
Citation: Gao, Y.; Qiao, Z.; Pei, X.;

Wu, G.; Bai, Y. Design of

Energy-Management Strategy for

Solar-Powered UAV. Sustainability

2023, 15, 14972. https://doi.org/

10.3390/su152014972

Academic Editor: Pablo García

Triviño

Received: 29 August 2023

Revised: 26 September 2023

Accepted: 16 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Design of Energy-Management Strategy for Solar-Powered UAV
Yuanjin Gao 1,2 , Zheng Qiao 1,2, Xinbiao Pei 1, Guangxin Wu 1,2 and Yue Bai 1,*

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; gaoyuanjin21@mails.ucas.ac.cn (Y.G.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: baiy@ciomp.ac.cn; Tel.: +86-139-9480-5899

Abstract: Energy management plays a crucial role in achieving extended endurance for solar-powered
Unmanned Aerial Vehicles (UAVs). Current studies in energy management primarily focus on natural
energy harvesting and task-oriented path planning. This paper aims to optimize energy consumption
during the climb and glide stages by exploring variable climb speeds and glide powers. To achieve
this, fitness functions are established for both the climb and glide stages, taking into account the
maximum climb speed and glide power limits of the aircraft. The particle swarm optimization (PSO)
algorithm is employed to solve the problem, resulting in significant energy savings of over 68% in
the climb stage and 4.8% in the glide stage. Based on an analysis of the optimization trends, this
study proposes an energy-management strategy to fulfill the demand for long-endurance flights.
The findings of this study can serve as a valuable reference for high-altitude missions that require
extended flight times.

Keywords: solar-powered UAV; high altitude long endurance; variable climb speed; variable glide
power; particle swarm optimization; energy-management strategy

1. Introduction

Solar-powered UAVs are fixed-wing aircraft with a high aspect ratio that rely solely
on solar energy for propulsion. The distinctive feature of solar-powered UAVs lies in their
energy system, which employs solar cells to capture and convert solar radiation into usable
energy during daylight hours. Excess electrical energy generated during flight is stored
in batteries, allowing the aircraft to continue operating throughout the night, ensuring
uninterrupted flight. Solar-powered UAV flights typically consist of four stages [1]. These
stages encompass the ascent from the horizon in the morning to absorb energy, cruising
at maximum altitude until insufficient light hinders flight sustainability, gliding from the
maximum altitude without thrust until reaching a minimum altitude, and cruising at the
minimum altitude using battery power until the next sunrise. Figure 1 depicts the various
flight stages.
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solar irradiation and energy harvesting in solar-powered UAVs, incorporating various fac-
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dated the effectiveness of this mathematical model. He et al. proposed an energy-manage-
ment system that specifically targets PV modules and storage system power under rapidly 
changing atmospheric conditions using a self-adaptive control strategy [3]. This system 
serves as the foundation for harnessing wind energy at high altitudes, specifically in the 
transition between the stratosphere and troposphere. Wu et al. developed dynamic mod-
els that consider factors such as wind, solar power, and temperature to meet long-endur-
ance requirements. They proposed two energy-management system strategies, emphasiz-
ing the conversion of conditions between adjacent stages [4]. This approach has proven to 
be effective compared to the traditional 2-D strategy, and its research findings have a sig-
nificant impact on flight projects. Avila et al. proposed a hybrid solar-battery feeding sys-
tem that achieves efficient energy conversion through the implementation of sliding-mode 
control. Through the implementation of Maximum Power Point Tracking (MPPT), the 
UAV was able to maintain a constant power output, particularly for fixed-wing UAVs [5]. 
Currently, these researchers are improving the energy utilization efficiency and, therefore, 
enhancing the duration of flight through optimizing energy conversion. 

