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ABSTRACT It is the key research object of electronic warfare to use UAV( Unmanned Aerial Vehicle)
clusters to carry out electronic countermeasure tasks. The UAV carries loads such as reconnaissance
and interference at the same time, which makes it necessary to simultaneously decide multiple types of
actions—namely, compound actions—which poses a challenge to intelligent decision-making algorithms.
Considering the problem of action-space dimensional complexity and weak collaboration between decisions
in multi-agent scenarios with composite actions, this study proposed a decision algorithm involving a multi-
agent reinforcement-learning sequence, which combined joint composite actions into sequential decision,
reducing the difficulty of a single decision and enhancing the collaboration between various agents and
their individual decisions. Because long decision sequences required better depth modeling and had high
variance, a DeLighT module was added to the naïve transformer model to increase the depth and baseline
techniques, which were used to reduce the variance in the value estimation. The simulated results verified
the effectiveness of the proposed algorithm in the UAV cooperative combat scenario, where each agent had
a composite action space and showed better performance than the existing algorithms.

INDEX TERMS Baseline, composite action space, multi-agent reinforcement learning, transformer, UAVs
sensing and jamming strategy.

I. INTRODUCTION
In modern warfare, in addition to the four traditional combat
domains of land, sea, air and sky, the electromagnetic
spectrum has also become an important combat domain.
Electronic warfare (EW) is the science and art of depriving
the enemy of the ability to use the electromagnetic spectrum
while protecting one’s own access. The definition in the
Soviet Military Encyclopedia, issued by the Russian gov-
ernment, was that electronic warfare referred to the process
of using electronic means to attack other enemy assets to
affect the state of the combat environment, and the goal of
electronic warfare was to reduce the operational effectiveness
of enemy forces (including command and control capabilities
and weapon system application capabilities).
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General Rastochkin, Commander of the Russian Electronic
Warfare Force, pointed out that the use of a unified
miniaturized reconnaissance-and-jamming module mounted
on a drone to suppress the radio in local areas in
order to generate controllable areas was the key research
object of electronic warfare development. At present, the
research of electronic warfare strategy has been focused
on the sub-domains of intelligent perception, interference
resource allocation, cognitive interference decision-making,
and anti-jamming decision-making, but there have been few
studies on complex decision-making for the comprehen-
sive electronic warfare observe–orient–decide–act (OODA)
loop.

Reinforcement learning is a method used to describe and
solve a problem for which agents attempt to maximize returns
or achieve specific goals by applying learning strategies to
their environmental interactions. It is a strategy for learning
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specific tasks and can also be employed tomimic hypothetical
enemy behaviors to assist electronic warfare experts in
various stages of electronic warfare.

In this study, the UAV swarm cooperative escort task
was used as the model environment, and the multi-agent
reinforcement learning algorithm was used to explore the
strategy while the UAV was used as the agent. The agent
had both cognitive reconnaissance and cognitive jamming
capabilities, and could complete the entire OODA loop.
Furthermore, the agents needed to make decisions on flight,
reconnaissance, interference, and other actions at the same
time, which challenged the proposed multi-agent decision-
making strategy as an exploration method.

A. RELATED WORK
First of all, our target scenario, multi-UAV cooperative escort
mission, belongs to the field of electronic warfare. A game
scenario exemplifies the struggle between two opposing
sides in electronic warfare, which becomes a dynamic
process of mutual recognition and mutual avoidance. Only
when the electronic warfare equipment has the ability of
learning during the confrontation and can adjust its own
response strategy efficiently through the identification of the
opponent feedback state in order to understand the initiative
behind future electronic warfare. Therefore, the concept
of a cognitive electronic warfare system with a learning
capacity was proposed for both domestic and international
application [1].

The definition of cognitive electronic warfare is based on
electronic warfare equipment with cognitive abilities and is
focused on electronic warfare operations that use autonomous
interactive learning capabilities in electromagnetic environ-
ments and dynamic intelligent confrontation capabilities.
It includes three basic elements: cognitive reconnaissance,
cognitive interference, and cognitive defense [2].

Our research focuses on the combat strategy of multi-UAV
electronic warfare. The research of electronic warfare equip-
ment technology [3] determines the lower limit of electronic
warfare capability, while the research of electronic warfare
strategy concerned in this paper determines the upper limit of
electronic warfare capability.

At present, the research focus of electronic warfare
strategy has been divided into the following tasks: intel-
ligent electromagnetic sensing, jamming resource alloca-
tion, cognitive jamming decision-making and cognitive
anti-jamming decision-making. The research concerning
intelligent-sensing tasks has focused on sensing systems [4],
[5], weak signals [6], and cooperative sensing [7]. The task
of jamming resource allocation in electronic warfare must
consider how to obtain the best overall electronic attack
with limited overall jamming resources, making this a typical
combinatorial optimization problem [8], [9]. It also involves
the task reassignment problem in dynamic environment [10].
Cognitive jamming decision-making involves the intelligent

development of electronic jamming [11], [12], [13] while
cognitive anti-jamming is the corresponding intelligent
defense strategy [14], [15], which has included some
anti-jamming performance evaluation models [16], [17].

The general process of electronic warfare is to first
intelligently perceive the battlefield; determine the target
for interference, according to the perception results; assign
tasks to the existing jamming resources; and make decisions
that subsequently suppress the enemy in order to complete
the OODA loop. Similarly, the interfered party could also
implement anti-jamming strategies. At present, the research
has focused on the aforementioned sub-areas but has lacked
exploration and research pertaining to the complete electronic
warfare process, much less the integration of each part to
form a complete electronic warfare scenario. That’s what
our research focuses on. The training environment of the
subject was an electronic countermeasure model with a UAV
cluster that included several cooperative tasks, including
control, reconnaissance and jamming task, ensuring is a
comprehensive electronic warfare scene.

