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ABSTRACT: Continuous-wave (CW) lasing in quasi-two-dimensional (2D) perovskite-
based distributed feedback cavities has been achieved at room temperature; however, CW
microcavity lasers comprising distributed Bragg reflectors (DBRs) have rarely been prepared
using solution-processed quasi-2D perovskite films because the roughness of perovskite films
significantly increases intersurface scattering loss in the microcavity. Herein, high-quality spin-
coated quasi-2D perovskite gain films were prepared using an antisolvent to reduce
roughness. The highly reflective top DBR mirrors were deposited via room-temperature e-
beam evaporation to protect the perovskite gain layer. Lasing emission of the prepared quasi-
2D perovskite microcavity lasers under CW optical pumping was clearly observed at room
temperature, featuring a low threshold of ∼1.4 W cm−2 and beam divergence of ∼3.5°. It was
concluded that these lasers originated from weakly coupled excitons. These results elucidate
the importance of controlling the roughness of quasi-2D films to achieve CW lasing, thus
facilitating the design of electrically pumped perovskite microcavity lasers.

Q uasi-two-dimensional (quasi-2D) organic-inorganic
lead halide perovskites have received considerable

attention in the field of optoelectronics because of their
excellent photophysical properties, low cost, and solution
processability.1−7 By virtue of their quantum well structure and
the high dielectric constant of large organic cations, quasi-2D
perovskites possess high exciton binding energies, high gain
coefficients, and a strong exciton confinement property.8,9

These features make them suitable for use as optical gain
media in lasing applications.10−12 Recently, continuous-wave
(CW) lasing was reported in a quasi-2D perovskite-based
distributed feedback (DFB) cavity at room temperature
through the suppression of singlet-triplet exciton annihilation
by oxygen or organic cations with low triplet energies.13 This is
a critical step for fabricating electrical pumping lasers.14−16

Microcavities are widely used to fabricate vertical-cavity
surface-emitting lasers (VCSELs), which can be integrated
with silicon-based optoelectronic devices for broader applica-
tions.17−19 Distributed Bragg reflectors (DBRs) are micro-
cavity mirrors used to provide feedback for light amplifica-
tion.20−24 Considering the soft-matter nature of quasi-2D
perovskites, room-temperature e-beam evaporation can be
used to suppress the destruction of perovskite gain layers when
fabricating top DBR mirrors.25−27 However, lasing of CW
DBR microcavities with quasi-2D perovskite films is rarely
explored at room temperature due to the lack of material
optimization and high-quality cavity construction. The thresh-

old value of laser devices is significantly influenced by the
interface state between the perovskite gain layer and DBR
mirrors as well as by the additional optical loss generated when
fabricating the top DBR mirrors.21,28,29 The intersurface
scattering loss in the optical loss of laser reflectors can have
a fatal influence on the performance and testing of laser
devices.30,31 For instance, the (PEA)2PbI4 CW DBR laser
comprises single-crystalline perovskites with high surface
roughness, which leads to high thresholds.32 Therefore, an
understanding of the intersurface scattering loss and a
reduction in the surface roughness of quasi-2D perovskite
films in such devices are essential for achieving CW DBR
microcavity lasing. In addition, fabricating top DBR mirrors on
perovskite films is technically challenging.33,34

Herein, we prepared room-temperature CW microcavity
lasers using a solution-processed quasi-2D perovskite
(NMA)2FA4Pb5Br16 (NMA, 1-naphthylmethylamine; FA,
formamidinium, N2F4) thin film with ultralow gain thresholds.
Compared with the N2F4 films based on the antisolvent
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toluene (TOL-N2F4), the N2F4 films based on the antisolvent
ethyl acetate (EA) (EA-N2F4) significantly reduced the
roughness of the N2F4 films and the intersurface scattering
loss between the N2F4 gain layer and top DBR. The top DBR
with high reflectivity was prepared on the N2F4 films directly
via room-temperature e-beam evaporation. The threshold and
full width at half-maximum (fwhm) are further reduced by
virtue of the smoother EA-N2F4 gain layer in the DBR cavity. A
clear lasing emission in quasi-2D perovskite N2F4-based
microcavity lasers was observed under CW optical pumping,
exhibiting an ultralow threshold of ∼1.4 W cm−2 and a beam
divergence of ∼3.5°. Our findings offer a valuable strategy for
the realization of electrically pumped perovskite lasers.