1.2. Optimizing Energy by Path Planning 
Moreover, extensive research has been conducted on path planning for solar-pow-

ered UAVs. Researchers have focused on optimizing the flight trajectory based on specific 
mission requirements, aiming to enhance energy efficiency. For instance, Wang et al. pro-
posed a multi-objective optimization approach that combines pseudo-spectral and colony 
algorithms to maximize mission effectiveness and enhance the capabilities of flight mis-
sions [6]. Furthermore, a multi-objective joint strategy that includes maximum power as-
cent, maximum range flight, maximum glide endurance, and minimum power level flight 
offers more advantages compared to relying solely on solar energy utilization. Huang et 
al. [7] proposed a path-planning method for static targets by parameterizing state varia-
bles at each waypoint and incorporating the minimum power flight strategy. This ap-
proach simplifies the optimization process and yields optimal solutions. Another contri-
bution by Huang et al. [8] involved the utilization of the Rapidly exploring Random Tree 
(RRT) algorithm for path planning. This algorithm takes into account factors such as 
eavesdropping, no-fly zone avoidance, and cloud coverage. By generating suitable 
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Many researchers have studied this innovative aircraft with the aim of achieving long
endurance at high altitudes through the application of an energy-management system. The
theoretical framework for achieving this goal involves acquiring more energy and reducing
energy consumption.

1.1. Optimizing Energy Conversion

Numerous scholars have proposed novel approaches in areas such as energy acquisi-
tion and strategy transition. Mateja et al. [2] developed a mathematical model to predict
solar irradiation and energy harvesting in solar-powered UAVs, incorporating various fac-
tors such as date and altitude that influence energy acquisition. They successfully validated
the effectiveness of this mathematical model. He et al. proposed an energy-management
system that specifically targets PV modules and storage system power under rapidly
changing atmospheric conditions using a self-adaptive control strategy [3]. This system
serves as the foundation for harnessing wind energy at high altitudes, specifically in the
transition between the stratosphere and troposphere. Wu et al. developed dynamic models
that consider factors such as wind, solar power, and temperature to meet long-endurance
requirements. They proposed two energy-management system strategies, emphasizing the
conversion of conditions between adjacent stages [4]. This approach has proven to be effec-
tive compared to the traditional 2-D strategy, and its research findings have a significant
impact on flight projects. Avila et al. proposed a hybrid solar-battery feeding system that
achieves efficient energy conversion through the implementation of sliding-mode control.
Through the implementation of Maximum Power Point Tracking (MPPT), the UAV was
able to maintain a constant power output, particularly for fixed-wing UAVs [5]. Currently,
these researchers are improving the energy utilization efficiency and, therefore, enhancing
the duration of flight through optimizing energy conversion.

1.2. Optimizing Energy by Path Planning

Moreover, extensive research has been conducted on path planning for solar-powered
UAVs. Researchers have focused on optimizing the flight trajectory based on specific mis-
sion requirements, aiming to enhance energy efficiency. For instance, Wang et al. proposed
a multi-objective optimization approach that combines pseudo-spectral and colony algo-
rithms to maximize mission effectiveness and enhance the capabilities of flight missions [6].
Furthermore, a multi-objective joint strategy that includes maximum power ascent, max-
imum range flight, maximum glide endurance, and minimum power level flight offers
more advantages compared to relying solely on solar energy utilization. Huang et al. [7]
proposed a path-planning method for static targets by parameterizing state variables at
each waypoint and incorporating the minimum power flight strategy. This approach sim-
plifies the optimization process and yields optimal solutions. Another contribution by
Huang et al. [8] involved the utilization of the Rapidly exploring Random Tree (RRT) algo-
rithm for path planning. This algorithm takes into account factors such as eavesdropping,
no-fly zone avoidance, and cloud coverage. By generating suitable trajectories, it ensures
wireless communication without eavesdropping. Environmental influences, such as wind
patterns and urban construction, have also been considered in path planning. Accurate
environmental models are utilized, and researchers pay careful attention to constraints,
energy models, and path-planning algorithms. Li et al. [9] employed a multi-step unscented
Kalman Filter (MUKF) to predict the trajectory accurately. Furthermore, they employed a
combination of the Simulated Annealing (SA) algorithm and the Quantum Particle Swarm
Optimization (QPSO) algorithm to address the issues of suboptimal optimization accuracy
and local minima. Using the energy model, the authors applied optimal control techniques
to plan paths that optimize energy consumption under varying meteorological conditions.
They also implemented a modular design for the solar-powered UAV, enabling adaptive
configuration adjustments during flight. This approach introduces innovative possibilities
for enhancing energy acquisition in solar-powered UAVs. However, the restriction of path
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optimization to the two-dimensional plane proves to be highly limiting for high-altitude
solar-powered UAVs due to the increased energy consumption during the climb stage.

