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A B S T R A C T

Classical piezoelectric elasticity theory fails to explain the size-dependent electro-mechanical behaviour. The
strain gradient elasticity and flexoelectricity are responsible for the size effects phenomenon. In this paper,
the general strain gradient elasticity is incorporated into the flexoelectric elasticity theory to describe the
size dependency. The degeneration analysis of the flexoelectric elasticity theory incorporating the general
strain gradient elasticity is performed. The flexoelectric elasticity theory incorporating the general strain
gradient elasticity includes all strain gradients, and can degenerate to the simplified flexoelectric elasticity
theories incorporating the approximated strain gradient elasticity when some strain gradients are ignored.
Subsequently, the differences between the general theory and the simplified theories in describing the size
effects are revealed by solving the direct/inverse electro-mechanical problems of the laminated microbeam
with a partially covered piezoelectric layer under the uniformly distributed load and external voltage.
Compared with the general theory, the simplified theories predict larger collected charge, polarization,
electric potential and deflection, and thus underestimate the size-dependent electro-mechanical response.
Moreover, the contributions from the strain gradient elasticity and flexoelectricity to the electro-mechanical
behaviour are further identified, respectively. The strain gradient elasticity consideration significantly weakens
the flexoelectricity and piezoelectricity when the beam thickness is comparable to the material length-scale
parameters. The flexoelectricity enhances the polarization, weakens the electric potential while hardly affects
the deflection when the beam thickness is in micron range.
1. Introduction

The electro-mechanical responses of the piezoelectric microcom-
ponents show size dependency [1–3]. The strain gradient elasticity
and flexoelectricity contribute to the size-dependent electro-mechanical
response. Classical piezoelectric elasticity theory without these factors
fails to explain the size effects phenomenon [4]. Therefore, the ex-
tended piezoelectric elasticity theory including the piezoelectric strain
gradient elasticity theory and the flexoelectric elasticity theory is de-
veloped to describe the size dependency.

For the piezoelectric strain gradient elasticity theory, the strain
gradient elasticity is incorporated to describe the strain gradient effects.
According to the incorporated strain gradient elasticity, the piezoelec-
tric strain gradient elasticity theories generally include the piezoelec-
tric classical couple stress theory and the piezoelectric strain gradient
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elasticity theory. The piezoelectric classical couple stress theory [5]
originates from the classical couple stress theory [6,7] and considers
the rotational gradients to be equivalent to the strain gradients. Sub-
sequently, based on the understanding of the contribution from the
rotational gradient component to the size effects [8,9], the piezoelectric
classical couple stress theory was modified to be the piezoelectric sym-
metric couple stress theory [10] and the piezoelectric anti-symmetric
couple stress theory [11], respectively. The piezoelectric symmetric
couple stress theory considers the symmetric rotational gradient com-
ponent individually contribute to the size effects while the piezoelectric
anti-symmetric couple stress theory uses the anti-symmetric rotational
gradient component as an alternative. The perspective about the con-
tribution from the symmetric/anti-symmetric rotational gradient com-
ponent to the size effects is obviously contradict. Münch et al. [12]
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and Neff et al. [13] together explored the essential reason behind
the contradiction, and concluded that the symmetric/anti-symmetric
rotational gradient component actually contributes to the size effects si-
multaneously. The similar conclusion was also presented by Shaat [14]
and Fu et al. [15], respectively. However, the rotational gradients be-
longs to the anti-symmetric part of the strain gradients [16]. Thus, the
piezoelectric classical couple stress theory and the modified versions
underestimate the strain gradient effects.

To include all strain gradients, Mindlin [17] proposed the original
strain gradient elasticity theory with five material length-scale param-
eters. The original strain gradient elasticity theory contains too many
material length-scale parameters to apply conveniently. For convenient
application, Lam et al. [18] modified the original strain gradient elas-
ticity theory by introducing the constraint of the moments of couples.
Subsequently, the modified strain gradient elasticity was incorporated
into the classical piezoelectric elasticity theory to describe the size
dependency [19]. However, the rationality of introduction of the con-
straint of the moments of couples is worthy of discussion due to
the free character of moment vectors [12]. Based on the orthogonal
decomposition of the strain gradient tensor, Zhou et al. [20] demon-
strated the number of independent higher-order material parameters
for the isotropic material is three, reformulated the original strain
gradient elasticity theory [17] and established the general strain gra-
dient elasticity theory with three independent material length-scale
parameters. By ignoring part of strain gradients, the simplified strain
gradient elasticity theory with only one material length-scale param-
eter was proposed [21,22] and further extended to the piezoelectric
material [23]. The simplified strain gradient elasticity theory with
one material length-scale parameter fails to deal with the size effects
phenomenon effectively [24,25].