The UAV swarm, the agents in our scenario, operation is
an important element in future war scenarios. Many scholars
have also conducted a lot of research on the strategy of UAV
cluster task completion. Swarm intelligence is an important
method to solve the multi-UAV task [18]. The quality of the
control strategy directly affected the safety and the stability of
the UAV swarm when completing the task [19]. Duan et al.
studied a wolf pack’s intelligent behavior and applied it to
a cooperative UAV swarm in a decision-making simulation
[20]. Inspired by bird behavior, Shen andWei designed a hier-
archical cluster control framework [21]. Besides, heuristic
algorithms are an option. Gao and Li proposed a distributed
cooperation method and information processing for a UAV
swarm based on situational awareness and a consensus
to strengthen adaptability in a complex environment [22].
To address a cooperative search problem, Zhang et al. used an
improved particle swarm optimization algorithm to allocate
the UAV reconnaissance area and maximize the utility of
the UAV cluster [23]. Of course, reinforcement learning is
also a good option. Yue et al. proposed a secure transfer
soft-AC algorithm with security constraints for maximizing
revenue [24]. Baek and York adopted distributed algorithms
so UAV swarms could track ground targets and proposed an
optimal sensor management technology and consensus-based
decision algorithm to minimize the uncertainty of the target
location [25].
Our target scenario requires multiple UAVs to make flight,

reconnaissance, interference and other actions at the same
time, and the task is relatively complex. We choose multi-
agent reinforcement learning algorithm based on Markov
decision process, which is more suitable for solving this
complex decision task.

At present, multi-agent reinforcement learning has been
applied to complex problems, such as traffic control
[26], multi-loop chemical process control [27], pathogenic
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gene prediction [28], and military operations [29]. It has
been a powerful tool for studying complex task decision-
making. Ahmed studied the effective interaction system
between agents [30]. The information obtained in the real
world was not necessarily accurate. Therefore, to solve
this problem, Chen et al. proposed multi-agent fault-
tolerant reinforcement learning [31], whereas Riley et al.
proposed a secure multi-agent reinforcement learning
method for security-critical and task-sensitive scenarios
[32]. Malysheva et al. proposed the MAGNet method and
introduced the concept of an environmental correlation
graph in reinforcement learning [33]. Liu and Tan proposed
feudal latent space exploration for multi-agent reinforcement
learning and guided a coordinated exploration using multiple
agents by learning the latent structure [34]. Kim et al.
analyzed the problem of the collaboration paradox caused
by ‘‘lazy’’ agents [35]. Kuba et al. performed a rigorous
mathematical analysis of the high variance in the estimations
of the policy gradient method and derived the optimal
baseline to achieve the minimum variance [36]. Chen et al.
introduced the concept of a hierarchical attention map to
enhance the scalability of the agent model [37].
In the setting of our target scene, the agent needs to decide

on multiple actions at the same time, which also causes
the problem of dimensional explosion in the action space.
We want to alleviate the problem of dimensional explosion
by treating multiple actions as an action sequence andmaking
decisions in turn. The most successful model for processing
squential data is Transformer.

The Transformer has achieved great success in many
artificial intelligence fields, such as natural language process-
ing, computer vision, and audio processing. It has become
the most widely used and popular sequential model among
network architectures and has attracted the attention of
scholars in the field of reinforcement learning. Chen et al.
abstractly described reinforcement learning as a sequential
modeling problem, combining transformer framework with
offline reinforcement learning [38]. Zheng et al. proposed
an online decision transformer algorithm based on sequen-
tial modeling, which combined offline pre-training and
online fine-tuning paradigms into a unified framework [39],
which was also applicable to multi-agent systems [40].
Finally, Wen et al. proposed a training framework for
cooperative multi-agent scenarios based on a transformer
framework [41].

We find that Transformer in the field of multi-agent
reinforcement learning is generally used to solve the problem
of dimensional explosion of joint action space caused by
the number of agents, that the problem of multiple agent
synchronous decision-making is described as a sequential
decision-making problem, and the cooperation between
agents is enhanced while the decision-making dimension is
reduced. However, the problem of composite action space
dimension explosion caused by multiple actions of single
agent is rarely mentioned, which is also the difficulty of

strategy exploration of multi-UAV cooperative electronic
countermeasures task designed by us.

B. MOTIVATIONS AND CONTRIBUTIONS
In the process of strategy learning for the target scenario,
multi-UAV cooperative electronic countermeasures escort
mission, we encountered the following problems:

Firstly, the increase in the number of simultaneous
decisions of a single agent has expanded the composite
action space and increased the difficulty of the strategy to
converge optimally. Secondly, the increase from a single
agent to multiple agents has introduced higher performance
requirements for the decisionmodel. Therefore, the algorithm
adopted in this paper is an actor–critic framework. The
critic part estimates the value of the current action and then
updates the actor. We use the Monte Carlo (MC) method
to estimate the value. However, the dimensional dynamics
increases the uncertainty of the action, resulting in high
variances when using the MC method. Our study makes the
following contributions:

1) In order to alleviate the dimensional complexity caused
by the compound action space, the decision process of
each step is divided into a decision sequence, and only
one action is selected for each decision, which reduces
the dimension of each decision. The transformer model
is used to process the decision sequence and ensure
that there is a correlation between the decision results
in the sequence, that is, the collaboration between
actions.

2) In order to alleviate the problem of poor convergence,
the DeLighT module is added to the naïve transformer
model to improve the depth of the network and enhance
its performance.

3) In order to alleviate the high variance of the policy
gradient and Monte Carlo methods, an independent
critic network is established by using a COMA (Coun-
terfactual Multi-Agent (policy gradients)) network to
obtain the values of all the next optional actions
of an agent in a certain state, and the baseline is
calculated.

