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Abstract: As an inertial sensor with excellent performance, the hemispherical resonator gyro is
widely used in aerospace, weapon navigation and other fields due to its advantages of high precision,
high reliability, and long life. Due to the uneven distributions of material properties and mass
of the resonator in the circumferential direction, the frequencies of the two 4-antinodes vibration
modes (operational mode) of resonator in different directions are different, which is called frequency
splitting. Frequency splitting is the main error source affecting the accuracy of the hemispherical
resonator gyro and must be suppressed. The frequency splitting is related to the structure of the
resonator. For the planar-electrode-type hemispherical resonator gyro, in order to suppress the
frequency splitting from the structure, improve the accuracy of the hemispherical resonator gyro,
and determine and optimize the equivalent bottom angle parameters of the hemispherical resonator,
this paper starts from the thin shell theory, and the 4-antinodes vibration mode and waveform
precession model of the hemispherical resonator are researched. The effect of the equivalent bottom
angle on the 4-antinodes vibration mode frequency value under different boundary conditions is
theoretically analyzed and simulated. The simulation results show that the equivalent bottom angle
affects the 4-antinodes vibration mode of the hemispherical resonator through radial constraints. The
hemispherical resonator with mid-surface radius R = 15 mm and shell thickness h = 1 mm is the
optimization object, and the stem diameter D and fillet radius R1 are experimental factors, with the
4-antinodes vibration mode frequency value and mass sensitivity factor as the response indexes. The
central composite design is carried out to optimize the equivalent bottom angle parameters. The
optimized structural parameters are: stem diameter D = 7 mm, fillet radii R1 = 1 mm, R2 = 0.8 mm.
The simulation results show that the 4-antinodes vibration mode frequency value is 5441.761 Hz,
and the mass sensitivity factor is 3.91 Hz/mg, which meets the working and excitation requirements
wonderfully. This research will provide guidance and reference for improving the accuracy of the
hemispherical resonator gyro.

Keywords: hemispherical resonator; frequency splitting; structural optimization; 4-antinodes
vibration mode; mass sensitivity factor

1. Introduction

The hemispherical resonator gyro (HRG) is a type of Coriolis vibrating gyro that
utilizes the standing wave precession effect of vibration of the quartz hemispherical shell
to detect rotation without the need for high-speed rotors or movable supports [1]. Its
exceptional advantages make it a valuable sensor for a wide range of applications, including
the stable control of spacecraft and satellites, precise pointing, spacecraft navigation, oil
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drilling exploration, weapons, aviation, and navigation [2]. Compared to other forms of
gyros such as laser gyro and fiber optic gyro, HRG offers several benefits, including high
precision, high reliability, small size, low power consumption, low noise, high stability,
long life, and high resistance to radiation. It is considered a preferred “high-value sensor”
due to these above significant advantages [3].

The United States is the first country to study HRG. The force-balanced hemispherical
resonant gyro developed by Northrop Grumman for the precise pointing of the Hubble
Telescope has a remarkable bias stability of 0.00008◦/h and an angle random walk of
0.00001◦/

√
Hz during the test phase, which are currently the highest reported performance

indexes for HRG worldwide [4]. There are two working modes of HRG: the force balance
mode and whole-angle mode. The force-balanced HRG has high precision, while its
measurement range is small. The whole-angle mode, however, overcomes this drawback.
SAFRAN in French has developed a planar-electrode-type HRG and inertial navigation
unit, SkyNaute, with a simple structure and assembly for the whole-angle mode. Currently,
they have the mass production capacity of HRG with an accuracy range of 0.0005 to
0.005◦/h [5].

The quartz hemispherical resonator is the primary component of HRG and is a complex
and delicate three-dimensional structure consisting of a hard, brittle, and thin spherical
shell. Comprising an inner and outer spherical surface and a stem, the structural parameters
of the hemispherical resonator, particularly regarding the stem and the transition fillet, are
essential in determining the equivalent bottom angle. However, due to the confidentiality
of the technology, there are limited detailed introductions to the structural parameters of
the hemispherical resonator, making it challenging to develop an optimization model for
simulation and structural optimization.

For example, Xu et al. [6] established an optimization model to evaluate the impact of
structural parameters on the vibration characteristics of the hemispherical resonator, and
an ideal structural parameter was identified with a shell thickness of 0.9667 mm and a stem
diameter of 5.03 mm. However, this model did not consider the fillet parameter, and its
response index was single, rendering it insufficient for accurately assessing optimization
effects. Huang et al. [7] improved the artificial bee colony algorithm by taking the mass of
the hemispherical resonator as a response index, and the hemispherical resonator adapted
to the spherical electrodes as the optimization object. However, their optimization model
failed to consider the frequency difference between the 4-antinodes vibration mode and
the later mode. Finally, Hu et al. [8] attempted to address the optimization of the hemi-
spherical resonator by designing a variable shell thickness hemispherical resonator for
the planar-electrode-type HRG and analyzing the influence of its structural parameters
on the 4-antinodes vibration mode frequency. However, their research did not identify
optimal structural parameters, and the variable shell thickness hemispherical resonator’s
manufacturing difficulties limit practical applications.