Besides the piezoelectric strain gradient elasticity theory, the flex-
oelectric elasticity theory is also proposed to explain the electro-
mechanical response of the piezoelectric microstructures. The flexoelec-
tric elasticity theory initially focused on the direct/inverse flexoelectric
effects. Mindlin [26] extended the classical piezoelectric elasticity
theory to include the polarization gradients. Tagantsev [27] combined
the phenomenological and microscopic method to demonstrate that
the static or dynamic bulk/surface flexoelectric effects are the main
influential mechanism of flexoelectricity. Yan and Jiang [28] paid at-
tention to the direct flexoelectric effects and polarization effects. Huang
et al. [29] focused on the inverse flexoelectric effects. Barati [30]
further considered the polarization gradient effects. Majdoub et al. [31]
simplified the original flexoelectric elasticity theory [32] by neglect-
ing the higher-order terms, and proposed the flexoelectric elasticity
theory with direct/inverse flexoelectric effects, polarization effects,
polarization gradient effects and piezoelectric effects.

The above flexoelectric elasticity theories neglected the strain gra-
dient elasticity while the strain gradient effects is significant at small
scale [33]. Therefore, Emad et al. [34] considered the strain gradient
effects and direct flexoelectric effects. The original strain gradient
elasticity theory [17] is used to describe the strain gradient effects.
The strain and strain gradient coupling effects is also studied [35,36].
Li and Luo [37] further considered the strain gradient effects and
direct/inverse flexoelectric effects. However, the symmetric couple
stress theory [8] is applied to explain the strain gradient effects, and
underestimates the size effects. Wang and Wang [38] neglected the
axial strain gradient effects for simplicity. Sahin and Dost [32] compre-
hensively considered the first and second gradients of the displacement,
and subsequently developed the original theoretical framework of the
flexoelectricity. However, the complicated form of the original the-
ory leads to the constraint of practical application. Subsequently, Hu
and Shen [39] established the general flexoelectric elasticity theory
with the strain gradient effects, polarization effects, polarization gra-
dient effects and the flexoelectric effects. The surface effects including
the surface stress effects and surface polarization effects was further
2

considered [40].
Based on the flexoelectric elasticity theory, the electro-mechanical
analysis of the piezoelectric microstructures is performed. For the
piezoelectric microbeam, Zhang and Li [41] and Zhou et al. [42] re-
spectively solved the bending problem of the piezoelectric microbeams
with flexoelectric effects. Subsequently, this solution was extended
to the functionally graded piezoelectric material [43]. Su et al. [44]
further solved the bending problem of the bilayer microbeam. Fu
et al. [45] extended the solution to the laminated microbeam with
a partially covered flexoelectric layer. The vibration analysis of the
piezoelectric microbeam was respectively performed by Li and Luo [37]
and Chen et al. [46]. Sondipon [47] and Malikan and Eremeyev [48]
considered the effects from the viscoelastic medium and the porosity,
respectively. Wang and Wang [49] performed the vibration analysis
of the bilayer microbeam with piezoelectricity and flexoelectricity.
The influences from the nonlinearity and surface properties were also
considered [50]. Liang et al. [51] further solved the vibration prob-
lem of three-layered piezoelectric microbeam. Yan and Jiang [28]
comprehensively explored the bending and vibration responses. The
corresponding nonlinear analysis was subsequently performed [52].
Ghobadi et al. [53] further considered the magnetic effects. Jankowski
et al. [54] performed the buckling analysis of the piezoelectric mi-
crobeam. The extension problem of the piezoelectric bar considering
the strain gradient elasticity and flexoelectricity was also solved [55].
For the piezoelectric microplate, Yan [56] performed the static anal-
ysis of the piezoelectric microplate with various boundary conditions.
The nonlinear bending problem was subsequently solved [57]. Zhang
et al. [58] and Yan et al. [59] further derived the bending and vibration
solutions of the circular microplate with flexoelectricity, respectively.
The influences of the strain gradient elasticity, flexoelectricity and
piezoelectricity on the dynamic performance of the bilayer circular
microplate were also studied [60]. Guinovart-Sanjuán et al. [61] ap-
plied the asymptotic homogenization method to derive the close-form
solutions for the effective properties of a two-layer laminate composite
with cubic crystal symmetry constituents and perfect contact at the
interface. Subsequently, the similar method was extended to illustrate
the behaviour of effective properties for bi-materials rectangular and
wavy laminated composites [62]. To include the contributions from
the imperfect interface conditions, Serpilli et al. [63] developed a new
imperfect interface contact approach in flexoelectricity based on the
asymptotic analysis, solved the equilibrium problem of a flexoelec-
tric three-layer micro-bar, and discussed the nonlocal phenomena and
end-effects associated with the flexoelectric length-scale parameter.
The development of the electro-mechanical models of piezoelectric
microstructures was further reviewed [64,65].