4) In this study, a series of comparative experiments
were carried out to verify the effectiveness of the
MA2DBT algorithm in the complex action space,
and comparative ablation experiments evaluated the
cooperative escort mission assigned to the UAV swarm,
and the contribution of each part of the algorithm was
explored.

The rest of this article is organized as follows. In Section II,
the system model of UAV swarm and their cooperative
escort mission is described in detail. Section III presents the
MA2DBT algorithm for a series of effects caused by the
composite actions. In Section IV, the simulation results are
discussed and compared to other multi-agent reinforcement
learningmethods. Finally, SectionV summarizes the research
work.
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FIGURE 1. UAV swarm escort mission. From (a) to (d) was the ideal electronic warfare process.

II. SYSTEM MODEL
We studied strategic exploration in a scenario of UAV swarms
performing escort missions. In this scenario, the radar cluster
is the blue and the UAV cluster had to weaken the blue
reconnaissance capabilities and avoid being damaged by blue
firepower through electronic countermeasures against the
blue reconnaissance and firepower strike coverage in order
to escort a bomber within feasible attack distance so it could
destroy the target.

The aforementioned environment could be modeled as
decentralized partially observableMarkov decision processes
(Dec-POMDPs) < N ,O,A,R,P,γ >. In this scenario,
N= 1, . . . , n is the set of agents; O =

∏n
i=1O

i is the
joint observation space, that is, the combination of all agent
observation spaces; A =

∏n
i=1 A

i is the joint action space,
that is, the combination of all agent action spaces; R : O ×

A → [Rmin,Rmax] is the joint reward function of the agents;
P : O×A×O → R is the probability function of the Markov
decision process’s state transition; and γ ∈ [0, 1) is the decay
factor.

In a time-step, t ∈ N, agent i ∈ N selects action ait from
its action space based on observation oit ∈ O obtained from
the current environment and the current strategy πi. At each
time-step, all agents make decisions simultaneously based
on their own observations, without sequential dependencies.

At the end of each time-step, the entire team receives a team
reward R(ot , at )(o = o1, . . . , on, a = a1, . . . , an) and the
state of the next time-step state st+1(or observation ot+1).
After infinite execution of this process, the agent obtains
cumulative discounted rewards Rγ

=
∑

∞

t=0 γ tR(ot , at ).
The escort mission of the UAV swarm is a multi-agent

cooperative mission with compound action space. The UAV
swarm was composed of six UAVs that were integrated with
reconnaissance and jamming. Each UAV was considered an
agent. Each agent made decisions on its flight direction, flight
speed, reconnaissance direction, jamming direction, jamming
frequency, jamming intensity, etc., to realize the detection,
positioning, and interference of the blue radar, weaken
the radar reconnaissance, and complete the bomber-escort
task (the bomber was not an agent). As a non-player
character (NPC), the blue side was equipped with seven
omnidirectional reconnaissance radars, and at least three
radars covered the bombing position. In addition, the blue
side had two firepower points that were distributed near the
target. The firepower launch depended on the guidance of the
radar, so the first priority of the agent was to ensure that it was
not detected by the radar, so as to ensure that it would not be
incapacitated.

In this scenario, the reward of the agent was divided into
three parts, the flight reward, the reconnaissance reward,
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and the jamming reward. The agent needed to be close to
the reconnaissance distance to detect the blue radar, and
the blue radar could experience interference by the drone
within the interference range, so the flight reward would be
given according to the distance between the drone cluster
and the radar cluster. The reconnaissance reward could be
obtained for every reconnaissance, capture, and location
of a radar. The interference of the agent with the radar
affected the radar’s reconnaissance ability. The interference
reward was calculated according to the degree of weakening
and upon the arrival of the bomber to the safe bombing
position.

The general process of the whole scene was as follows,as
shown Figure 1. First, the scene is initialized, including seven
UAVs (agents) and one bomber (NPC) on the red side, whose
goal is to open up a safe area to help bombers complete their
strike tasks through electronic countermeasures, while the
blue side includes seven radars and two fire units guarding
near the target, as shown in Figure 1(a). Then, the UAV
conducts reconnaissance on the radar, and interferes with the
detected radar that affects the bomber’s striking the target
to suppress its reconnaissance, as shown in Figure 1(b).
When the UAV detects all the radars that cover the attack
point within the reconnaissance range, the UAV interferes
with the threatening radar to suppress its detection and open
up a safe path for the bomber, as shown in Figure 1(c).
Finally, the bombers arrive at the safe attack position to
complete the bombing (this step is an established strategy),
as shown in Figure 1(d). So far, the multi-UAV cooperative
escort task has been completed. Throughout the mission,
drones will also face the risk of being detected by radar
and hit.

Next, the key calculation model in the scene design
is expounded. Firstly, the UAVs needed to detect the
position of the blue radar. The UAVs adopted a directional
reconnaissance mode, which had a long reconnaissance
distance but a narrow range. When the UAV detected the
radar, the UAV cluster would receive a reconnaissance result,
which was regarded as a capture of the radar information.
The radar information was captured more than three times to
complete the determination of the radar frequency band. Two
or more reconnaissance results could be cross-referenced to
accurately locate the radar position.