In summary, when aiming to produce a hemispherical resonator, precise parameters
for designing the resonator prove elusive, save for the constraints imposed by the man-
ufacturing process. Consequently, in advancing the development of the hemispherical
resonator gyro, the identification of suitable resonator parameters within specific limitations
becomes pivotal.

Frequency splitting is the main error affecting the accuracy of HRG [9,10], and the
structural parameters of the hemispherical resonator play a significant role in it. To im-
prove the accuracy of the HRG, suppress frequency splitting, and optimize the structural
parameters of the hemispherical resonator’s equivalent bottom angle, this paper analyzes
the influence of structural parameters of the hemispherical resonator on the 4-antinodes
vibration mode frequency value and mass sensitivity factor, theoretically. The study focuses
on a classic hemispherical resonator with a radius of R = 15 mm and a shell thickness
of h = 1 mm, centering discussions on the equivalent bottom angle and analyzing the
influence of the angle on the 4-antinodes vibration mode frequency value and mass sensi-
tivity factor. The study selects the stem diameter and two fillet radii of the resonator for
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single-factor analysis, and it takes the stem diameter D and fillet R1 as the experimental
factors and the 4-antinodes vibration mode frequency value and mass sensitivity factor
as response indexes. Finally, the central composite design is conducted, parameters of
the equivalent bottom angle are determined and optimized, and simulations are carried
out, aiming to provide guidance and reference for suppressing the frequency splitting and
improving the accuracy of the HRG.

2. Dynamic Model Of Hemispherical Resonator
2.1. Thin Shell Theory

The HRG operates on the 4-antinodes standing wave precession characteristic of
the hemispherical resonator. The hemispherical resonator is a unique structure of the
hemispherical shell, with a shell thickness much smaller than the radius of the mid-surface.
Hence, the dynamic model of the hemispherical resonator is established based on thin
shell theory. Assuming the uniformity, continuity, and isotropy of material and that the
displacement is much smaller than the shell thickness, the stress and strain conform to
Hooke’s law. The thin shell theory relies on two basic Kirchhoff–Love assumptions [11].
First, after deformation, every point remains on the same normal of the deformed mid-
surface. Second, the distance between every point remains unchanged, and the normal
stress on the surface parallel to the mid-surface can be omitted.

As shown in Figure 1a, let us consider a point P on the mid-surface of the shell. e1, e2,
e3 are the unit tangent vectors and normal vector along the pairwise orthogonal surface
coordinate system α, β, γ. P′ is the point after the deformation of P. The deformation at
any point on a thin shell, considering the bending deformation, can be calculated using
equations from Kirchhoff–Love theory [12]:

εz
α = εα + κ1z

εz
β = εβ + κ2z

γz
αβ = γαβ + 2χz

(1)
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εα, εβ, and γαβ are strains along the α, β, and γ direction at point P, respectively. κ is the
change of curvature of the mid-surface. χ is the torsional deformation of the mid-surface.
u, u, w are the projection distance along e1, e2, and e3 respectively. A and B are Lame
coefficients. R1 and R2 are the principal radii of the curvature at point P. z is the distance
between any point on a thin shell and the min-surface along the direction of axis γ.
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Figure 1. (a) Schematic diagram of shell deformation at a certain point; (b) Coordinate systems of the
hemispherical resonator under rotation about Z axis.

For a hemispherical shell, if α and β are spherical coordinates, and we replace α and
β with θ and ϕ, the mid-surface radius is denoted by R0. The Lame coefficients of the
spherical shell in the spherical coordinates are denoted by A = B = R0. Substituting them
into Equation (2), we obtain:

εθ = 1
R0

(
w + ∂u

∂θ

)
εϕ = 1

R0 sin θ

(
∂v
∂ϕ + u cos θ + w sin θ

)
γθϕ = 1

R0 sin θ

(
∂v
∂θ sin θ − v cos θ + ∂u

∂ϕ

)
κ1 = 1

R2
0

(
∂u
∂θ −

∂2w
∂θ2

)
κ2 = 1

R2
0 sin θ

(
∂v
∂ϕ −

1
sin θ

∂2w
∂ϕ2 + u cos θ − ∂w

∂θ cos θ
)

χ = 1
R2

0 sin θ

(
− ∂2w

∂θ∂ϕ + ∂w
∂ϕ cot θ + ∂u

∂ϕ + ∂v
∂θ sin θ − v cos θ

)
(3)

2.2. Kinetic Equations Based on Lagrangian Method

When the hemispherical resonator undergoes free vibration, assuming that the shell’s
mid-surface is incompressible, the three tangential strain components are equal to zero, that
is, εθ = εϕ = 0, γθϕ = 0. The displacement of each point on the hemispherical resonator is
expanded according to the second-order natural vibration mode of an incompressible thin
shell [13]:

u(θ, ϕ, t) = U(θ)[p(t) cos(2ϕ) + q(t) sin(2ϕ)]

v(θ, ϕ, t) = V(θ)[p(t) sin(2ϕ)− q(t) cos(2ϕ)] (4)

w(θ, ϕ, t) = W(θ)[p(t) cos(2ϕ) + q(t) sin(2ϕ)]

where U(θ), V(θ), and W(θ) are gain functions of the vibration amplitude along the θ,
ϕ, and R directions, respectively. p(t) and q(t) are undetermined vibration functions,
including the frequency and phase information of the vibration of the hemispherical
resonator, which is hereafter abbreviated as p and q. To account for the equivalent bottom
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angle brought about by the stem and fillets, we can substitute Equation (4) into Equation (3),
which results in [14]:

U(θ) = − sin θ

(
tan2

(
θ

2

)
+ δ0 cot2

(
θ

2

))
V(θ) = − sin θ

(
tan2

(
θ

2

)
− δ0 cot2

(
θ

2

))
(5)

W(θ) = (2 + cos θ) tan2
(

θ

2

)
− δ0(2− cos θ) cot2

(
θ

2

)
where δ0 is the ratio between constants of integration and can be obtained from the three
different boundary conditions: u = 0, or v = 0, or w = 0 at θ = θ0, respectively. For each
boundary condition, δ0 is determined as follows:

δ0 = ± tan4
(

θ0
2

)
,
{
−, u = 0 at θ = θ0
+, v = 0 at θ = θ0

δ0 = 2+cos θ0
2−cos θ0

tan4
(

θ0
2

)
, w = 0 at θ = θ0

(6)

For the discussion of δ0, detailed information has already been presented in refer-
ence [14], so we will refrain from providing further elaboration here.

As shown in Figure 1b, we assume that the radius of the mid-surface of the hemispher-
ical resonator is R, the density is ρ, and Poisson’s ratio is µ. θ and ϕ are the latitude angle
and longitude angle, respectively; the origin of the Cartesian coordinate system coincides
with the center of the hemispherical resonator, and the coordinates of a point deformed on
the mid-surface can be expressed as:

r′ = r + ∆ = uθ̂ + vϕ̂ + (w + R)r̂ (7)

In the 4-antinodes vibration mode, the absolute acceleration of point P is [15]:

Vp =
dr′

dt
+ Ω× r′ = (u̇t −Ωv cos θ)θ̂ + [v̇t + Ω(u cos θ + (R + w) sin θ)]ϕ̂ + (ẇt −Ωv sin θ)r̂ (8)

where the dot · and subscript t mean the first derivative with respect to time t. Ω is the
angular rate input value. The kinetic energy of the hemispherical shell can be expressed as:

Ek =
1
2

ρ
∫

Vh

dVhVp
2 =

1
2

hR2ρ
∫ 2π

0

∫ π
2

θ0

V2
p sin θdθdϕ (9)

Therefore, the kinetic energy can be expressed as:

Ek =
1
2

ρhR2
∫ 2π

0

∫ π
2

θ0



(
u̇2

t + v̇2
t + ẇ2

t
)
+ 2Ω[(uv̇t − u̇tv) cos θ

+(v̇t(R + w)− vẇt) sin θ]
+Ω2[v2 + u2 cos2 θ + w2 sin2 θ

+2Rw sin2 θ + 2u(R + w) cos θ sin θ]
+Ω2R2 sin2 θ

 sin θdθdϕ (10)

Substituting Equation (4) into Equation (10), the kinetic energy of the hemispherical
resonator is obtained:

Ek =
1
2

m0

(
ṗ2 + q̇2

)
+

1
2

m1( ṗq− pq̇)Ω +
1
2

m2R2Ω2 +
1
2

m3

(
p2 + q2

)
Ω2 (11)
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where
m0 = πρhR2

∫ π
2

θ0

(
U2 + V2 + W2) sin θdθ

m1 = 4πρhR2
∫ π

2
θ0

V(U cos θ + W sin θ) sin θdθ

m2 = 2πρhR2
∫ π

2
θ0

sin3 θdθ

m3 = πρhR2
∫ π

2
θ0

[
V2 + (U cos θ + W sin θ)2] sin θdθ

(12)

The potential energy of the hemispherical shell can be expressed as:

Ep =
Eh3

24(1− µ2)

∫ 2π

0

∫ π
2

θ0

[
k2

1 + k2
2 + 2µk1k2 + 2(1− µ)χ2

]
R2 sin θdθdϕ (13)

Substituting Equation (3) into Equation (13), the potential energy of the hemispherical
resonator is:

Ep =
1
2

k0(p2 + q2) (14)

where

k0 =
Eh3π

12R2(1− µ2)

∫ π
2

θ0


(U̇θ − Ẅθθ)

2 + 1
sin2 θ

(
2V + 1

sin θ 4W + U cos θ − Ẇθ cos θ
)2

+2µ 1
sin θ

(
U̇θ − Ẅθθ

)(
2V + 1

sin θ 4W + U cos θ − Ẇθ cos θ
)

+2(1− µ) 1
sin2 θ

(
2Ẇθ − 2W cot θ − 2U + V̇θ sin θ −V cos θ

)2

 sin θdθ (15)

The Lagrangian equations for the hemispherical resonator can be constructed in case
of undamped free vibration:

L = Ek − Ep

d
dt

(
∂L
∂ ṗ

)
− ∂L

∂p
= 0 (16)

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= 0

Therefore, the kinetic equations of the hemispherical resonator are obtained as follows:

p̈ + 2k1Ωq̇ +
(
ω2

0 − 2k2Ω2)p + k1Ω̇q = 0

q̈− 2k1Ω ṗ +
(
ω2

0 − 2k2Ω2)q− k1Ω̇p = 0
(17)

where 2k1 = m1
m0

, 2k2 = m3
m0

, ω2 = k0
m3

.