According to above analysis, the research about the combined ef-
fects of strain gradient elasticity and flexoelectricity on the electro-
mechanical response of the piezoelectric microcomponents becomes
the focus. The focus can be concluded as two aspects: one is the
theoretical study of extended piezoelectric elasticity theory, and the
other is the model study of advanced composite structures. For the
theoretical study, compared with the flexoelectric effects that the ex-
pression is explicit, various strain gradient elasticity is incorporated to
describe the strain gradient effects. However, the influential mecha-
nism of different strain gradient elasticity on the electro-mechanical
response of piezoelectric microcomponents is still unclear. For the
model study, the piezoelectric microcomponents including the mono-
layer or bilayer microbeam/microplate are the main research interests.
Compared with the monolayer or bilayer piezoelectric structure, the
laminated structure with a partially cover piezoelectric layer is a more
general structural form. As the key microcomponents of many clas-
sical micro-devices, the electro-mechanical model of the laminated
microbeam with a partially cover piezoelectric layer has not been
established. Therefore, this paper devoted to theoretically clarify the
relations among different strain gradient elasticity, establish the size-

dependent electro-mechanical model of the laminated microbeam with
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a partially cover piezoelectric layer, and identify the influential mech-
anism of different strain gradient elasticity on the electro-mechanical
response of the partially coved laminated piezoelectric microbeam.

In this paper, the general strain gradient elasticity [20] with three
independent material length-scale parameters is incorporated into the
flexoelectric elasticity theory to perform the size-dependent electro-
mechanical analysis of the piezoelectric microstructures. The degen-
eration of the flexoelectric elasticity theory incorporating the general
strain gradient elasticity is discussed. Subsequently, the ability of the
flexoelectric elasticity theory incorporating the general strain gradient
elasticity or the approximated strain gradient elasticity in describing
the size-dependent electro-mechanical response is compared by per-
forming the bending analysis of the laminated microbeam with a par-
tially covered piezoelectric layer under the uniformly distributed load
and external voltage. The direct/inverse electro-mechanical problems
are solved. The size-dependent electro-mechanical responses are stud-
ied, and the contributions from the strain gradient elasticity and flex-
oelectricity to the electro-mechanical behaviour are further identified,
respectively.

The paper is organized as follows. In Section 2, we reviewed the
basic theoretical equations of the flexoelectric elasticity theory with the
general strain gradient elasticity. Subsequently, the degeneration of the
flexoelectric elasticity theory with the general strain gradient elasticity
is discussed. Then, in Section 3, we derived the boundary conditions
and governing equations of the laminated microbeam with a partially
covered piezoelectric layer. Subsequently, we respectively solved the
direct/inverse electro-mechanical problems in Sections 4 and 5. In
Section 6, we discussed the size-dependent electro-mechanical response
in detail. Finally, in Section 7, we concluded the main conclusions.