Red drone reconnaissance blue radar follows the following
equation:

Let the probability of finding the target in the i-th
observation be qi(i = 1, 2, . . . , n) and let the random variable
X denote the number of observations (serial numbers) of the
first discovery of the target. Therefore, the probability that the
target would not be found in the first n − 1 observations but
found in the n-th observation is

P (X = n) = qn
n−1∏
i=1

(1 − qi) (1)

Therefore, we found the expected number of target
observations:

E (X) =

∞∑
n=1

nP (X = n) (2)

The variance is expressed by the following:

σ 2
X = E

{
[X − E (X)]2

}
= E

(
X2

)
− E (X)2

=

∞∑
n=1

n2P (X = n) − E (X)2 (3)

If qi can be seen as a constant qi = q, i = 1, 2, . . . , n, that is,
when the conditions do not change greatly during the search,
we have

P (X = n) = q (1 − q)n−1 (4)

E (X) =

∞∑
n=1

nq (1 − q)n−1
=

1
q

(5)

σX =

√√√√ ∞∑
n=1

n2q (1 − q)n−1
−

1
q2

=

√
1 − q
q

(6)

The random variable X obeys a geometric distribution.
Meanwhile, the blue radar is also detecting the position

of the red UAV, and the radar detection of the UAV will be
affected by the jammer.

The detection probability of the radar to detect the UAVs
is calculated according to the following formula:

Pdi =

∫
∞

0
e−t

1 − ϕ

Y0 − n0
(
1 + Sni t

)√
n0

(
1 + 2Sni t

)
 dt (7)

Under interference conditions, the radar detection probability(
Pdi

)
depends on the ratio of the signal energy and

interference energy, where function ϕ (x) is

ϕ (x) =
1

√
2π

∫ x

−∞

e−
t2
2 dt (8)

where, Sni is the signal-to-interference ratio of a single pulse
in the i-th contact with the target, is calculated as follows:

Sni =
PtG2

t 1fiσ
4πPiGiγiGi(θ )1frL

·
R2i
R4i

(9)

Gi (θ) is the gain of the radar antenna in the direction of the
jammer; therefore,

f (x) =



Gt , 0 ≤ |θ | ≤
θ0.5

2

k
(

θ0.5

θ

)2

Gt ,
θ0.5

2
< |θ | ≤ 90◦

k
(

θ0.5

90

)2

Gt , 90◦ < |θ | ≤ 180◦

(10)

where k is constant.
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III. MULTI-AGENT MULTI-ACTION DELIGHT BASELINE
TRANSFORMER
In a multi-agent collaboration task, the collaboration between
agents is an important consideration for the decision
algorithm to achieve better performance. When the action
space of an agent is a composite action space formed by
the Cartesian product of multiple types of actions, the col-
laboration between different types of actions also guides the
algorithm to obtain an optimal strategy. For an scenario with
composite action space composed of multiple types of actions
(this study focuses on a discrete action space),such as our
scenario that multiple UAVs need to perform reconnaissance,
jamming and other actions at the same time to complete
the escort mission, in our experiment,the existing algorithms
for reinforcement-learning-based strategic exploration, such
as PPO (Proximal Policy Optimization) and DDPG (Deep
Deterministic Policy Gradient), no matter it is single agent
task or multi-agent task, The strategy obtained is not ideal
for the completion of the task. For this phenomenon,
we analyze that multiple types of actions lead to the
explosive expansion of the agent’s action space, resulting in
aimless exploration and ignoring the influence of cooperation
between different types of actions on decision making. Based
on this, we propose Multi-Agent Multi-Action DeLighT
Baseline Transformer (MA2DBT) algorithm for decision
tasks in a composite action space.

A. SPLITTING COMPOSITE ACTIONS FOR SEQUENTIAL
DECISION-MAKING
In multi-agent collaboration tasks, sequential decision-
making methods have been used for collaborative decisions
among agents, that is, to determine their own decisions
based on their individual observations as well as the deci-
sions of previous agents. This multi-agent-ordered decision
streamlined the update of their joint strategies. According
to Theorem 1, maximizing each agent’s local advantage is
equivalent to maximizing their joint advantage.

Theorem 1. (multi-agent advantage decomposition): Let i1:n
be a permutation of agents. Then, for any joint observation
o ∈ O and joint action a = ai1:n ∈ A, the following equation
always hold with no further assumptions needed [36]:

Aiπ
(
o, ai1:n

)
=

n∑
m=1

Aimπ
(
o, ai1:m−1, aim

)
(11)

Similarly, for a decision-making task in a compound action
space composed of multiple types of actions, the cooperative
nature of the actions can also be enhanced by sequential
decision-making.

Corollary 1. (multi-action advantage decomposition): Let i
be any agent and a1:n be a permutation of actions. Then, for
any observation o and joint action a = a1:n ∈ A, the
following equation always holds:

Aiπ (o, a1:n) =

n∑
m=1

Aiπ (o, a1:m−1, am) (12)

FIGURE 2. The Actor architecture of MA2DBT.

Further, We extended Corollary 1 to multi-agent scenarios,
where multiple agents have multiple types of actions from
which to choose; therefore,

Corollary 2. (multi-agent multi-action advantage decompo-
sition): Let i1:t be a permutation of agents and a1:n be a
permutation of actions. Then, for any observation o and joint
composite action a = a1:t1:n ∈ A, the following equation
always holds:

Aiπ
(
o, ai1:t1:n

)
=

n,t∑
m=1,b=1

Aibπ
(
o, aib1:m−1, a

ib
m

)
(13)

The theorem and corollary provide a concept for the
decision-making task with compound action space. Suppose,
in any state, agent i chooses action aib,A

ib
π

(
o, aib

)
> 0,

with positive advantage; then, assume that all the proceeding
agents know the choice aib. Based on this premise, each
subsequent step tends towards the action with positive
advantage, that is, Aibπ

(
o, aibi , aib+1

i

)
> 0. The theorem and

corollary ensure the positive advantage of the joint composite
action. In addition, each decision only needs to be selected in
the action space of the agent. The complexity of the overall
exploration process is additive rather than multiplicative.
It does not need to consider the composite actions of different
types in the selection step, which reduces the difficulty of the
strategic exploration while ensuring collaboration.