A schematic of the microcavity laser is shown in Figure 1a.
The device comprised a bottom DBR, gain layer, and top DBR.
We confirmed the optimum DBR parameters using the transfer
matrix method and designed the bottom and top DBRs to
satisfy all requirements of microcavity lasers.35 In the DBR
structure, the vertical-cavity mode governs the emission
wavelength of the laser, with the resonance condition satisfying
eq 1:

n d m2
2 ( ) 2

i
i i 1 2+ =

(1)

The wavelength λ of the cavity modes is determined using the
Fabry−Perot condition,36 where φ1 and φ2 are the phase
changes caused by the reflection from the two mirrors; ni and
di are the refractive indices and thicknesses of the cavity layers,
respectively; and m is an integer.37

The top DBR, which comprised 8.5 pairs of alternating ZnS
(2.38/60.8 nm) and MgF2 (1.48/86.6 nm) layers with
different refractive indices, has been prepared using room-
temperature e-beam evaporation. This method is believed to
be less destructive to the thin-film perovskite layers, which can

effectively reduce the additional optical loss generated during
the preparation of the top DBR mirror.38 The bottom DBR,
which comprised 15.5 pairs of alternating TiO2 (2.36/62.5
nm) and SiO2 (1.46/88.9 nm) layers with different refractive
indices, was obtained using high-temperature e-beam evapo-
ration. The high-reflectivity stop band of this DBR is very
wide; that is, the stop band of the bottom and top DBRs is
larger than 150 and 120 nm, respectively (Figure S1). In the
resonance condition of optical microcavity (2(∑nidi + LDBR1 +
LDBR2) = mλ), resonance wavelength is related to material
thickness and refractive index. Because the dielectric DBR has
a wider high-reflection stop band that is much larger than the
spectral line width of the perovskite in actual experiments, the
thickness of the perovskites does not strictly match the Bragg
center wavelength of the DBR and the intrinsic luminescence
peak of the material; however, the microcavity resonance mode
is consistent.

An ideal cavity confines light indefinitely (without loss). The
quality factor (Q factor) of the resonant cavity is determined as
follows:

Q
nL

R R
2 2

ln( )1 2
1= =

(2)

where L is the effective length of the cavity; λ is the resonant
wavelength; Δλ is the fwhm;n is the effective refractive index of
the microcavity; and R1 and R2 represent the reflectance of the
bottom and top DBRs, respectively. In our microcavity lasers,
the theoretical reflectance of the bottom and top DBRs
exceeds 99.999 and 99.92% between 460 and 590 nm,
respectively (Figure S1). Therefore, this microcavity can
exhibit extremely high Q values and a very low fwhm.
However, all microcavities experience losses due to unsmooth
contact surfaces. Figure 1b presents the cross-sectional image
of the prepared microcavity by using scanning electron

Figure 1. Schematic representation of the laser device and surface properties of N2F4 films. (a) The ideal schematic of the laser device. (b) Cross-
sectional scanning electron microscopy (SEM) image of the actual device. (c) The actual schematic of the interface between the perovskite gain
layer and top DBR. (d) Atomic force microscopy image of the TOL-N2F4 and EA-N2F4 films. The horizontal scale bar is 10 μm. (e) Corresponding
height profile of the TOL-N2F4 and EA-N2F4 films at the 100 microscale.
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microscopy (SEM). A clear multilayer structure of the bottom
and top DBRs can be observed along with a perovskite gain
layer. A schematic of the interface between the perovskite gain
layer and top DBR is shown in Figure 1c. A rougher perovskite
surface has a significant impact on the interface state between
the perovskite gain layer and DBR mirrors, which increases the
intersurface scattering loss and makes it difficult to fabricate a
CW laser. The intersurface scattering loss can be represented
as total integrated scattering (TIS):39

TIS 1 exp (4 cos / )0
2

= [ ] (3)

where θ0 is the angle of incidence and δ is the surface
roughness of the perovskite films. For perovskite films, TIS can
be simply related to the root-mean-square (RMS) roughness.