2. Theoretical framework

2.1. General formulation

The classical piezoelectric elasticity theory fails to explain the size-
dependent electro-mechanical behaviour. The flexoelectric elasticity
theory is subsequently developed to describe the size effects phe-
nomenon. The general internal energy density 𝑤0 is written as fol-
lows [39,40]

𝑤0 =
1
2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 +

1
2
𝑔𝑖𝑗𝑘𝑙𝑝𝑞𝜂𝑖𝑗𝑘𝜂𝑙𝑝𝑞 + 𝑓𝑖𝑗𝑘𝑙𝑃𝑖𝜂𝑗𝑘𝑙 + 𝑒𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝜀𝑘𝑙

+ 𝑑𝑖𝑗𝑘𝑃𝑘𝜀𝑖𝑗 +
1
2
𝛼𝑖𝑗𝑃𝑖𝑃𝑗 +

1
2
𝑏𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑄𝑘𝑙

(1)

In Eq. (1), 𝑐𝑖𝑗𝑘𝑙 is the classical fourth-order elastic tensor. 𝑔𝑖𝑗𝑘𝑙𝑝𝑞 is
the non-classical sixth-order elastic tensor associated with the strain
gradient effects. 𝑓𝑖𝑗𝑘𝑙 and 𝑒𝑖𝑗𝑘𝑙 are respectively the direct/converse flex-
oelectric coefficients. 𝑑𝑖𝑗𝑘 is the piezoelectric coefficient. 𝛼𝑖𝑗 and 𝑏𝑖𝑗𝑘𝑙
are the material constants associated with the polarization effects and
polarization gradient effects, respectively. 𝜀𝑖𝑗 and 𝜂𝑖𝑗𝑘 are respectively
the strain and strain gradient tensor, and defined as

𝜀𝑖𝑗 =
1
2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (2)

𝜂𝑖𝑗𝑘 = 𝜀𝑗𝑘,𝑖 (3)

where 𝑢𝑖 is the displacement vector and a comma denotes differen-
tiation with respect to the coordinate. 𝑃𝑖 and 𝑄𝑖𝑗 (= 𝑃𝑖,𝑗 ) are the
olarization and polarization gradients, respectively.

For the isotropic material, Zhou et al. [20] introduced the orthogo-
al decomposition of the strain gradient tensor, one is the symmetric/
nti-symmetric splitting, other is the hydrostatic/deviatoric splitting,
emonstrated the number of independent higher-order material param-
ters is three, and given the non-classical sixth-order elastic tensor as
ollows

𝑖𝑗𝑘𝑙𝑚𝑛 = 𝑎1[(𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙)𝛿𝑚𝑛 + (𝛿𝑖𝑚𝛿𝑙𝑛 + 𝛿𝑖𝑛𝛿𝑙𝑚)𝛿𝑗𝑘] + 𝑎2[(𝛿𝑘𝑚𝛿𝑙𝑛
+ 𝛿𝑘𝑛𝛿𝑙𝑚)𝛿𝑖𝑗 + (𝛿𝑗𝑚𝛿𝑙𝑛 + 𝛿𝑗𝑛𝛿𝑙𝑚)𝛿𝑖𝑘] + 𝑎3𝛿𝑖𝑙𝛿𝑗𝑘𝛿𝑚𝑛 + 𝑎4(𝛿𝑗𝑚𝛿𝑘𝑛 (4)
3

+ 𝛿𝑗𝑛𝛿𝑘𝑚)𝛿𝑖𝑙 + 𝑎5[(𝛿𝑗𝑛𝛿𝑘𝑙 + 𝛿𝑗𝑙𝛿𝑘𝑛)𝛿𝑖𝑚 + (𝛿𝑗𝑚𝛿𝑘𝑙 + 𝛿𝑗𝑙𝛿𝑘𝑚)𝛿𝑖𝑛]
where the higher-order material constants 𝑎𝑛(𝑛 = 1, 2,… , 5) are derived
as

𝑎1 = −6
5
𝜇𝑙20 −

4
15

𝜇𝑙21 + 2𝜇𝑙22 𝑎2 =
6
5
𝜇𝑙20 −

1
15

𝜇𝑙21 − 𝜇𝑙22

𝑎3 =
9
5
𝜇𝑙20 −

4
15

𝜇𝑙21 − 𝜇𝑙22 𝑎4 =
1
3
𝜇𝑙21 + 2𝜇𝑙22 𝑎5 =

2
3
𝜇𝑙21 − 2𝜇𝑙22

(5)

n Eq. (5), 𝑙𝑖(𝑖 = 0, 1, 2) are the independent material length-scale
arameters. 𝜇 is the shear modulus.