B. TRANSFORMER AND DELIGHT
The decision-making process of multiple agents with com-
pound action space is decomposed into a sequential process
of each action of an agent. The process of sequential
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decision-making is remarkably similar to that of natural
language processing. For example, in the field of machine
translation, the model obtains the first word of the translation
results according to the first word of the sentence to be
translated, so it could then output the second word of the
translation based on the first word of the translation results,
taking the second word of the translated sentence the input,
and so on, until the whole sentence is translated. There is
a correlation between the translation results. In the field of
intelligent decision-making, this phenomenon is analogous to
collaborative decision-making.

The transformer model uses an encoder–decoder architec-
ture, and its encoder and decoder are not traditional RNN
(Recurrent Neural Network) structures. Instead, they are indi-
vidual encoder and decoder stacks comprising consecutive
encoders and decoders with the same structure. Each encoder
contains a self-attention module and a feed-forward neural
network. Each sub-network has a residual link, and the results
are normalized after each residual synthesis. In addition to the
self-attention mechanism and fully connected feed-forward
neural network, and similar to the encoder, an attention
module is added between the two sub-networks in each
decoder. The three sub-networks all have residual links
and are normalized after residual synthesis. The residual
connections can prevent network degradation caused by
gradient disappearance and improve the network depth.

The transformer establishes the relationships in the data
based on the attention mechanism: the higher the value, the
higher the correlation between the two. The transformer does
not use an RNN structure, so parallel computing can be
performed, which greatly improves its operational speed.

The observations of all the agents are used as sentences
to be translated, and all types of actions determined by all the
agents are used as the translation results for serialization. Due
to the complexity of the task and the action space, we need to
further improve the performance of the sequential model. The
common practice is to expand the model depth, typically by
increasing the number of hidden layers or stacking additional
transformer blocks, but these practices increase the difficulty
of the model training.

Therefore, we designed a network model based on the
DeLighT model, which had a deeper-yet-lighter transformer
structure. The DeLighT model allocates the model param-
eters more efficiently. It uses DExTra transform in each
transformer block and uses block-level scaling at the input
end tomake the DeLighT block shallower and narrower while
allowing the DeLighT block at the output end to be deeper
and wider. This approach deepens the network model while
maintaining a smaller number of parameters.

As shown in Figure 2.The encoder is responsible for
encoding the input. An observational sequence (oi1 , . . . , oin )
could enter in any order. After passing through the encoder’s
DeLighT module, self-attention module, and feed-forward
neural network, the encoding result is obtained and then
transmitted to the attention module in the decoder. The
decoder is responsible for obtaining the action sequence,

which is composed of an initial action (similar to the
initial identification of the text sequence) as well as a
decoder composed of a DeLighT module, a self-attention
module, a masked–attention module, and a feed-forward
neural network. It calculates the next sequence of actions and
then continuously loops this process until the entire action
sequence is determined. The input of the attention module
also includes the encoding result of the encoder and the
residual input of the sub-attention module. The role of the
mask is to ensure that the decision of the current action is not
affected by future data.

The loss function used to train the network was the
following:

LActor (θ )

=
1
Tnd

n∑
m=1

d∑
b=1

T−1∑
t=0

min(r
ibm
t (θ )X̂t , clip(r

ibm
t (θ ), 1 ± ϵ)X̂t )

(14)

where, r
ibm
t (θ ) =

π
ibm
θ (a

ibm
t |ô

i1:n
t ,â

i1:b−1
1:m−1
t )

π
ibm
θold

(a
ibm
t |ô

i1:n
t ,â

i1:b−1
1:m−1
t )

and where n is the number of agents, d is the number of action
types of one agent, T is the episode length, and X̂ is the value
advantage function calculated by the critic.

C. CRITIC AND BASELINE
In the multi-agent collaboration task, the agent who makes
the greatest contribution and the agent who makes the least
contribution receive the same reward. This leads to some
agents becoming ‘‘lazy’’. The distribution of the agent reward
is unfair and should follow the principle of ‘‘more work for
more gain’’. This is a typical credit assignment problem in
multi-agent cooperative tasks.

Our algorithm uses the CTDE (Centralized Training with
Decentralized Execution) framework. The transformer model
is used as the actor to obtain the action. We observed that the
convergence of the actor strategy depends on the estimation of
the X̂ advantage function, which is, in turn, based on the critic
estimation of the value function. For this study, we adopted
the Monte Carlo estimation method, which must wait for the
end of the current episode to learn. It has the characteristic
of unbiased estimation but with high variance. Therefore,
we attempted to reduce the variance of the value function
estimation by control-variate subtraction, also known as a
baseline track. At the same time, the problem of belief
distribution can also make the value estimation of different
actions of different agents vary by adding baselines, making
the return distribution more reasonable.

Baseline b is a function that does not depend on action a,
therefore,

E [b · ∇θ logπθ (a|s)] = 0 (15)
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FIGURE 3. The Critic architecture of MA2DBT.

For the calculation of the multi-agent strategy gradient,
we calculated the following:

∇θ iJ (θ ) =Es0:∞∼d0:∞
θ

,a−i
0:∞∼π−i

θ
,ai0:∞∼π i

θ[
∞∑
t=0

γ tQθ

(
st , a−i

t , ait
)

∇θ i logπ i
θ

(
ait | st

)]
(16)

When we brought in the baseline, we found as shown as
Equation (17) at the bottom of the page.

It can be seen that whatever the function b is, the
expectation of the gradient is constant, so the addition of the
baseline does not affect the correctness of the policy gradient.

In this study, three baselines were applied for different task
selections: state value function, counterfactual baseline, and
optimal baseline as obtained by mathematical calculation.

First, the state value function was used as the baseline.
In this case, the advantage function is the general advantage
function.