Based on our previous reports,13,40 we selected brighter
solution-processed N2F4 films as gain media (PLQY ≈ 90%)
instead of quasi-2D perovskite N2F8 films (PLQY ≈ 70%), as
shown in Figures S2 and S3. The typical atomic model for
N2F4 is depicted in Figure S4. We prepared N2F4 films with the
antisolvents TOL and EA by using a one-step spin-coating
method under nitrogen conditions. EA-N2F4 and TOL-N2F4
films with the same thickness have the same refractive index

Figure 2. Pulsed lasing properties of TOL-N2F4 and EA-N2F4 microcavity lasers. (a) Reflectance spectra of DBRs with the TOL-N2F4 and EA-N2F4
films. (b) Spectrum evolution under different pulsed pump fluences of the TOL-N2F4 and EA-N2F4 devices. (c) Integrated PL intensity and fwhm
as a function of the pulsed pump fluence of the TOL-N2F4 and EA-N2F4 devices, yielding threshold pump fluences of 29 and 14 μJ cm−2,
respectively.
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(∼2.14 at 550 nm; Figure S5); EA-N2F4 films have similar
optical properties and crystal structures to those of TOL-N2F4
films (Figures S6 and S7). The photoluminescence (PL)
spectra of the two N2F4 films show a luminescence peak at
∼536 nm and an fwhm of ∼24 nm. The XRD patterns
representing the crystal structure of the N2F4 films indicated
that the crystalline skeleton inside perovskites is in the cubic
phase, while grazing incidence X-ray diffraction (GIXRD)
showed that these films have similar orientations (Figure S7).

Figure S8 shows that EA-N2F4 films exhibit better amplified
spontaneous emission (ASE) performance than that of TOL-
N2F4 films, including a 23% decrease in the ASE threshold (17
μJ cm−2) and a 20% decrease in fwhm (2.0 nm). The low
threshold characteristics suggest that N2F4 is a promising gain
medium for the resonant cavity laser.41−44 We attempted to
achieve ASE under CW excitation on N2F4 perovskite films
deposited on different quartz or Si/SiO2 substrates. Unfortu-
nately, we were unable to obtain ASE under CW excitation at
room temperature in air. The commonly used method for
testing the ASE profile of thin films involves a planar
waveguide structure that provides optical feedback. Although
simple in structure and useful for measuring the gain of thin-
film materials, this method is not perfect and represents a
significant source of loss in optical waveguides.45 Therefore,
achieving CW pumped ASE at room temperature from quasi-
2D perovskite films remains challenging. In addition to the
ASE threshold, the optical gain coefficient (g) is also a key
characteristic of perovskite gain media. The optical gain of the
N2F4 film was determined using the variable stripe length
(VSL) method.46 As Figure S9 shows, gain coefficients of 280
and 305 cm−1 were obtained for samples TOL-N2F4 and EA-
N2F4 respectively, which are comparable to traditional quasi-

2D perovskites and better than some of the 3D perov-
skites.33,47 The difference in ASE performance is attributed to
the RMS roughness and PLQY between the TOL-N2F4 and
EA-N2F4 films. On the one hand, ASE performance is closely
related to the PL properties. EA-N2F4 film has a higher PLQY
than TOL-N2F4 film, as shown in Figures S2 and S3. On the
other hand, the perovskite layer requires high surface coverage
and low roughness to achieve high-performance ASE and
lasers; as shown in Figure 1d, atomic force microscopy (AFM)
clarified that the EA-N2F4 film exhibits low roughness and high
coverage on the bottom DBR. The RMS roughness of the EA-
N2F4 film (RMS ≈ 1.5 nm) is lower than that of the TOL-N2F4
film (RMS ≈ 4.5 nm). Meanwhile, as shown in Figure S10, the
EA-N2F4 film exhibits a more complete densified and uniform
grain size on the bottom DBR than the TOL-N2F4 film.
Analysis of eq 3 reveals that lower roughness can reduce the
intersurface scattering loss between the EA-N2F4 films and top
DBR. The corresponding height profile of the TOL-N2F4 and
EA-N2F4 films at the 100 microscale demonstrated that the
smoother EA-N2F4 films display superior microscopic flatness
than that of TOL-N2F4 films (Figure 1e). Thus, EA-N2F4 films
with low RMS roughness and excellent microscopic flatness
have better potential for lasing.

The laser devices were tested at room temperature under
pulse excitation (Nd:YAG laser, 355 nm, pulse width 10 ns, 1
kHz). A schematic of the laser pump setup is depicted in
Figure S11, and photo images of TOL-N2F4 and EA-N2F4
VCSEL devices under white light illumination are shown in
Figure S12. Figure S13 presents the magnified cross section
images of the prepared N2F4 laser devices by SEM. A clear
multilayer structure of bottom and top DBRs and a perovskite
gain layer could be observed. The smooth interface between