Therefore, according to the Eqs. (1) and (4), the internal energy
ensity 𝑤0 for the flexoelectric elasticity theory with the general strain
radient elasticity is written in the form of strain gradient tensor as
ollows

0 =
1
2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑎1𝜂𝑖𝑖𝑘𝜂𝑘𝑗𝑗 + 𝑎2𝜂𝑖𝑗𝑗𝜂𝑖𝑘𝑘 + 𝑎3𝜂𝑖𝑖𝑘𝜂𝑗𝑗𝑘 + 𝑎4𝜂𝑖𝑗𝑘𝜂𝑖𝑗𝑘

+ 𝑎5𝜂𝑖𝑗𝑘𝜂𝑘𝑗𝑖 + 𝑓𝑖𝑗𝑘𝑙𝑃𝑖𝜂𝑗𝑘𝑙 + 𝑒𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝜀𝑘𝑙 + 𝑑𝑖𝑗𝑘𝑃𝑘𝜀𝑖𝑗

+ 1
2
𝛼𝑖𝑗𝑃𝑖𝑃𝑗 +

1
2
𝑏𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑄𝑘𝑙

(6)

Moreover, based on the hydrostatic and deviatoric splitting of the strain
gradient tensor, the internal energy density 𝑤0 can also be expressed
in the form of the strain gradient components as follows

𝑤0 =
1
2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑎6(𝜂ℎ𝑖𝑗𝑘𝜂

ℎ
𝑖𝑗𝑘 + 𝜂

′(2)
𝑖𝑗𝑘 𝜂

′(2)
𝑖𝑗𝑘 ) + 𝑎7𝜂

(1)
𝑖𝑗𝑘𝜂

(1)
𝑖𝑗𝑘 + 𝑎8𝜂

𝑎𝑠
𝑖𝑗𝑘𝜂

𝑎𝑠
𝑖𝑗𝑘

+ 𝑓𝑖𝑗𝑘𝑙𝑃𝑖(𝜂ℎ𝑗𝑘𝑙 + 𝜂
′(2)
𝑗𝑘𝑙 + 𝜂(1)𝑗𝑘𝑙 + 𝜂𝑎𝑠𝑗𝑘𝑙) + 𝑒𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝜀𝑘𝑙 + 𝑑𝑖𝑗𝑘𝑃𝑘𝜀𝑖𝑗

+ 1
2
𝛼𝑖𝑗𝑃𝑖𝑃𝑗 +

1
2
𝑏𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑄𝑘𝑙

(7)

with

𝑎6 = 3𝜇𝑙20 𝑎7 = 𝜇𝑙21 𝑎8 = 3𝜇𝑙22 (8)

where 𝜂ℎ𝑖𝑗𝑘, 𝜂
′(2)
𝑖𝑗𝑘 , 𝜂(1)𝑖𝑗𝑘 and 𝜂𝑎𝑠𝑖𝑗𝑘 are the independent strain gradient com-

onents. 𝜂ℎ𝑖𝑗𝑘 is the hydrostatic strain gradient component. 𝜂
′(2)
𝑖𝑗𝑘 is the

deviatoric strain gradient component. 𝜂(1)𝑖𝑗𝑘 is the traceless component of
the symmetric strain gradient part. 𝜂𝑎𝑠𝑖𝑗𝑘 is symmetric component of the
anti-symmetric strain gradient part. The independent strain gradient
components are respectively denoted as

𝜂ℎ𝑖𝑗𝑘 = 1
3
𝛿𝑗𝑘𝜂𝑖𝑛𝑛 (9)

𝜂
′(2)
𝑖𝑗𝑘 = 1

10
𝛿𝑖𝑗 (3𝜂𝑚𝑚𝑘 − 𝜂𝑘𝑚𝑚) +

1
10

𝛿𝑘𝑖(3𝜂𝑚𝑚𝑗 − 𝜂𝑗𝑚𝑚)