1.3. Optimization in Complex Environments

Kim S. H. et al. [10] developed an energy model for solar-powered UAVs that incor-
porates the influence of wind fields. Building upon this, Xi et al. [11] investigated the
impact of environmental conditions on the flight of high-aspect-ratio UAVs. Wind energy is
considered a viable supplemental power source for flight operations. Using reinforcement
learning control, energy can be extracted from the wind field to optimize navigation time.
However, the availability of historical high-altitude wind field data is limited, which poses
a challenge for long-term flight mission planning of solar-powered UAVs. The robust
global fast terminal attractor-based control law and robust backward integral sliding-mode
control (RBISMC) technique, proposed by Ullah et al. [12,13], mitigate the impact of system
noise on control performance, demonstrating good convergence and tracking capabilities.
These control algorithms effectively suppress noise interference and enhance the robustness
and stability of the system by integrating the concepts of global fast terminal attractor
and integral sliding-mode control. Additionally, the RBISMC technique achieves rapid
state convergence and reduced chattering, enabling more precise trajectory tracking. These
characteristics make these control algorithms highly applicable in under-actuated systems,
particularly flight control in wind gradient field environments.

In summary, most research has primarily focused on increasing energy acquisition
without considering the amount of energy expended during this process. Path planning
has predominantly focused on the level cruise phase while neglecting significant variations
in altitude and energy consumption. As a result, the climb and glide stages, which can
be optimized, have been largely overlooked. The objective of this study is to examine the
reduction of energy consumption during the climb and glide stages, respectively.

This paper makes the following contributions and innovations:

(1) We established fitness functions for reducing energy consumption in the climb stage
and glide stage.

(2) We employed the particle swarm optimization algorithm to minimize energy loss in
the process.

(3) A comprehensive analysis is conducted to analyze the energy optimization trend for
longitudinal motion, resulting in the proposal of an innovative energy-management
strategy. This strategy aims to guide the design of solar-powered UAVs and improve
flight missions.

2. Problem Description and Modelling

Solar-powered UAVs can sustain flight during the dark night by efficiently storing
solar energy during the day in batteries and gravitational potential energy. However,
existing energy storage strategies often overlook energy consumption during this process,
resulting in wastage. The glide stage, which occurs at the beginning of the night, requires
a controlled release of gravitational potential energy to maintain flight. Traditionally, an
unpowered glide is employed during this phase. However, after careful calculation, it
became evident that this conventional strategy does not effectively conserve energy during
the night cruise phase. Therefore, a new energy-management strategy is needed to optimize
energy consumption during both the climb and glide stages.