X̂ = Q (s, a) − V (s) (18)

Second, we used counterfactual baselines. The concept of
a counterfactual baseline is to evaluate the contribution of an
agent action. We can replace the agent action with a default
action and then focus on the change in the team results before

and after the replacement. When the results increase, the
effect of the current action is not as good as the baseline
action. In order to reduce the computational complexity, the
average effect of the current strategy was used as the effect of
the default action [42].

X̂ = Q
(
s, ai

)
−

∑
π i (at |st)Q (st , at) (19)

Third, the optimal baseline was obtained by mathematical
calculations. In the optimal baseline theory, the causes of
variances in a multi-agent environment are analyzed. The
estimated variance mainly comes from the variance of the
state, the variance of the current agent action, and the variance
of the remaining agents [36], as shown as Equation (20), at the
bottom of the next page.

The baseline function is affected by the states and the
actions of other agents but does not depend on the action
of the current agent; therefore, minimizing the third variance
minimizes the entire variance.

The optimal baseline was determined by the following:

boptimal
(
s, a−i

)
=

Eai∼π i
θ

[
Q̂

(
s, a−i, ai

) ∥∥∇θ i logπ i
θ

(
ai | s

)∥∥2]
Eai∼π i

θ

[∥∥∇θ i logπ i
θ

(
ai | s

)∥∥2] (21)

Among the three baselines, the action value function
Q (s, a) and the state value function V (s) must be used.
Therefore, the algorithm establishes a corresponding evalua-
tion network. On the one hand, the encoder in the transformer
was used to calculate the state value V (s) with the coded
state of the agent as input and the state value as output for the
first baseline. On the other hand, the calculation of the latter
two baselines depends on the action value of all the possible
actions of an agent at a certain moment. In order to facilitate
the calculations,we established a COMA network to estimate
the value of the next-possible action of an agent in a certain
state. The model structure of the critic is provided in Figure 3.
The network takes the observation of an agent, the state of
the environment, and all the actions of the remaining agents,
as input, and it outputs the value Q of all the next-possible
actions of the agent in this state, for the subsequent baseline
calculation. A target network was added to the training to
ensure the stability of the estimation.

∇θ iJ (θ , b) = Es∼dθ ,a−i
0:∞∼π−i

θ
,ai0:∞∼π i

θ
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∞∑
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γ t (Qθ

(
st , a−i

t , ait
)

− b(st , a−i
t ))∇θ i logπ i

θ

(
ait | st

)]

= Es0:∞∼d0:∞
θ

,a−i
0:∞∼π−i

θ
,ai0:∞∼π i

θ

[
∞∑
t=0

γ tQθ

(
st , a−i

t , ait
)

∇θ i logπ i
θ

(
ait | st

)]

−

∞∑
t=0
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θ

,a−i
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θ
,

[
b(s, a−i)∇θ i logπ i

θ

(
ait | st

)]
= ∇θ iJ (θ ) (17)
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The loss function used to train the network was determined
by the following:

LCritic (φ) = r + γ

n∑
i=0

ωiQ̂i −
n∑
i=0

ωiQi (22)

where Q̂ is the result of target network andω is the probability
of all actions selected by the agents in a certain state.

According to the above three parts, the MA2DBT
algorithm proposed in this paper is composed. The algorithm
adopts the classical AC architecture, the Actor makes the
decision of the action, while the Critic evaluates the value
of the current status and actions, and the evaluation results
are used to guide the gradient update of the Actor. The
Actor network adopts the structure of Encoder-Decoder,
and the observation information is encoded by the Encoder.
The Decoder makes sequence decision according to the
observation information until a complete action sequence is
decided, while the Critic network adopts the structure as
shown in Figure 3 to obtain the action value function. The
baseline method is used to reduce the variance of the value
estimate, so as to guide the update of actors more smoothly.
The detailed algorithm flow is as Algorithm III-C( on the next
page ).

IV. EXPERIMENTS
In order to evaluate whether the MA2DBT algorithm
effectively improved the decision-making ability of the
multi-agent algorithm for the UAV-swarm escort mission in
a composite action space, we compared it to some current
state-of-the-art algorithms. In order to obtain amore universal
conclusion, we carry out experiments in a stepped way to
compare the performance of the algorithm, from single-agent
tasks to multi-agent tasks with simple tasks, finally, to the
multi-agent task of complex tasks. In the second part,
the multi-UAV cooperative electronic countermeasures task
scenario built by our research group is adopted. It is also
multi-agent task, but the electronic countermeasures task can
be subdivided into reconnaissance and jamming tasks, both
of which need to consider the position of the UAV, and the
tasks are relatively complex. In addition, we also conducted
some ablation experiments to explore some properties of
our algorithm. First of all, our algorithm is a sequential

decision-making method, so it is necessary to explore the
influence of decision order on the results. Secondly, scholars
have proposed a variety of baseline methods, and we
have explored the effects of different baselines in different
scenarios.

A. COMPARATIVE EXPERIMENT: THE EFFECT OF
SPLITTING COMPOSITE ACTION SPACE
1) SINGLE AGENTS WITH COMPOSITE ACTIONS SPACE
Firstly, several popular reinforcement-learning algorithms
were compared in a compound action space with a single-
agent task. Here, we used a single soccer agent scenario
in Google Research Football, and in order to ensure the
similarity of the situation, we modified the action space
from each agent only deciding one step to one where each
decision consisted of multiple future steps: the more steps of
a decision, the more complex the action space.

In the Figure 4, We observed that the convergence rate
of the MA2DBT algorithm was better than that of MAT
and MAPPO for two and three steps in the future. As the
complexity of the action space increased, the convergence
rate of the algorithm decreased. Since the composite action
space of each agent reached 130,000 when the agent made
each decision on the next 4 steps, our equipment could not
support the vast calculations required by MAT (Multi-Agent
Transformer) and PPO. In contrast, although the MA2DBT
algorithm did not have a prominent performance in optimal
strategic exploration, it decomposed the composite action
space, which had better stability for strategic optimization in
complex scenarios and effectively alleviated the problem of
the dimensional complexity caused by the composite action
space. In addition, although the use of the DeLighT module
reduced the convergence rate, its final effect was slightly
stronger than the naïve transformer.