+ 1
5
𝛿𝑗𝑘(2𝜂𝑖𝑚𝑚 − 𝜂𝑚𝑚𝑖)

(10)

(1)
𝑖𝑗𝑘 = 1

3
(𝜂𝑖𝑗𝑘 + 𝜂𝑗𝑖𝑘 + 𝜂𝑘𝑖𝑗 ) +

1
15

[𝛿𝑖𝑗 (2𝜂𝑚𝑚𝑘 + 𝜂𝑘𝑚𝑚)

+ 𝛿𝑘𝑖(2𝜂𝑚𝑚𝑗 + 𝜂𝑗𝑚𝑚) + 𝛿𝑘𝑗 (2𝜂𝑚𝑚𝑖 + 𝜂𝑖𝑚𝑚)]
(11)

𝑎𝑠
𝑖𝑗𝑘 = 1

3
(𝑒𝑖𝑗𝑝𝜒𝑠

𝑝𝑘 + 𝑒𝑖𝑘𝑝𝜒
𝑠
𝑝𝑗 ) (12)

n which 𝛿𝑖𝑗 is the Kronecker deltas. 𝑒𝑖𝑗𝑘 is the alternate tensor. 𝜒𝑠
𝑖𝑗 is

he symmetric rotational gradient component, and defined as

𝑠
𝑖𝑗 =

1
2
(𝜒𝑖𝑗 + 𝜒𝑗𝑖) (13)

where 𝜒𝑖𝑗 = 𝑒𝑖𝑝𝑞𝜂𝑝𝑞𝑗 is the rotational gradients.

2.2. Theory degeneration

The general strain gradient elasticity [20] and the approximated
strain gradient elasticity including the modified strain gradient elas-
ticity [18] and the simplified strain gradient elasticity [21,22] were
proposed to describe the strain gradient effects. The ability of the
flexoelectric elasticity theory incorporating the general or approxi-
mated strain gradient elasticity to describe the size-dependent electro-
mechanical behaviour is obviously different. Thus, the degeneration
analysis of the flexoelectric elasticity theory incorporating the general

strain gradient elasticity is performed.
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For the flexoelectric elasticity theory incorporating the modified
strain gradient elasticity, the modified strain gradient elasticity the-
ory [18] with the dilatation gradients, the deviatoric stretch gradients
and the symmetric rotational gradients is used to describe the strain
gradient effects. To derive the internal energy density for the flexo-
electric elasticity theory with the modified strain gradient elasticity
conveniently, the internal energy density for the flexoelectric elas-
ticity theory with the general strain gradient elasticity is expressed
in the form of hydrostatic and deviatoric components. According to
Eq. (7), neglecting the contributions from the deviatoric strain gradient
component 𝜂

′(2)
𝑖𝑗𝑘 , together with the following relations

𝜂ℎ𝑖𝑗𝑘𝜂
ℎ
𝑖𝑗𝑘 = 1

3
𝜂𝑖𝑛𝑛𝜂𝑖𝑚𝑚 (14)

𝜂𝑎𝑠𝑖𝑗𝑘𝜂
𝑎𝑠
𝑖𝑗𝑘 = 2

3
𝜒𝑠
𝑝𝑘𝜒

𝑠
𝑝𝑘 (15)

we obtain the internal energy density for the flexoelectric elasticity
theory incorporating the modified strain gradient elasticity as

𝑤0 =
1
2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑎9𝜀𝑛𝑛,𝑖𝜀𝑚𝑚,𝑖 + 𝑎10𝜂

(1)
𝑖𝑗𝑘𝜂

(1)
𝑖𝑗𝑘 + 𝑎11𝜒

𝑠
𝑝𝑘𝜒

𝑠
𝑝𝑘

+ 𝑓𝑖𝑗𝑘𝑙𝑃𝑖(𝜂ℎ𝑗𝑘𝑙 + 𝜂(1)𝑗𝑘𝑙 + 𝜂𝑎𝑠𝑗𝑘𝑙) + 𝑒𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝜀𝑘𝑙 + 𝑑𝑖𝑗𝑘𝑃𝑘𝜀𝑖𝑗