2.3. Dynamics Simulation

z = p + iq is introduced when considering Ω̇ = 0; then, Equation (17) can be ex-
pressed as

z̈− 2k1Ωiż +
(

ω2
0 − 2k2Ω2

)
z = 0 (18)

The solution of Equation (18) is defined as

z(t) = eik1Ωt
(

C1e−iωnt + C2eiωnt
)

(19)

where C1 and C2 are undetermined coefficients, ωn =
√

ω2
0 +

(
k2

1 − 2k2
2
)
Ω2. In the op-

eration of a planar-electrode-type HRG, the sensing mechanism relies on the change in
capacitance formed by the end face of the hemispherical resonator’s lip and planar elec-
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trodes. The vibration in the busbar direction at the end face of the resonator’s lip is
expressed as:

u(ϕ, t) = U(π/2)[p(t) cos(2ϕ) + q(t) sin(2ϕ)]

= 2U(π/2)[b · cos(2ϕ− k1Ωt)− a · sin(2ϕ− k1Ωt)] · sin(ωnt) (20)

= 2U(π/2)
√

a2 + b2 cos 2(ϕ− KΩt + ϕ0) sin(ωnt)

where z(t)|t=0 = 0, C1 = −C2 = a + ib, ϕ0 = 1
2 arctan a

b .
Bryan’s factor is

K =
k1

2
=

m1

4m0
=

∫ π
2

θ0
V(U cos θ + W sin θ) sin θdθ∫ π

2
θ0
(U2 + V2 + W2) sin θdθ

(21)

Assuming that the effect of the equivalent bottom angle is neglected (i.e., θ0 = 0),
the parameters can be set as follows: ω0 = 5000 rad/s, k1 = 0.554, k2 = 0.349, and
a = b = 0.1. Then, a simulation can be performed for an input angular rate ranging from
0 to 2 rad/s. The result is shown in Figure 2. From the figure, it can be observed that
when the input angular rate is 0 rad/s, the standing wave of the end face of the resonator’s
lip is relatively static. However, when the input angular rate is increased to 2 rad/s, the
waveform precesses in the opposite direction. This is the working principle of HRG, as the
precession of the standing wave is proportional to the input angular rate and can be used
to measure rotation.

Figure 2. Phenomenon simulation of precession of hemispherical resonator.

3. Structural Types and Parameters of Hemispherical Resonator

There are three structural types based on the design of the hemispherical resonator.
These three types are shown in Figure 3 and include the Ψ-type [16], Y-type, and mushroom-
shaped type [17]. The Ψ-type and Y-type are suitable for the aHRG with a large radius,
which uses a “three-piece set” or “two-piece set” spherical electrodes. On the other hand,
the mushroom-shaped type is suitable for a small-radius planar electrode type HRG, where
the lower end of the stem is fixed to the electrodes base. For this paper, the optimization
object is a mushroom-shaped hemispherical resonator.
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Figure 3. Structural types of hemispherical resonator, (a) Ψ-type, (b) Y-type, (c) mushroom-shaped
type.

The key structural parameters of the mushroom-shaped hemispherical resonator
include the mid-surface radius R, shell thickness h, stem diameter D, stem length L, fillet
radii R1 and R2, top angle θF, and equivalent bottom angle θ0. These parameters are
illustrated in Figure 4a.

Figure 4. (a) Key structural parameters of the mushroom-shaped hemispherical; (b) Grids meshing
of hemispherical resonator resonator.

Equations (12) and (15) indicate that the 4-antinodes vibration mode frequency value
is affected by material parameters such as Young’s modulus E, density ρ, and Poisson’s
ratio µ, as well as structural parameters including the mid-surface radius R, shell thickness
h, and equivalent bottom angle θ0. Additionally, the stem diameter D and fillet radii R1 and
R2 are also important structural parameters that determine the equivalent bottom angle.

Sang-Jin Park et al. [14] conducted a study on the effect of the equivalent bottom
angle on Bryan’s factor and proposed a more precise and comprehensive Bryan’s factor
of hemispherical resonator expression. Their findings indicate that the equivalent bottom
angle has a significant impact on Bryan’s factor. Specifically, when the stem diameter
increases relative to the radius of the hemispherical shell, the influence of the stem on
Bryan’s factor becomes more prominent.