2) MULTI-AGENTS WITH COMPOSITE ACTION SPACE
The single-agent scenario did not fully reflect the advantages
of the multi-agent algorithm, so we conducted comparative
experiments in amore complexmulti-agent environment with
composite actions. Using the toy multi-agents reinforcement-
learning problems designed by Jiang and Amato [43], the
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Algorithm 1Multi-Agent Multi-Action DeLighT Baseline Transformer(MA2DBT)
Input: number of agents n,number of actions b, episodes K ,ppo iterations ep, steps per episode T
1: Initialize : Actor(DelighT Transformer) θ0,Critic φ0, Replay buffer B
2: for k = 0 → K − 1 do
3: for t = 0 → T − 1 do
4: Collect a sequence of observations oi1t , . . . , oint from environments.
5: Generate representation sequence ôi1t , . . . , ôint by feeding observations to the encoder
6: Input ôi1t , . . . , ôint to the decoder.
7: for m = 0 → n− 1 do
8: for c = 0 → b− 1 do
9: Input ai0,j0t , . . . , ai0,jct , . . . , oim,jc

t and infer aim,jc+1
t with the decoder.

10: end for
11: end for
12: Execute joint complex actions ai0,j0t , . . . , ai0,jbt , . . . , oin,jbt in environments and collect the reward R(ot , at ).
13: Insert (ot , at ,R) in to B.
14: end for
15: for p = 0 → ep do
16: Sample a random batch steps from B.
17: Generate Qφ(oi1,a

j0 ), ..,Qφ(oi1,a
jb ), . . . ,Qφ(oin , aj,b) with the output layer of the critic.

18: Calculate LCritic(φ) with Equation 22.
19: Update the critic by minimising LCritic(φ) with gradient descent.
20: Input oi1 , .., oin ,si1 , . . . , sin and a−(i0,j0), . . . , a−(i0,jb), . . . , o(in,−jb),generate Qφ(oi1,a

j0 ), ..,Qφ(oi1,a
jb ), . . . ,

Qφ(oin , aj,b) with critic.
21: Compute the joint advantage function Â based on Qφ(oi1,a

j0 ), ..,Qφ(oi1,a
jb ), . . . ,Qφ(oin , aj,b).

22: Input ôi1t , . . . , ôint and ai0,j0 , . . . , ai0,jb , . . . , ain,jb−1 , generate π
i1,j1
θ , . . . , π

in,jb
θ in at once with the decoder.

23: Calculate LActor (θ ) with Equation 14.
24: Update the actor by minimising LActor (θ ) with gardient descent.
25: end for
26: end for

action space was also complex, and the agent needed to
decide future multi-step actions one time.

MADDPG was a distributed algorithm. It was equipped
with an AC network for each agent, and each network
was trained and updated separately. MA2DBT, MAT,
and MAPPO were all shared network algorithms. All
agents shared a set of network parameters. In addition,
as compared to general multi-agent algorithms, the MAT
algorithm used the multi-agent decision-making process as
a sequential decision-making process, which strengthened
the correlations among the decisions of each agent. Here,
we compared the MA2DBT algorithm to several multi-agent
reinforcement-learning algorithms, such as MAT, MAPPO,
and MADDPG, in multi-agent collaborative scenarios and
continuously increased the complexity of the composite
action space to verify the adaptability of the various
algorithms.

As shown in Figure 5, in the fire-fighter scene, with
the gradual expansion of the compound action space, the
convergence results of all the algorithms were degraded
by varying degrees, but the performance degradation of
the MA2DBT algorithm model was the slowest, and the
adaptability to the compound action space was the best. With
the increased number of steps in a single decision, the gaps

between the other algorithms gradually expanded. In the go-
together scenario, the MA2DBT algorithm still maintained
its optimal performance. In addition, the MAT algorithm
achieved better convergence results than the single-decision
two-step scenario. This showed that in some scenarios,
an agent’s singular decision comprising multiple actions was
beneficial to the completion of the task, to some extent.

B. ABLATION EXPERIMENT: THE INFLUENCE OF THE
PARTS
Next, we explored the strategy of the UAV-swarm escort
mission and carried out ablation experiments to determine
the contributions of each part of the algorithm to the overall
strategic exploration.

1) THE INFLUENCE OF THE DECISION ORDER
For the UAV-swarm escort task, we first explored the
influence of the decision-making sequence on the decision-
making results. Here, we proposed two multi-agent compos-
ite actions as decision-making orders. First, we determined
all the actions of an agent according to the sequence of action
types and then determined all the actions of the next agent,
in turn, until all the decisions were known, which was called
the agent priority. The second step was to determine the type
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FIGURE 4. Performance comparison in academic empty-goal scenario. The (a) and (b) are the training results for
two-step and three-step decisions, respectively. Images (c)–(f) are the results of DeLighT, a naïve transformer, MAT, and
PPO algorithms in this scenario with different steps for each single decision.

of action decided by all the agents according to the sequence
of the agents in order to determine the next type of action of all
the agents, in turn, until all the decisions were known, which
was called the action priority.

We compared the different decision sequences of the
MA2DBT algorithm (the algorithm in the experiment used
a naïve version of MA2DBT),as shown Figure 6. The results
showed that in our UAV cooperative combat scenario, it was
easy to obtain better convergence results when the agent
priority approach had been adopted. At the same time,
the addition of the DeLighT model enhanced the strategic

expression ability of the network model and aided the
convergence of the model for better strategic parameters.