2.1. Energy-Management Strategy Problem Description

A solar-powered UAV capable of perpetual flight would need to account for the
significantly different durations of daylight during the winter solstice and summer solstice.
Equipping the energy storage battery necessary for continuous flight during the winter
solstice would render it inefficient and burdensome during the summer, resulting in a
significant waste of payload capacity.
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A solar-powered UAV in the northern hemisphere requires a 7.44 kg lithium battery
to sustain flight throughout the nighttime on the summer solstice. However, during the
winter solstice, when the nighttime duration increases and the gliding stage starts earlier, at
least a 12.4 kg lithium battery is necessary to achieve continuous day and night flight [14].
To complete a flight mission spanning from the summer solstice to the winter solstice,
a minimum of 12.4 kg lithium battery is required. The excess 4.96 kg lithium battery
during the summer solstice becomes an unnecessary payload. Furthermore, at sunrise,
the sunlight intensity is insufficient to meet the power requirements for a constant climb
speed, leading to energy consumption from the storage battery. Therefore, optimizing
energy-management strategies during the climb and glide stages is essential to reduce the
number of batteries and reduce the weight of unnecessary payload.

2.2. Solar-Powered UAV Model

Many renowned solar-powered UAVs, such as Helio and Zephyr, have successfully
undertaken long-endurance flight tests, reaching altitudes of up to 20,000 m [15]. However,
the lack of detailed parameters for other solar-powered UAVs hinders our ability to include
them in our analysis. Therefore, we have selected the Zephyr solar-powered UAV as the
simulated aircraft for our study.

According to the information provided by the UK-based Zephyr project [16], we have
replicated a solar-powered UAV and documented its parameters in Table 1.

Table 1. Solar-powered UAV parameter.

Name Parameter Number Unit

Wing area s 35 m2

Weight of UAV m 75 kg
Gravity of UAV G 735 N

Wingspan b 25 m
Aspect ratio AR 17 -

Lift drag ratio K 44 -
Zero lift coefficient CL0 0.5 -

Lift stability derivative CLα 0.0978 -
Zero drag coefficient CD0 0.011 -

Drag stability derivative CDα 0.0025 -

CL and CD represent the lift and drag coefficients, respectively, and are primarily
influenced by CLα (lift coefficient), CDα (drag coefficient), α (angle of attack), and Ma (Mach
number) [17]. {

CL = (CLα, α, Ma)
CD = (CDα, α, Ma)

(1)

where α is the attack angle.

2.3. Power Consumption Model

Path planning for the solar-powered UAV can be categorized into horizontal and
vertical components. The trajectory for lateral movement needs to be planned based on
specific tasks, such as ground target monitoring and flight missions [18]. Due to the energy-
management system controlling the longitudinal motion of solar-powered UAVs, greater
emphasis is placed on vertical motion during the climb and glide stages, as compared to
horizontal path planning.

The power required for level flight Plevel and power required for climbing Pclimb can
be expressed using Equation (2) [19].{

Plevel =
GV[ρ(h)]

K
Pclimb = G

.
h

(2)
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The speed of the UAV relative to the air is represented by V,
.
h represent the climb

speed during the climb stage, G represents the gravitational force acting on the UAV.

2.4. Glide Kinematic Model

Equation (3) describes the kinematic model of a solar-powered UAV in relation to its
longitudinal motion [20]. 

.
h = Vsinγ

.
V = T−D

m − gsinγ

T = ρV2SCL
2

D = ρV2SCD
2

(3)

where γ represents the climb angle, while T and D denote the thrust and resistance of
flight, respectively. The air density, represented by ρ, varies with the altitude of the aircraft,
ranging from 20 km to 5 km, as illustrated in Figure 2.
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There is no thrust input when the solar-powered UAV is in the glide stage. Therefore,
adjustments must be made to the kinematic model.

.
V = −D

m
− gsinγ (4)

To streamline the calculation process, the following assumption is proposed:
Assumption 1: The aircraft operates under low attack angle and low-velocity condi-

tions, implying a linear relationship between lift, drag, and attack angle. Based on this
assumption, Equation (1) is transformed into Equation (5) [21].{

CL = CL0 + CLα ∗ a
CD = CD0 + CDα ∗ α

(5)

2.5. Solar Power Model

The solar power model of a UAV is influenced by factors such as time, location, and
attitude. In the context of energy-management strategies, this model can be calculated
using Equation (6) [22].