Based on the given expression f0 =
√

k0/m0/(2π), numerical calculations were car-
ried out for different θ0 values under three different boundary conditions, and a simulation
of a hemispherical shell without the stem was conducted. The results are presented in
Figure 5. Figure 5a shows that under the boundary condition of w = 0, the 4-antinodes
vibration mode frequency value increases with the increase of θ0, eventually converging to
a value. Under the boundary condition of v = 0, the 4-antinodes vibration mode frequency
value slightly decreases at first, then increases obviously, and reaches the minimum at
θ0 = 21◦. Under the boundary condition of u = 0, the 4-antinodes vibration mode fre-
quency value decreases with the increase of θ0. The simulation of the hemispherical shell
without a stem shows that the 4-antinodes vibration mode frequency value is 5212 Hz
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(Figure 5b), and the theoretical value is 5841 Hz. The relative error is approximately
10.7%, which is within the error of 20% for the Kirchhoff–Love assumptions. It also proves
the correctness of the theory. In theory, if the ratio of the thin shell’s thickness h to the
mid-surface’s radius R is smaller, the relative error will also be smaller.

(a) (b)
Figure 5. Theoretical values of 4-antinodes vibration mode frequency value for different boundary
conditions and simulation of hemispherical shell, (a) Results of numerical calculations; (b) Simulation
of 4-antinodes vibration mode of a hemispherical shell without steme.

To investigate the specific impact of stem diameter D and fillet radii R1, R2 on the
4-antinodes vibration mode frequency value, this paper utilizes the classical parameters
of the hemispherical resonator [4], with a mid-surface radius of R = 15 mm and shell
thickness of h = 1 mm. The goal is to determine and optimize the stem diameter D as well
as fillet radii R1 and R2.

4. Simulation and Determination of Response Indexes Based on Finite
Element Method
4.1. Modal Simulation Of Hemispherical Resonator

To perform modal analysis of a hemispherical resonator, we need to select appropriate
material and structural parameters as shown in the Table 1 and use the finite element
method. It is important to note that an ideal, defect-free hemispherical resonator should
have evenly distributed circumferential properties, and the frequency of the same mode in
different directions should be consistent. Therefore, ensuring a circumferential uniformity
of grids and nodes is crucial when using the finite element method for modal analysis. To
achieve this, we should manually mesh grids by using HyperMesh as shown in Figure 4b
and avoid using automatic grid meshing. Additionally, for effective modal analysis, we
need to fix the lower part of the stem by setting corresponding boundary conditions in
the simulation software OptiSturct. Table 2 displays the first 10 modes’ frequency values,
where the frequency of the same mode in different directions is consistent with four types
in total: bending mode at the contact position between the stem and thin shell, 4-antinodes
vibration mode (operational mode), stem bending mode, and 6-antinodes vibration mode,
as shown in Figure 6. We refer to the 2nd and 3rd modes as the “pitching mode” and the 6th
and 7th modes as the “bending mode”. The stem diameter D and fillet radii R1, R2 jointly
affect the “pitching mode” and “bending mode”. Changing these three parameters may
cause differences between the 4-antinodes vibration mode frequency value and the former
and the later-order modes’ frequency values. In the HRG control system, it is important to
ensure that the frequency of other modes that affect the operational mode are higher than
the operational mode frequency as much as possible. Therefore, optimizing the parameters
of the hemispherical resonator is necessary.
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Table 1. Material and structural parameters of hemispherical resonator.

Parameters Values Parameters Values

Young’s modulus E 7.67× 1010 Pa Mid-surface radius R 15 mm
Density ρ 2200 kg/m3 Stem diameter D 5 mm

Poisson’s ratio µ 0.17 Fillet radius R1 2.5 mm
Shell thickness h 1 mm Fillet radius R2 2 mm

Table 2. Results of modal simulation.

Modes Vibrations Frequency
Values (Hz) Modes Vibrations Frequency

Values (Hz)

1 Radial expansion mode of
hemispherical shell 2850.397 6 Stem bending mode (along X

direction) 6148.078

2
Bending mode at the contact position
between stem and thin shell (along X
direction)

3433.587 7 Stem bending mode (along Y
direction) 6148.078

3
Bending mode at the contact position
between stem and thin shell (along Y
direction)

3433.587 8 6-Antinodes vibration mode (along X
direction) 13,464.690

4 4-Antinodes vibration mode (along X
direction) 5523.907 9 6-Antinodes vibration mode (along Y

direction) 13,464.690

5 4-Antinodes vibration mode (along Y
direction) 5523.907 10 Bouncing mode at the contact

position between stem and thin shell 16,645.720

Figure 6. Vibration diagrams of 4 specific modes, (a) bending mode at the contact position be-
tween stem and thin shell, (b) 4-antinodes vibration mode, (c) stem bending mode, (d) 6-antinodes
vibration mode.
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4.2. Determination of Response Indexes

The end face of the hemispherical resonator’s lip of planar electrode-type HRG forms
capacitors with the planar electrodes. By applying the DC or AC voltage of a certain fre-
quency and amplitude on the planar electrodes, the operational mode of the hemispherical
resonator is excited, as shown in Figure 7a. To ensure the feasibility and stability of the
control system, the frequency of the operational mode should be controlled between 5000
and 10,000 Hz and maintained at a certain difference from the frequency of other modes.
Therefore, the 4-antinodes vibration mode frequency value is selected as the first response
index y1.