2) THE INFLUENCE OF DIFFERENT BASELINES
In our algorithm, the convergence of the strategy depended
on the value function obtained by the critic, and the value
function calculated by the Monte Carlo method had no
deviation but high variance. Therefore, the use of baseline
techniques was particularly important. In this phase of the
study, we conducted experiments concerning the UAV-swarm
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FIGURE 5. Performance comparisons of multi agent scenarios. Images (a)–(d) are the results in a fire-fighter scenario with 2–5
steps determined one time. Images (e)–(h) are the results in a go-together scenario with 2–5 steps determined one time.
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TABLE 1. Performance evaluations of sample mission data.

FIGURE 6. Performance comparisons of different sequence in the
transformer model.

escort mission to determine the baseline that would best fit the
task. In the experiment, X in the loss function of transformer
model in the naïve version of MA2DBT algorithm used the
advantage value obtained by GAE (Generalized Advantage
Estimator) advantage estimation algorithm.

Figure 7 shows that the counterfactual baseline achieved
better results in the UAV-swarm cooperative combat scenario.
Based on the support of the counterfactual baseline, the
MA2DLBT algorithm had better performance than the other
algorithms.

The table 1 shows the average data obtained from the
same number of evaluations of the decision models for
each algorithm, including the single-step decision time and
task-related data of the red and blue parties, for each task.
We observed that theMA2DBT algorithm had to compromise
its efficiency for the single-decision task, but its results were
still below 0.1 seconds. As compared to the MAT algorithm,
the completion efficiency of the cooperative reconnaissance

task increased by 47 %, the detected blue information
was nearly doubled, the reconnaissance efficiency increased
by 1%, the interference efficiency increased by 2%, and
the task completion efficiency increased by 9%. Although
the MAPPO algorithm obtained the most reconnaissance
information, the coordination between the information was
very poor, so that the cross-location could not be completed.

For all aspects of the MA2DBT algorithm, the use of the
DeLighT structure further extended the single-step decision
time, while the use of the baselines did not have a significant
impact. In addition, the DeLighT structure and the addition of
the baselines improved the task data obtained by the strategic
modelling of the UAV-swarm cooperative combat mission,
to some extent.

The requirements of UAV-swarm cooperative escort mis-
sion was to reach a safe area and hold the space for more
than 10 s. As our results showed, none of the strategy
models were able to complete the task. We observed that
in this task, flight, reconnaissance, and interference were
three dependent sub-tasks, each affecting the others. For
example, in general, the number of radar covering the target
positionwas from about three to four. Although theMA2DBT
algorithm completed the reconnaissance sub-task well, some
reconnaissance and positioning results were not helpful for
the subsequent arrival to the safe area. Therefore, the MAT
algorithm achieved similar interference efficiency to the
MA2DLBT algorithm, with fewer reconnaissance results.
We observed that the high degree of the completion of a
sub-task did not directly correlate to the completion of the
main task. This involved the coordination of objectives in
multi-objective tasks. The reasonable allocation of the reward
for multiple objectives, the selection of a more appropriate
baseline, and the efficiency and feasibility of multi-agents in
multi-objective main tasks will be the focus of our next stage
of research.

We also did baseline ablation experiments in another
training task scenario. The Figure 8 showed that in cleaner
and fire-fighter scenarios, the general dominance function
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FIGURE 7. (a) the performance comparisons of different baselines in MA2DBT. (b) the performance comparisons of different algorithms.

FIGURE 8. Performance comparisons of different baselines. (a) Cleaner, (b) fire fighter, (c) go-together.

had better results, as cleaner tended to estimate the dominance
function by the GAE algorithm, while the fire fighter
tended to calculate the dominance function according to
the definition; in addition, the go-together scenario with a
counterfactual baseline achieved better policy convergence
results. In summary, we speculated that the choice of the
baseline depended on the adaptability of the scene, and
specific analyses of specific problems would have better
results.

V. CONCLUSION
In this study, we proposed the MA2DBT algorithm to
optimize the decision problem of multi-agent compound
actions as a long sequential-decision problem while avoiding
dimensional complexity. A deeper DeLighT transformer
model was used to process themulti-agent sequential data and
perform as the actor in decision-making. A critic network was
added to estimate the value of all the next actions in a certain
agent state. A COMA network was adopted. According to the
estimated results, the corresponding baseline was calculated

to reduce the estimated variance of the value function and
help the actor network update more smoothly.

In addition, we conducted a series of comparative exper-
iments. The experimental results showed that the MA2DBT
algorithm had better performance in scenarios in a compound
action space, and the advantages of the algorithm were more
obvious in multi-agent collaboration scenarios. In the UAV-
swarm cooperative escort task, we explored the contribution
of each part of the MA2DBT algorithm. The results showed
that the priority decision sequence of the agent promoted
the convergence of the algorithm for a better strategy. The
DeLighT transformer had better strategic exploration and
expression ability than the naïve transformer, and the use
of counterfactual baselines in the UAV-swarm cooperative
task led to the MA2DBT algorithm finding a better strategic
model. However, in other scenarios, the general advantage
functionmay have better results, and specific problemswould
need to be analyzed to determine the use of a baseline.
In addition, some experiments showed that in specific scene
tasks, compounding the agent actions may have been more
conducive to the completion of the tasks.
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In the future, we will further optimize the design of the
multi-UAV cooperative electronic countermeasures scenario
in terms of action space, observation space, reward function,
such as designing the agent action space in the form
of multi-dimensional discrete space, adding the timing
information to the observation vector, etc., and propose
corresponding new algorithms in the face of new problems
caused by the new design to further improve the level of
intelligent decision-making.

APPENDIX
SYMBOL TABLE AND ABBREVIATION TABLE

TABLE 2. Symbol table.

TABLE 3. Abbreviation table.
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