+ 1
2
𝛼𝑖𝑗𝑃𝑖𝑃𝑗 +

1
2
𝑏𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑄𝑘𝑙

(16)

with

𝑎9 = 𝜇𝑙23 𝑎10 = 𝜇𝑙24 𝑎11 = 𝜇𝑙25 (17)

here 𝑙23 = 𝑙20, 𝑙
2
4 = 𝑙21 and 𝑙25 = 2𝑙22. The similar internal energy density

as also given by Zheng et al. [66]. From the comparison between the
qs. (7) and (16), it is obviously that the direct flexoelectric effects and
he strain gradient effects associated with the deviatoric strain gradient
omponent 𝜂

′(2)
𝑖𝑗𝑘 are neglected. Moreover, when the flexoelectricity,

iezoelectricity, polarization, and polarization gradients are simulta-
eously ignored, we obtain the strain energy density for the modified
train gradient elasticity theory [18].

For the flexoelectric elasticity theory incorporating the simplified
train gradient elasticity, the simplified strain gradient elasticity the-
ry [21,22] with only part of the strain gradients is applied to describe
he strain gradient effects. If the higher-order material constants in
q. (6) satisfy

2 =
1
2
𝜆𝑙2𝑎 𝑎4 = 𝜇𝑙2𝑎 (18)

and neglect the contributions from the strain gradients 𝜂𝑖𝑖𝑘𝜂𝑘𝑗𝑗 , 𝜂𝑖𝑖𝑘𝜂𝑗𝑗𝑘
nd 𝜂𝑖𝑗𝑘𝜂𝑘𝑗𝑖, we obtain the internal energy density for the flexoelectric
lasticity theory with the simplified strain gradient elasticity as

0 =
1
2
𝑐𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 +

1
2
𝜆𝑙2𝑎𝜂𝑖𝑗𝑗𝜂𝑖𝑘𝑘 + 𝜇𝑙2𝑎𝜂𝑖𝑗𝑘𝜂𝑖𝑗𝑘 + 𝑓𝑖𝑗𝑘𝑙𝑃𝑖𝜂𝑗𝑘𝑙 + 𝑒𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝜀𝑘𝑙

+ 𝑑𝑖𝑗𝑘𝑃𝑘𝜀𝑖𝑗 +
1
2
𝛼𝑖𝑗𝑃𝑖𝑃𝑗 +

1
2
𝑏𝑖𝑗𝑘𝑙𝑄𝑖𝑗𝑄𝑘𝑙

(19)

In which 𝑙𝑎 is the material length-scale parameter. 𝜆 and 𝜇 are the
Lame constants. It can be seen from Eq. (19) that when the material
length-scale parameter 𝑙𝑎 satisfies 𝑙𝑎 = 0, we obtain the internal energy
ensity for the flexoelectric elasticity theory without strain gradient
ffects [58]. Moreover, when the inverse flexoelectricity, piezoelectric-
ty and polarization gradients in Eq. (19) are simultaneously ignored,
e obtain the internal energy density for the isotropic flexoelectric
lasticity theory [67].

. Size-dependent electro-mechanical deformation beam

The electro-mechanical deformation beam with a partially covered
4

iezoelectric layer is shown in Fig. 1. The contact between the elastic u
layer and piezoelectric layer is assumed to be ideal. The non-laminated
region displacement field is written as

𝑢𝑥 = −𝑧
𝜕𝑤(𝑥)
𝜕𝑥

𝑢𝑦 = 0 𝑢𝑧 = 𝑤(𝑥) (20)

The laminated region displacement field is written as [68]

𝑢𝑥 = −(𝑧 + 𝑑)
𝜕𝑤(𝑥)
𝜕𝑥

𝑢𝑦 = 0 𝑢𝑧 = 𝑤(𝑥) (21)

Where 𝑢𝑥 is the 𝑥 direction displacement component. 𝑢𝑦 is the 𝑦
direction displacement component. 𝑢𝑧 is the 𝑧 direction displacement
component. 𝑤(𝑥) is the lateral deflection. 𝑑 is the offset distance of the
neutral axis position. The polarization is assumed to occur along the
thickness direction, and written as

𝑃𝑥 = 0 𝑃𝑦 = 0 𝑃𝑧 = 𝑃𝑧(𝑧) (22)

Based on Eqs. (2), (3) and (20), the non-laminated region non-zero
strain and strain gradient are respectively derived as