Figure 7. (a) Distribution of planar electrodes; (b) Schematic diagram of adding mass points.

The hemispherical resonator is an axisymmetric oscillator with two 4-antinodes modes
(modes 4, 5). Ideally, these two modes should have the same vibration frequency. However,
due to defects in materials, processing, and manufacturing techniques, the produced
resonator is not perfectly symmetrical in mass and stiffness distribution, which leads to
frequency differences between the two 4-antinodes modes, which is known as frequency
splitting. The lower frequency splits on the “heavy axis” (i.e., low-frequency stiffness axis),
while the higher frequency splits on the “light axis” (i.e., high-frequency stiffness axis). The
difference between these two frequencies is called the frequency splitting value, and the
two stiffness axes are positioned 45◦ apart from each other. Frequency splitting is the main
error source affecting the accuracy of the HRG, so it must be suppressed.

Using a simplified model of a ring resonator as an example, let the mass and resonant
frequency of an ideal resonator be M0 and ω, respectively. Then, N mass points are added
to the ring resonator, where each mass point has a mass of mi and is positioned at ϕi. The
positions of high-frequency and low-frequency axes are shown as φ1 and φ2, respectively,
in Figure 7b.

According to the FOX’s theory [18,19], the position of the high-frequency stiffness axis
is related to the uneven mass distribution and can be determined by:

tan 4φ1 =
∑N

i=1(mi sin 4ϕi)

∑N
i=1(mi cos 4ϕi)

(22)

The high- and low-frequency values are, respectively,

ω2
1 = ω2

{ (
1 + α2

2
)

M0(
1 + α2

2
)

M−
(
1− α2

2
)

∑N
i=1[mi cos(4(ϕi − φ1))]

}
(23)
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ω2
2 = ω2

{ (
1 + α2

2
)

M0(
1 + α2

2
)

M +
(
1− α2

2
)

∑N
i=1[mi cos(4(ϕi − φ1))]

}
(24)

where α2 is the ratio between the radial and tangential amplitudes of the ring resonator in
its 4-antinodes vibration mode, while M is the total mass of the ring resonator after adding
N mass points. By using the two equations mentioned above, we can obtain:

ω2

ω2
2
− ω2

ω2
1
=

2
(
1− α2

2
)

∑N
i=1[mi cos(4(ϕi − φ1))](
1 + α2

2
)

M0

=
2
(
1− α2

2
)(

1 + α2
2
)

M0
·
[
∑N

i=1 mi cos 4ϕi cos 4φ1 + ∑N
i=1 mi sin 4ϕi sin 4φ1

]
(25)

=
(ω1 + ω2)(ω1 −ω2)ω

2

ω2
1ω2

2
≈ 2(ω1 −ω2)

ω

where the frequency-splitting value is ω1 − ω2 = λ(∑N
i=1 mi cos 4ϕi cos 4φ1 + ∑N

i=1 mi
sin 4ϕi sin 4φ1). λ =

(
1− α2

2
)
ω/
[(

1 + α2
2
)

M0
]

is referred to as the mass sensitivity fac-
tor, which describes the influence level on frequency splitting when adding masses to the
resonator. Its value is determined by the structure of the resonator. For this reason, the mass
sensitivity factor λ is used as the second response index, and the lower its value, the better.
For the purpose of simulating the effect of the mass sensitivity factor on frequency splitting,
a hemispherical resonator with certain structural parameters was selected. The results are
displayed in Figure 8. Based on Figure 8 and Equation (25), it can be observed that the
frequency-splitting value is linearly proportional to the value of the circumferential uneven
mass with the ratio being equivalent to the mass sensitivity factor. The mass sensitivity
factor increases as the uneven mass becomes closer to the end face of the hemispherical
resonator’s lip.

Figure 8. Simulation of frequency splitting and mass sensitivity factor.

5. Experimental Design Based on Response Surface Method
5.1. Single-Factor Experiment

In order to investigate the influence of stem diameter D and fillet radii R1 and R2 on
response indexes and determine the optimal range of three experimental factors’ levels,
a single-factor experiment was conducted using the control variable method. The factor
levels are shown in Table 3. Simulation results for the 4-antinodes vibration mode frequency
value y1 and mass sensitivity factor λ response indexes are presented in Figures 9–11.
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Table 3. Levels of experimental factors.

Factors Levels (mm)

Stem diameter D 4.0 5.0 6.0 6.5 7.0 8.0
Fillet radius R1 0 1.6 2.0 2.4 2.8 3.2
Fillet radius R2 0 0.8 1.2 1.6 2.0 2.4

(a) (b)

Figure 9. Simulation results of stem diameter D, (a) effect on 4-antinodes vibration mode frequency
value y1, (b) effect on mass sensitivity factor λ.

(a) (b)

Figure 10. Simulation results of fillet radius R1 , (a) effect on 4-antinodes vibration mode frequency
value y1, (b) effect on mass sensitivity factor λ.