δ = 23.45× sin
(

360× 284+dd
365

)
, δ ∈ [−23.45◦, 23.45◦]

ω = 15◦ × (Tsolar − 12), ω ∈ [−180◦, 180◦]
S0 = 12×3600

π ×
[
1 + 0.033× cos 360×dd

365

]
S1 = S0 × [cos(ϕ)cos(δ)cos(ω) + sin(ϕ)sin(δ)]

(6)
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where dd represents the number of days in a year; Tsolar represents solar time in a day;
δ represents the declination angle; ω represents the solar hour angle, which changes by
15◦ per hour. S0 represents the intensity of solar radiation outside the Earth’s atmosphere;
S1 represents the irradiation intensity in J/m2; ϕ represents the latitude. The irradiation
intensity can be calculated based on the provided date, latitude, and time.

3. Problem Conversion and Solution

Among the various metaheuristic algorithms, the particle swarm optimization al-
gorithm stands out due to its simplicity, ease of implementation, strong global search
capability, and straightforward parameter settings. PSO possesses the unique advantage
of exhibiting strong parallelism, enabling particles to explore multiple solution spaces
simultaneously and, therefore, accelerate the convergence of the algorithm. It is precisely
this exceptional feature of PSO that makes it our preferred choice for addressing the
long-endurance problem [23].

Particle swarm optimization is widely utilized in path planning and optimization
tasks. Our objective is to minimize energy consumption through an efficient energy-
management strategy. Therefore, we aim to optimize the traditional strategies in place. The
successful implementation of PSO necessitates three main components: a fitness function,
optimization variable constraints, and basic parameters such as the number of particles
and iterations [24].

3.1. Fitness Function of Climb and Glide Stages

In the climb stage, the solar-powered UAV ascends from an initial altitude of h0 at
time t0 to a final altitude of h1 at time tn. The energy consumed during this stage can be
calculated as the integral of the sum of climb power and level power over the duration of
the climb. This relationship is represented by Equation (7).∫ tn

t0

(
G
( .

h
)
+ Plevel(h)

)
dt (7)

In the glide stage, it is postulated that the glide commences at an altitude of h1 and
concludes at an altitude of h0. The comparison of altitudes between powered and unpowered
glides is illustrated in Figure 3. Assuming that the duration of the powered glide is denoted
as t2 and the duration of the unpowered glide is denoted as t1. Given that the powered glide
entails a longer duration, the unpowered glide attains the altitude of h0 and transitions into
the level cruise phase. To compare the two strategies, it is imperative to ensure that the time
periods are equivalent. To achieve a lower energy consumption than the unpowered glide,
the following conditions must be satisfied as indicated in Equation (8):

Plevel × (t2 − t1) > Pglide × t2 (8)

After simplification, the expression can be represented as Equation (9):(
t1

t2
+

Pglide

Plevel

)
> 1 (9)

If Equation (9) is satisfied, we can achieve lower energy consumption compared to
unpowered glide. Conversely, if Equation (9) is not satisfied, powered glide does not result
in energy savings.

3.2. Constraint Condition

There are three constraints associated with the climb stage: altitude, energy, and climb
speed. First, it is essential to ensure that the optimized climb speed enables the UAV to
ascend to the desired altitude. Otherwise, the optimization process would be rendered
meaningless. Second, in terms of energy constraint, it is crucial to guarantee that the energy
acquired from solar power and energy storage batteries exceeds the energy consumed
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during the climb stage. Lastly, the speed constraint dictates that the optimized climb speed
must not surpass the maximum climb speed of the solar-powered UAV, therefore ensuring
that the optimization results remain within the performance limits of the aircraft.

∫ tn
t0

.
h dt ≥ 20000∫ tn

t0

(
G
( .

h
)
+ Plevel(h)

)
dt < Ebat +

∫ tn
t0

PSolar(t)dt

1.5 ≥
.
h ≥ 0

(10)
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Figure 3. Schematic illustration of powered and unpowered glide at altitude.

