnetwork.

The output gate function is:

ot ¼ sðWo×½ht2 1; xt�1 boÞ; (7)

ht ¼ ot×tanhðCtÞ: (8)

In the LSTM iterative network, Ct2 1and ht-1 are the updated
state and output of the network at the time t-1. A model F(X)will
be obtained after all physiological variable sequences passing
through the LSTM.

Long short-term memory training networks can adjust pa-
rameters according to different data types and data volumes to
achieve better results. In the LSTMnetwork, LSTM size is used to
describe the size of the RNN network in the above-mentioned
training process. A larger LSTM size means more complex the
training network used in training. More complex networks can
improve the accuracy of the estimates. In the study, we used dif-
ferent LSTM sizes to construct different machine learning models
and compared the prediction accuracy among these models.

All the methods described in this section are implemented
based on TensorFlow by Python. In TensorFlow, there are built-
in frameworks for the implementation of machine learning and
LSTM. For athletes of a particular sport, use this method to es-
timate the athletes’ physiological variables in a specific hypoxic
environment. First, collect about 100 sets of data that have
completed hypoxic training in this environment. The data need to
be collected at sea level for more than 2weeks, collecting for more
than 4weeks in hypoxic training, and themeasurement frequency
is not less than once a week. Select physiological variables need to
be estimated (such as red blood cells, Hb, blood oxygen satura-
tion, etc.). Then, each set of data need to be converted into a
corresponding mathematical model. Build an RNN network
framework based on the TensorFlow framework, try different
LSTM sizes, and select the best LSTM size based on the trial

results. Use this LSTM size for machine learning, and train a
machine learning model. The sea-level physiological variables of
athletes who need to estimate hypoxic training’s effect are
transformed into mathematical models and input into the trained
machine learning model. Finally, the physiological variables of
athletes undergoing hypoxic training in this particular hypoxic
environment can be estimated.

Results

Statistical Results of Hypoxic Training

After the hypoxic training, the athletes recovered well without
any adverse symptoms. The physiological effects of hypoxic
training continued for at least a week after the athletes leave the
cabin. We recorded the mean and the SD of RBC count and Hb
concentration values of the male (Table 1) and female (Table 2)
athletes in hypoxic training. In Tables 1 and 2, the increasing rate
displays the average increasing rate of RBC count and Hb con-
centration of each athlete after completion of hypoxic training.
After hypoxic training, physiological variables usually increase by
more than 5%, as reported in previous studies, which has been
considered a considerable improvement (30). In this study, the
average amount of increase in physiological variables was about
4% (male) and 9% (female), and 51 of the 64 athletes increased
their RBC count and Hb concentration by more than 5% after
completion of hypoxic training.

Figure 4 shows the changes in the average physiological vari-
ables of all athletes over time.We recorded the RBC count andHb
concentration in the experiment. The black broken lines in the
figure represent the mean and SD of the measured physiological
variables from male athletes. The blue lines represent the physi-
ological variables’ mean and SD of female athletes.

Machine Learning Predicts Results

Table 3 is the experimental results of physiological variables es-
timated by machine learning using actual measured data. This
table shows the RMSE of the predictive machine learning model
of RBC count and Hb concentration of the athletes after 1 to 110
rounds of training under different LSTM sizes.

Figure 5 shows the changes in RMSE values versus the number
of training rounds in male and female athletes under different

Table 1

Physiological variables of men in the study after hypoxic training.

Mean value
(sea level)

Mean value
(hypoxia)

Increasing
rate

RBC (31012/L) 5.060 (60.70) 5.260 (60.85) 3.86%

Hemoglobin (g/dl) 15.27 (61.53) 16.13 (61.67) 5.11%

RBC 5 red blood cell.

Table 2

Physiological variables of women in the study after hypoxic
training.

Mean value
(sea level)

Mean value
(hypoxia) Increasing rate

RBC (31012/L) 4.449 (60.64) 4.841 (60.94) 9.34%

Hemoglobin (g/dl) 13.09 (61.61) 14.391 (62.31) 9.73%

RBC 5 red blood cell.
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Figure 4. Changes of physiological variables of athletes across the 3-week training at sea-level
and the 4-week hypoxic training. A) RBC count over time and (B) Hb concentration over time. Hb
5 hemoglobin; RBC 5 red blood cell.

Table 3

Performance of machine learning in the estimation of physiological variables.

Number of
training rounds RMSE (120) RMSE (240) RMSE (480) RMSE (720) RMSE (960)

Female

1

RBC 0.059939 0.087018 0.100513 0.026249 0.039148

Hb 0.055760 0.043775 0.066601 0.027490 0.056321

60

RBC 0.022866 0.022796 0.022359 0.013183 0.014187

Hb 0.022467 0.019920 0.018595 0.014500 0.016952

110

RBC 0.020301 0.018423 0.016308 0.010656 0.010641
Hb 0.020317 0.016543 0.015224 0.009915 0.010619

Male

1

RBC 0.054913 0.591007 0.665052 0.033858 0.023027

Hb 0.093997 0.023192 0.019710 0.025732 0.021909

60

RBC 0.020328 0.118302 0.097890 0.013350 0.012316

Hb 0.018450 0.010563 0.009654 0.009983 0.009417

110

RBC 0.017329 0.094820 0.086107 0.010556 0.009456
Hb 0.015566 0.008907 0.008554 0.008339 0.007436

Hb 5 hemoglobin; RBC 5 red blood cell; RMSE 5 root-mean-square error.
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LSTM sizes. All machine learning models with different LSTM
sizes converged in the end.