(a) (b)
Figure 11. Simulation results of fillet radius R2 , (a) effect on 4-antinodes vibration mode frequency
value y1, (b) effect on mass sensitivity factor λ.
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It is evident from Figures 9–11 that when stem diameter D and fillet radius R1 increase,
both the 4-antinodes vibration mode frequency value and mass sensitivity factor increase
significantly. With an increase in fillet radius R2, the 4-antinodes vibration mode frequency
value increases slightly, while the mass sensitivity factor exhibits a decreasing trend initially
before increasing again with little clarity in the trend. The influence of experimental
factors on the 4-antinodes vibration mode frequency value is consistent with the numerical
calculations (w = 0), indicating that the equivalent bottom angle affects the 4-antinodes
vibration mode of the hemispherical resonator through radial constraints. Therefore, fillet
radius R2 is set to 0.8 mm with stem diameter D and fillet radius R1 selected as experimental
factors for the further optimization of structural parameters.

5.2. Central Composite Design

To research how stem diameter D and fillet radius R1 jointly affect the 4-antinodes
vibration mode frequency value and mass sensitivity factor, the central composite design
method was utilized to optimize both parameters D and R1. The factor levels are coded as
shown in Table 4.

Table 4. Factors level coding table.

Levels
Experimental Factors (mm)

Stem Diameter D Fillet Radius R1

1.414 8.00 3.00
1 7.56 2.71
0 6.50 2.00
−1 5.44 1.29
−1.414 5.00 1.00

Table 5 presents the experiment schemes and simulation results, which underwent
regression analysis. Tables 6 and 7 display the analysis of variance (ANOVA) results. Upon
analysis, it is found that the regression model for the 4-antinodes vibration mode frequency
value y1 is highly significant, with F-value = 97,959.40, p-value < 0.0001. Moreover, the
lack of fit is not significant, with F2-value = 2.31, p2-value = 0.2150. Similarly, the regres-
sion model of mass sensitivity factor λ is also highly significant, with F-value = 51.09,
p-value < 0.0001. Additionally, the lack of fit is not significant, with F2-value = 1.02,
p2-value = 0.4924. Both regression equations exhibit a small proportion of abnormal errors,
good fitting effects, and high reliability.

Table 5. Experiment schemes and simulation results.

Experimental Factors Response Indexes

No. Stem Diameter D
(mm) Fillet Radius R1 (mm) 4-Antinodes Vibration Mode

Frequency Value y1 (Hz)
Mass Sensitivity
Factor λ (Hz/mg)

1 5.44 1.29 5344.95 3.807
2 5.44 2.71 5650.19 4.053
3 7.56 1.29 5567.77 4.074
4 7.56 2.71 6304.91 4.577
5 6.50 1.00 5394.84 3.863
6 6.50 3.00 6129.59 4.452
7 5.00 2.00 5400.54 3.882
8 8.00 2.00 5937.19 4.286
9 6.50 2.00 5593.32 4.007

10 6.50 2.00 5592.05 4.004
11 6.50 2.00 5593.12 3.984
12 6.50 2.00 5591.38 4.105
13 6.50 2.00 5594.10 4.081
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Table 6. ANOVA for reduced cubic model of 4-antinodes vibration mode frequency value y1.

Source
Sum of Squares df Mean Square F-Value p-Value

9.803 × 105 6 1.634 × 105 97,959.40 <0.0001

R1 5.416 × 105 1 5.416 × 105 3.247×105 <0.0001
D 1.440 × 105 1 1.440 × 105 86,334.50 < 0.0001

DR1 46,633.75 1 46,633.75 27,959.49 <0.0001
R2

1 50,335.82 1 50,335.82 30,179.08 <0.0001
D2 10,252.25 1 10,252.25 6146.79 <0.0001

DR2
1 1758.20 1 1758.20 1054.14 <0.0001

Residual 10.01 6 1.67
Lack of Fit 5.37 2 2.68 2.31 0.2150
Pure Error 4.64 4 1.16
Cor Total 9.803 × 105 12

Note: p-value < 0.01 (Highly significant), 0.01 < p-value < 0.05 (Significant), p-value > 0.05 (not significant).

Table 7. ANOVA for reduced quadratic model of mass sensitivity factor λ.

Source
Sum of Squares df Mean Square F-Value p-Value

0.5860 4 0.1465 51.09 <0.0001

R1 0.3128 1 0.3128 109.08 <0.0001
D 0.2320 1 0.2320 80.90 <0.0001

DR1 0.0165 1 0.0165 5.76 0.0432
R2

1 0.0247 1 0.0247 8.61 0.0189
Residual 0.0229 8 0.0029

Lack of Fit 0.0116 4 0.0029 1.02 0.4924
Pure Error 0.0114 4 0.0028
Cor Total 0.6090 12

Note: p-value < 0.01 (Highly significant), 0.01 < p-value < 0.05 (Significant), p-value > 0.05 (not significant).