The glide stage is subject to power limitations, as the power allocated for gliding
should not surpass the upper threshold determined by optimization. In this regard, it is
recommended to set the glide power to a maximum of 30 W [25].

The glide stage employs a powered glide strategy. Assuming that the number of power
segments is denoted by “n”. To determine the optimal number of power segments for the
20 km altitude level, the glide power remains constant. To minimize the impact of randomness
in the particle swarm optimization and reduce errors caused by local optima, we adopt the
average of 100 optimization results as a reference value for determining the number of power
segments. As depicted in Figure 4, starting the glide at an altitude of 20 km allows for energy
savings across different power segments. It is evident from the results that the optimal number
of power segments is 3 when commencing the glide at 20 km.
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3.3. Other Parameter

The particle swarm optimization algorithm requires several essential parameters, such
as the number of particles, the maximum number of iterations, and the inertia factor. To
address the drawback of particle swarm optimization easily converging to local minima,
we employ a strategy in which the initial particles are uniformly distributed within the
solution interval. Additionally, we adaptively adjust the inertia coefficient, individual
learning factor, and social learning factor to enhance the optimization process. These
modified parameters can be represented as Equation (11) [26]:

ω = ωmax − iter
itermax

(ωmax −ωmin)

c1 = cmax − iter
itermax

(cmax − cmin)

c2 = cmin +
iter

itermax
(cmax − cmin)

(11)

where iter and itermax represent the current and maximum number of iterations, respec-
tively. ωmax and ωmin denote the upper and lower bounds of the inertia coefficient, re-
spectively. Meanwhile, cmax and cmin are the extreme values associated with the learning
factor. This approach serves to enhance the diversity of particles throughout the iterative
process of the particle swarm optimization algorithm, facilitating rapid convergence to
the optimal solution. The values of these four parameters adhere to the standard particle
swarm optimization algorithm. Table 2 presents the fundamental parameter configurations
for particle swarm optimization.

Table 2. The basic parameter values of particle swarm optimization algorithm.

Name Parameter Value

Minimum inertia coefficient ωmin 1.3
Maximum inertia coefficient ωmax 0.9

Learning factor minimum cmin 0.2
Learning factor maximum cmax 1.8

Population of particles p 50
Maximum number of iterations itermax 100

Current iteration iter -

The flowchart illustrating the particle swarm optimization algorithm is depicted
in Figure 5.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 16 
 

 

Population of particles p 50 
Maximum number of iterations 𝑖𝑡𝑒𝑟௠௔௫ 100 

Current iteration 𝑖𝑡𝑒𝑟 - 

The flowchart illustrating the particle swarm optimization algorithm is depicted in 
Figure 5. 

 
Figure 5. Flowchart of particle swarm optimization algorithm. 

4. Optimize Results and Analysis 
To facilitate a comparison with the traditional strategy, we evaluated the efficacy of 

employing a fixed climb speed of 0.8 m/s during the ascent, as well as the unpowered 
glide stage, under the traditional strategy. The optimization outcomes by MATLAB en-
compassed a comparison of altitude for the climb and glide stages, power optimization 
results, and an assessment of energy before and after optimization. 

4.1. Simulation Results 
During the climb stage, the altitude variation over time is depicted in Figure 6. As-

suming both the green and red triangles represent the same time instance. It can be ob-
served that, under the traditional strategy, the red triangle reaches an altitude exceeding 
12,000 m. Conversely, the results of optimization indicate that the altitude is lower than 
12,000 m. Hence, after optimization, the attained altitude is comparatively lower than the 
initial altitude. 

Figure 5. Flowchart of particle swarm optimization algorithm.



Sustainability 2023, 15, 14972 9 of 15

4. Optimize Results and Analysis

To facilitate a comparison with the traditional strategy, we evaluated the efficacy of
employing a fixed climb speed of 0.8 m/s during the ascent, as well as the unpowered glide
stage, under the traditional strategy. The optimization outcomes by MATLAB encompassed
a comparison of altitude for the climb and glide stages, power optimization results, and an
assessment of energy before and after optimization.