Figure 3. CW lasing characteristics of TOL-N2F4 and EA-N2F4 microcavity lasers. (a) Evolution of emission spectra under CW excitation at
different pump intensities of the TOL-N2F4 and EA-N2F4 devices. (b) Emission intensity and fwhm as a function of the pump intensity of the TOL-
N2F4 and EA-N2F4 devices, yielding threshold power densities of 3.0 and 1.4 W cm−2, respectively.
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the stacked layers indicated the high quality of the prepared
microcavity and the low optical loss. As expected, the cavity
mode of the EA-N2F4 device was more evident at ∼550 nm
compared to that of the TOL-N2F4 device (Figure 2a) because
the smoother EA-N2F4 film leads to lower optical losses and is
better matched with the high-level microcavity. The lasing
wavelengths of TOL-N2F4 and EA-N2F4 devices appeared at
either 546 or 544 nm, as shown in Figure 2b. Following an
increase in the excitation intensity, the optical input and output
behaviors are characterized by the change from a broad
spontaneous emission to a narrow stimulated emission. Figure
2c shows that the threshold of the EA-N2F4 device is observed
at 14 μJ cm−2 under pulse pumping, which is lower than that of
the TOL-N2F4 device (29 μJ cm−2). This can be attributed to
the smoother EA-N2F4 surface reducing the intersurface
scattering loss at the interface, which also validates the
importance of introducing the antisolvent EA. Above the
threshold, fwhm’s of the TOL-N2F4 and EA-N2F4 devices at
546 and 544 nm are 2.6−1.4 and 1.7−0.82 nm, with reducing
ratios of 46 and 52%, respectively. The Q factor of the EA-

N2F4 device is ∼688, which is about twice than that of the
TOL-N2F4 device (392).

To investigate the CW lasing properties of the two devices,
the devices were optically pumped at room temperature with a
405 nm CW laser source (405 nm, OBIS LX). A schematic of
the CW optical pumping setup is depicted in Figure S14. The
detailed pump-intensity-dependent lasing spectra of the TOL-
N2F4 and EA-N2F4 devices are given in Figure 3a. The lasing
peaks of the TOL-N2F4 and EA-N2F4 devices are centered at
545 and 550 nm, respectively. The slight shift of the lasing
spectrum may be associated with the microscopic flatness of
pump area on the devices. Figure 3b represents the lasing
properties of the TOL-N2F4 and EA-N2F4 devices, and clear
thresholds can be observed at 3.0 and 1.4 W cm−2 under CW
pumping, respectively. The lasing emission fwhm for the TOL-
N2F4 and EA-N2F4 devices is 1.65 and 0.97 nm, respectively.
This CW lasing threshold is not only lower among the single-
crystal 2D layered perovskite DBR lasers but also comparable
with other high-performance perovskite planar microcavity
devices (Table 1). There are several reasons for the low
thresholds of our microcavity devices. First, the optimized

Table 1. Lasing Threshold Comparison for Perovskite Microcavity Lasers at Room Temperature

Materials Morphology
Synthesis of
Perovskites Fabrication of DBR cavities

Pump
laser

Wavelength
[nm] Threshold

Q-
factor Ref

MAPbI3 Film Spin-coating Manually laminating pulsed 778 7.6 μJ cm−2 1100 22
FAPbBr3 Film Spin-coating Sputtering pulsed 552.4 ∼18.3 μJ

cm−2
1420 48

Cs0.17FA0.83PbBr3 Film Spin-coating Sputtering pulsed 552.6 13.5 μJ cm−2 1350 31
OC-CsPbBr3 Film Co-evaporation Manually laminating pulsed 542 1.7 μJ cm−2 NA 25
CsPbBr3 Film Thermal

nanoimprint
Hot pressing pulsed 538 2.2 μJ cm−2 NA 49

(PEA)2Csn−1PbnBr3n+1 Microcrystals Spin-coating Evaporation of Ag pulsed 532 500 μJ cm−2 665 50
MAPbCl3 Single crystal In situ grown

method
Manually laminating pulsed 414−435 211 μJ cm−2 1100 51

MAPbBr3 Single-crystal
film

In situ grown
method

Manually laminating pulsed 567 4 μJ cm−2 810 29

NMA2FA4Pb5Br16 Film Spin-coating Room-temperature e-beam
evaporation

pulsed 544 14 μJ cm−2 688 This
work

MAPbBr3 Film Vapor deposition PECVD CW 541 89 kW cm−2 203 19
MAPbBr3 Single-crystal