Table 4 lists the accuracies of the machine learning model and
the curve fitting model. The curve fitting model is based on the least-
squares method to reflect the relationship between physiological
variables in hypoxic training and physiological variables at the sea-

level training by the least-squares approximation (1,22). We com-
pared the estimated RBC count and Hb concentration values with
the measured values (hypoxic) from 6 male and 6 female athletes.
The values in the Error columns in Table 4were calculated by taking
the difference between the measured values (hypoxic) and each es-
timation method’s estimated value.

Figure 5. RMSE values of the predictive machine learning model versus the number of training rounds under different LSTM
sizes. Estimation of RBC count of female athletes (A) and male athletes (B). Estimation of hemoglobin concentration of female
athletes (C) andmale athletes (D). LSTM5 long short-termmemory; RMSE5 root-mean-square error; RBC5 red blood cell.

Table 4

Comparison of RBC count and Hb concentration between the measured average values and the estimated values from curve fitting and
the machine learning model.

Measured value (sea level) Measured value (hypoxic) Estimated value 2 curve fitting Error Estimated value 2 machine learning Error

RBC (31012/L)

1 (male) 5.02 5.39 5.30 20.09 5.44 10.05
2 (male) 4.26 4.78 4.51 20.27 4.82 10.04
3 (male) 4.71 4.73 5.00 10.27 4.75 10.02
4 (male) 5.48 5.68 5.77 10.09 5.68 0
5 (male) 5.36 5.72 5.72 0 5.71 20.01

6 (male) 5.49 5.65 5.78 10.13 5.63 20.02
7 (female) 3.99 4.81 4.40 20.41 4.87 10.06
8 (female) 4.16 4.43 4.58 10.15 4.47 10.04
9 (female) 3.95 4.83 4.37 20.46 4.86 10.03
10 (female) 4.35 4.67 4.77 10.10 4.69 10.02
11 (female) 4.48 4.76 4.91 10.15 4.77 10.01
12 (female) 4.48 4.99 4.93 20.06 4.98 20.01

Hb (g/dl)

1 (male) 15.8 17.4 17.03 20.37 17.44 10.04
2 (male) 15.87 16.65 16.92 10.27 16.65 0
3 (male) 15.13 15.15 15.78 10.63 15.18 10.03
4 (male) 16.17 16.65 16.92 10.27 16.64 10.01
5 (male) 14.53 15.13 15.76 10.63 15.13 0
6 (male) 16.77 17.05 17.02 20.03 17.03 20.02
7 (female) 12.23 14.37 14.38 10.01 14.44 10.07

8 (female) 11.63 12.92 13.16 10.24 12.98 10.06
9 (female) 11.47 13.3 13.45 10.15 13.35 10.05
10 (female) 12.27 13.12 13.31 10.19 13.16 10.04
11 (female) 13.17 13.57 13.66 10.09 13.60 10.03
12 (female) 13.70 13.82 13.88 10.06 13.83 10.01

Hb 5 hemoglobin; RBC 5 red blood cell.
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Discussion

This article proposes a machine learning-based method to esti-
mate the physiological variables during hypoxic training. The
machine learning model presented in this study can accurately
estimate the physiological variables in speed skating athletes
during hypoxic training based on the athletes’ physiological
variables measured during training at sea level. Our results
(Tables 1 and 2 and Figure 4) showed that the average RBC count
and Hb concentration values of athletes increased by more than
5% after the start of hypoxic than those of training at sea level.

In data analysis, curve fitting is a commonly used method to assess
the relationship between variables (22). In this study, we used curve
fitting to assess the relationship between physiological variables
measured at sea level and the same variables as measured during
hypoxic training conditions. We obtained a polynomial function that
represented the relationship between these 2 groups of physiological
variable measurements. Although this method can estimate the
changes of the physiological variables, it is not accurate, especially
when there is a large individual difference in physiological conditions
or performance levels. For example, 2 athletes showed similar RBC
count and Hb concentration levels during training at sea level, but
these values differed in these 2 athletes during hypoxic training. In this
case, the curve fitting method is bound to have errors.

Based on the results presented in Table 4, the 2 physiological vari-
ables estimated by the machine learning model using the LSTMRNN
were both closer to themeasured values than curve fitting, regardless of
sex.The individual differenceneeds tobe taken into considerationwhen
assessing the changes in physiological variables over time. Based on our
results, we found that some athletes maintained a relatively stable RBC
count and Hb concentration when transitioning from training at sea
level tohypoxic trainingwhile someathletes showedahigheramountof
change in their physiological variables. The input data of the machine
learning model from the mathematical model base on physiological
variablemeasurements. Comparedwith the input variables of the curve
fitting model, those of the machine learning model carried more in-
formation, including day-to-day variance of RBC count and Hb con-
centrationduring trainingat sea level.Thus, themachine learningmodel
using the LSTMRNN showed better accuracy.

Practical Applications

Hypoxic training typically lasts 3 to 6 weeks. One of its main
functions is to improve athletes’ ability in the short term before
major competitions (17). It can even affect an athlete’s perfor-
mance in competitions if they start training in a hypoxic envi-
ronment that is not suitable (3). According to the third group of
data inTable 4,we found that this athlete’s physiological variables
did not change significantly after hypoxic training. This result in-
dicates that the current hypoxic environment has little effect on the
athlete’s physiological variables. Using the machine learning
method, we can estimate physiological variables during hypoxic
training to avoid inefficient hypoxic training. This article proposes
a method using machine learning to estimate the changes of
physiological variables during hypoxic training. This study dem-
onstrated the feasibility of the proposed method and the accuracy
of the model. This method can also be used to estimate other
physiological variables. By estimating athletes’ physiological vari-
ables after completion of hypoxic training, coaches can know
some physiological variables of athletes after hypoxic training in
advance. The estimated changes in physiological variables could
serve as references for coaches.
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