4.1. Simulation Results

During the climb stage, the altitude variation over time is depicted in Figure 6. Assuming
both the green and red triangles represent the same time instance. It can be observed that,
under the traditional strategy, the red triangle reaches an altitude exceeding 12,000 m. Con-
versely, the results of optimization indicate that the altitude is lower than 12,000 m. Hence,
after optimization, the attained altitude is comparatively lower than the initial altitude.
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Figure 6. Altitude-time comparison before and after optimization.

For the initial generation of the climb stage, the energy consumption was calculated at
a constant speed of 0.8 m/s. The iteration curve reveals a significant decline in historical
minimum energy consumption within the first 100 iterations. Following seven break-
throughs in energy consumption, it eventually reached 5.12 × 106 J in the 44th generation,
representing the minimum value achieved through this optimization process. The energy
consumption, when compared to the initial iteration, was reduced by 68% (Figure 7).
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Due to the vulnerability of particle swarm optimization to local optimal values, even
with the implementation of uniform particle distribution and parameter adaptive adjust-
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ment, there is no guarantee that each optimization iteration will yield the global optimal
solution. To address this, a cube is utilized to demonstrate the results of 100 particle swarm
optimizations during the glide stage. Within this representation, the three coordinate axes,
namely P1, P2, and P3, correspond to the power values of the three glide segments. The
colors employed in the figure indicate the amount of energy savings under different power
combinations (Figure 8). To visualize the optimization trend more effectively, the section of
the cube that exceeds the average energy savings is displayed separately (Figure 9).
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The altitude profiles of a single optimization result are depicted in Figure 10, illus-
trating the distinct differences. Both unpowered glide and powered glide commence at
an altitude of 20 km and conclude at 5 km. In this optimization result, the power values
for the powered glide are 27.4, 26.5, and 28.1, respectively. Throughout the descent, the
powered glide consistently maintains a lower altitude compared to the unpowered glide,
with the unpowered glide ending at 25,211 s and the powered glide at 27,897 s. Ultimately,
a 4.2% energy savings is achieved.

To bolster the credibility of our findings, we conducted a comparative analysis with
Wang et al.’s multi-objective genetic algorithm, known as NSGA-II [27]. This multi-objective
optimization involves simultaneously optimizing three energy objectives: acquired solar
energy, charged energy, and consumed energy. Through comparison, it has been discovered
that this approach can acquire more energy. However, it requires maintaining a certain
tilt angle of the UAV, which leads to an increase in energy consumption during the energy
acquisition process. Moreover, the additional energy consumed is much greater than the
extra energy acquired. This is illustrated in Figure 11. In other words, the simultaneous
optimization of energy acquisition and energy consumption during the climb stage in an
NSGA-II framework, instead of yielding higher total energy, paradoxically results in a
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decrease in overall energy. The energy of charging can be regarded as passive energy that
depends on acquisition and consumption and cannot be optimized through active control.
Therefore, optimizing the objective function based on the consumed energy alone yields
better results in the climb stage. In the glide stage, since there is no solar energy available,
there is also no charged energy and only the last energy objective remains meaningful. This
aligns with the objective function of this paper.
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The comparison is visually depicted in Figure 12. Our particle swarm optimization
algorithm outperforms the traditional strategy by achieving remarkable energy savings of
68% during the climb stage, spanning from 5 km to 20 km. Similarly, in the glide stage from
20 km to 5 km, our algorithm achieves energy savings of 4.8% compared to the traditional
strategy. In contrast, the multi-objective genetic algorithm yields energy savings of 32.6%
during the climb stage and 3.7% during the glide stage. These calculations provide concrete
evidence that our method not only achieves superior energy savings in the glide stage but
also significantly reduces energy consumption in the climb stage.
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4.2. Optimization Trend Analysis

To devise energy-management strategies suitable for long-endurance requirements,
it is imperative to conduct separate analyses of the optimization trends during the climb
and glide stages. This will enable mission planners and solar-powered UAV designers to
enhance energy utilization efficiency. To this end, a comprehensive analysis of the fitness
function, upon which particle swarm optimization is based, is necessary for understanding
the optimization trend.