film
In situ grown
method

Manually laminating CW 565 34
mW cm−2

706 29

(PEA)2PbI4 Single crystal Exfoliation Low temperature e-beam
evaporation

CW 537 5.7 W cm−2 1194 32

NMA2FA4Pb5Br16 Film Spin-coating Room-temperature e-beam
evaporation

CW 550 1.4 W cm−2 568 This
work

Figure 4. Spatial distribution of the output emission and stability characterizations of the EA-N2F4 microcavity laser. (a) Spatial distribution of the
output emission via angle-resolved PL under CW excitation. Inset: Photograph of the far-field pattern of CW lasing. (b) Stability characterizations
of the EA-N2F4 device under continuous pulse pumping, with pump fluence set at 1.5 Pulse Pth. (c) Operational stability of the EA-N2F4 device
under CW excitation, with a pump intensity of 1.5 CW Pth.
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N2F4 film has lower RMS roughness, thereby yielding excellent
film flatness. Second, a microcavity with a high Q value and
low optical loss can be constructed using the two DBRs
through theoretical optimization of the structural design of the
device. Most importantly, the optimized preparation process of
the DBR as well as the direct deposition of the top DBR at
room temperature on a high-quality N2F4 film may reduce the
optical loss.

To characterize the laser beam quality, Figure 4a shows the
spatial distribution of the output emission that indicates a small
beam divergence when compared to the emission of our EA-
N2F4 device (∼3.5° divergence in the transverse plane). This
angular divergence across the transverse plane is much smaller
than that of the theoretical simulation (Figure S15). The inset
of Figure 4a shows a photograph of the far-field pattern of CW
lasing. Beyond the lasing threshold, a circular spot of light
appears on the white paper screen, and the coherence in space
can be inferred from the optical image with a bright spot.
These results indicate that the microcavity has a good
interaction with the perovskite gain medium of EA-N2F4.
Both transverse-electric (TE) and transverse-magnetic (TM)
modes exist throughout the reflectance spectrum at different
angles (Figure S16). The CW lasing of the EA-N2F4 device
also shows linear transverse-electric polarization (Figure S17).
To evaluate the stability of the EA-N2F4 microcavity laser
under different pump conditions, we recorded the lasing
output of the EA-N2F4 microcavity device under continuous
pulse pumping and CW excitation. In each case, the pump
level was set at 1.5 times the threshold. The results are
summarized in Figure 4b,c. The device exhibits good stability
under nanosecond pump pulses (T90 > 1.8 × 106 pump
pulses). Under CW excitation (∼1.5 Pth), the lasing intensity
decreases to 78, 57, and 49% of its original value over 300,
1200, and 1800 s, respectively. The narrow line width and peak
position observed during the testing period confirm the
persistence of laser operation (Figure S18).

Finally, we discuss the lasing mechanism of our microcavity
lasers. Figure 5a shows a contour map of the transverse-

magnetic (TM) angle-resolved reflectance measured for the
microcavity. The squares show the dip position identified on
the reflectance spectra for each angle (Figure 5b). In the
microcavity, these peaks are found to intersect around
excitonic resonances of Eex = 2.39 eV. This behavior indicates
that the resonator is located in the weak coupling region rather
than in the strong coupling region.

To calculate the cavity photon dispersion for the obtained
peaks, we simulated the curve using eq 4:

E E
n

( ) (0) 1
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ph ph

2

eff
2

1/2i
k
jjjjj

y
{
zzzzz=

(4)

where Eph(0) is the photon energy at θ = 0° and neff is the
effective refractive index; these parameters were estimated to
be Eph (0) = 2.26 eV and neff = 1.9. Figure 5a shows that the
curvature of the dispersion obtained by the simulation
reproduces the experimental data well. This result strongly
suggests that the cavity photon is not strongly coupled to
excitons. Therefore, we concluded that the observed lasing in
this study originates from photon lasing.52

In summary, by reducing the roughness of quasi-2D
perovskite films, a continuous optically pumped microcavity
laser with solution-processed N2F4 films was obtained under
the air atmosphere at the room temperature. These perovskite
N2F4 films, which exhibited low roughness and excellent
microscopic flatness, were fabricated via a spin-coating method
by using the antisolvent EA. Furthermore, highly reflective top
DBR mirrors were prepared on the N2F4 films via room-
temperature e-beam evaporation. The low-pulse ASE threshold
(17 μJ cm−2) at room temperature showed that N2F4 films
exhibit good gain characteristics. Notably, by combining the
excellent gain characteristics of the smooth N2F4 films with the
optical constraint of DBR mirrors, a CW laser with an ultralow
threshold of 1.4 W cm−2 and a beam divergence of ∼3.5° was
realized using the EA-N2F4 microcavity structure. This study
demonstrates the strong potential of microcavity devices for
future development of electrically pumped perovskite lasers in
the future.
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