Regarding 4-antinodes vibration mode frequency value y1, D, R1, DR1, D2, R2
1, and

DR2
1 are all terms that are highly significant (p-value < 0.01). For mass sensitivity factor λ,

both D and R1 are terms that are highly significant (p-value < 0.01), while DR1 and R2
1 are

significant (0.01 < p-value < 0.05). By removing the insignificant terms from the regression
equation of each experimental index, the resulting regression equation for the remaining
terms with the 4-antinodes vibration mode frequency value y1 and mass sensitivity factor
λ is:

y1 = 6234.337 + 205.275R1 − 329.029D− 79.666DR1 − 193.274R2
1 + 34.124D2 + 55.908DR2

1

λ = 4.037− 0.750R1 − 0.011D + 0.086DR1 + 0.118R2
1

(26)

Figure 12 displays the response surfaces of stem diameter D and fillet radius R1 to the
4-antinodes vibration mode frequency value y1 and mass sensitivity factor λ. As shown in
Figure 12, both the 4-antinodes vibration mode frequency value y1 and mass sensitivity
factor λ increase with an increase in stem diameter D and fillet radius R1. When the stem
diameter D is small, an increase in fillet radius R1 results in a slow change in the 4-antinodes
vibration mode frequency value R1. Similarly, when fillet radius R1 is small, an increase in
stem diameter D leads to a slow change in the 4-antinodes vibration mode frequency value
y1. A similar trend can be observed for mass sensitivity factor λ.
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(a) (b)

Figure 12. Response surface of experimental factors to response indexes, (a) effect of experimental
factors on 4-antinodes vibration mode frequency value y1, (b) effect of experimental factors on mass
sensitivity factor λ.

6. Optimization of Equivalent Bottom Angle Parameters

Based on the machining and mechanical strength requirements, stem diameter D
is selected to be more than 7 mm, and the fillet radius R1 is between 1 and 2 mm. The
4-antinodes vibration mode frequency value ranges from 5000 to 10,000 Hz, and the mass
sensitivity factor is set at its minimum value according to Equation (27). A numerical
optimization was carried out, and the optimized parameters are shown in Table 8. For
simulation, the following parameters are selected: h = 1 mm, R = 15 mm, D = 7 mm,
R1 = 1 mm, and R2 = 0.8 mm. The results show that the 4-antinodes vibration mode
frequency value is 5441.761 Hz, and the mass sensitivity factor is 3.91 Hz/mg with relative
errors of 0.13% and 0.51% with respect to the numerical optimized parameters shown
in Figure 13, respectively, indicating that the regression model is correct. The frequency
of the former and the latter mode of the 4-antinodes vibration mode are 5087.416 Hz
and 9031.491 Hz, respectively, which will meet the excitation and working requirements
perfectly.

min λ = f (D, R1)

s.t.


D > 7

1 6 R1 6 2
5000 6 D 6 10,000

(27)

Table 8. Results of numerical optimization.

No. Stem Diameter
D (mm)

Fillet Radius
R1 (mm)

4-Antinodes Vibration
Mode Frequency Value y1

(Hz)

Mass Sensitivity
Factor λ (Hz/mg) Desirability

1 7.000 1.000 5448.910 3.930 0.833 Selected
2 7.000 1.021 5449.916 3.932 0.830
3 7.065 1.000 5457.163 3.935 0.827
4 7.084 1.000 5459.650 3.936 0.825
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Figure 13. Prediction values of response indexes.

7. Conclusions and Discussion

The kinetic equations of the hemispherical resonator were established using the La-
grangian method based on thin shell theory, and the working principle was simulated. The
mushroom-shaped hemispherical resonator structural parameters were determined for a
planar-electrode-type hemispherical resonator gyro. The effect of the equivalent bottom
angle on the 4-antinodes vibration mode frequency value under different boundary condi-
tions was investigated theoretically. The simulation results indicated that the equivalent
bottom angle affects the 4-antinodes vibration mode of the hemispherical resonator through
radial constraints.

A single-factor analysis was conducted on the equivalent bottom angle parameters
that influence the 4-antinodes vibration mode frequency value and mass sensitivity factor,
which include stem diameter D, fillet radii R1 and R2. The results indicate that an increase
in stem diameter D and fillet radius R1 leads to a significant increase in both the 4-antinodes
vibration mode frequency value and mass sensitivity factor. However, the afillet radius
R2 has a minimal impact on the response indexes. A fillet radius of R2 = 0.8 mm was
chosen, and stem diameter D and fillet radius R1 were used as experimental factors. A
two-factor five-level central composite design and a response surface analysis were carried
out. The results showed that the regression equation has a good fitting effect and high
reliability. Both the 4-antinodes vibration mode frequency value y1 and mass sensitivity
factor λ increase with an increase in stem diameter D and fillet radius R1.

The best optimized parameters of the hemispherical resonator, h = 1 mm, R = 15 mm,
D = 7 mm, R1 = 1 mm, and R2 = 0.8 mm, were selected and simulated. The results
show that the 4-antinodes vibration mode frequency value is 5441.761 Hz, and the mass
sensitivity factor is 3.91 Hz/mg with relative errors of 0.13% and 0.51% with respect to
numerical optimized parameters.

At present, the mass sensitivity factor is based on the ring resonator as a theoretical
model. However, in the future, the hemispherical resonator model will be utilized to
analyze the impact of uneven mass on frequency splitting and to investigate how the
structural parameters of the hemispherical resonator influence the frequency splitting
specifically.
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