The fitness function for the climb stage is divided into two parts. The first part pertains
to the climb power, with the integral of the climb stage representing the gravitational po-
tential energy. However, the climb power cannot be optimized when the altitude difference
remains constant, as gravitational potential energy is solely dependent on the altitude
difference. The second part focuses on the level of flight power, which is influenced by air
density and positively correlated with speed. As the climb altitude gradually increases,
the air density decreases, requiring an increase in speed to maintain lift. This increase in
speed leads to a corresponding rise in the level of flight power. From our perspective, the
optimization tendency is to delay the time taken to reach a specific altitude.

The optimization trend of the glide stage can be analyzed using Equation (9). For glide
missions at a specific altitude, the unpowered glide time (t1) and the levelling power (Plevel)
for cruising at the designated altitude are determined. The only variables that need to be
optimized are the glide time (t2) and the glide power (Pglide). Increasing the glide power
can prolong the glide time, but it also has a negative impact on the fitness function value.
Conversely, increasing the glide time has a positive effect on enhancing the fitness function
value. The objective of optimization is to find the solution that maximizes the function
value by considering both the positive and negative effects.

The optimization results presented in Figures 8 and 9 indicate that the negative effect of
increasing glide power is not as significant as the positive effect. Hence, increasing the glide
power to improve the glide time maximizes the fitness function value and conserves energy.

The primary objective of optimizing the climb stage is to replace the high-power
consumption associated with level flight in traditional strategies with a lower power
consumption during low-altitude flight. The climb stage can be considered to be a phase
dedicated to exchanging altitude for energy conservation. Similarly, the optimization of
the glide stage aims to replace the power required for level flight at cruising altitude with
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a maximum glide power limit of only 30 W. Through calculations, it is determined that
approximately 200 W of power is necessary to maintain level flight at an altitude of 5 km.
The glide stage can be seen as a stage where power is exchanged for energy conservation.

4.3. New Energy-Management Strategy

Figure 13 illustrates the altitude diagram of the particle swarm optimization algorithm
before and after optimization. The red line represents the altitude change using the tradi-
tional strategy, while the green line represents the energy-saving strategy post-optimization.
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Based on the analysis of the optimization trends presented in Figure 13 and Table 3, a
novel energy-management strategy is proposed. During the climb stage, it is recommended
to strategically delay the ascent to a specific altitude while ensuring the capability to reach
the desired target altitude. In the glide stage, extending the glide duration through an
increase in glide power is advised to effectively minimize energy consumption.

Table 3. Climb and glide stage optimization trend and energy comparison.

Stage Optimization Trend Energy Savings

Climb Delay time to a certain altitude 68%
Glide Delay the glide to the lower altitude 4.8%

5. Conclusions

This paper makes two main contributions. First, it establishes an optimization model
for variable climb speed and variable glide power, resulting in reduced energy consump-
tion during the climb and glide stages. The energy savings achieved are more than 68%
during the climb and 4.8% during the glide. Second, based on quantitative analysis of the
optimization trend, an energy-management strategy for the climb and glide stages, with a
focus on achieving long endurance, is proposed.

The energy management and path planning of solar-powered UAVs possess a unique
appeal not found in other types of UAVs. It is our earnest desire to encourage increased
participation of researchers in the scientific exploration of path planning and solar-powered
UAVs. Each endeavor in this research domain is certain to unlock opportunities for vision-
ary advancements, ultimately driving the prosperity of solar-powered UAV technology.
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