𝜀𝑥𝑥 = −𝑧 𝜕
2𝑤
𝜕𝑥2

𝜂𝑥𝑥𝑥 = −𝑧 𝜕
3𝑤
𝜕𝑥3

𝜂𝑧𝑥𝑥 = − 𝜕2𝑤
𝜕𝑥2

(23)

nserting Eq. (21) into Eqs. (2) and (3), the laminated region non-zero
train and strain gradient are respectively derived as

𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

− 𝑧 𝜕
2𝑤
𝜕𝑥2

𝜂𝑥𝑥𝑥 =
𝜕2𝑢0
𝜕𝑥2

− 𝑧 𝜕
3𝑤
𝜕𝑥3

𝜂𝑧𝑥𝑥 = − 𝜕2𝑤
𝜕𝑥2

(24)

In Eq. (24), 𝑢0 = −𝑑 ⋅ 𝜕𝑤∕𝜕𝑥 is the axial displacement.
For the non-laminated region made of the elastic layer (0 < 𝑥 < 𝐿1),

ccording to Eqs. (1) and (23), the strain energy is derived as

1 =
1
2 ∫

𝐿1

0 ∫𝐴(1)

[𝑘1 ⋅ (𝑤(3))2 + 𝑠1 ⋅ (𝑤(2))2]𝑑𝐴(1)𝑑𝑥 (25)

ith

1 = 𝑐1111(1)𝑧
2 + 𝑔311311(1) 𝑘1 = 𝑔111111(1)𝑧

2 (26)

ere, 𝑤(2) = 𝑑2𝑤∕𝑑𝑥2, 𝑤(3) = 𝑑3𝑤∕𝑑𝑥3. The material parameters of the
ower elastic layer are denoted by the subscript (1). 𝐴(1) is the cross
ection. 𝑐1111(1) is the elastic constant. 𝑔311311(1) and 𝑔111111(1) are the
ixth-order elastic tensor and given in Eq. (4). In addition, the non-
aminated region (𝐿2 < 𝑥 < 𝐿) strain energy is similar to that in
q. (25) while the integral scope is from 𝐿2 to 𝐿.

For the laminated region made of the piezoelectric layer and elastic
ayer (𝐿1 < 𝑥 < 𝐿2), according to Eqs. (1), (22) and (24), the strain
nergy is derived as

2 =
1
2 ∫

𝐿2

𝐿1

[[𝐴3 ⋅ (𝑤(2))2 + 𝐴6 ⋅ (𝑤(3))2 + 𝐴1 ⋅ (𝑢
(1)
0 )2 + 𝐴4 ⋅ (𝑢

(2)
0 )2

− 2𝐴2 ⋅ 𝑢
(1)
0 𝑤(2) − 2𝑒5 ⋅ 𝑢

(2)
0 𝑤(3)] + ∫𝐴(2)

[𝛼𝑃3𝑃3 + 𝑏3333
𝑑𝑃3
𝑑𝑧

𝑑𝑃3
𝑑𝑧

− 𝑓3113𝑃3𝑤
(2) + 𝑓1113𝑃3(𝑢

(2)
0 − 𝑧𝑤(3)) − 𝑓3311

𝑑𝑃3
𝑑𝑧

(𝑢(1)0 − 𝑧𝑤(2))

+ 𝑑113(𝑢
(1)
0 − 𝑧𝑤(2))𝑃3]𝑑𝐴(2)]𝑑𝑥

(27)

he parameters 𝐴𝑛(𝑛 = 1, 2,… , 6) are denoted as

1 = 𝐸(1)𝐴(1) + 𝐸(2)𝐴(2)

2 = 𝐸(1)𝑆(1) + 𝐸(2)𝑆(2)

3 = 𝐸(1)𝐼(1) +
12
5
𝜇(1)𝑙

2
0(1)𝐴(1) +

8
15

𝜇(1)𝑙
2
1(1)𝐴(1) + 2𝜇(1)𝑙22(1)𝐴(1)

+ 𝐸(2)𝐼(2) +
12
5
𝜇(2)𝑙

2
0(2)𝐴(2) +

8
15

𝜇(2)𝑙
2
1(2)𝐴(2) + 2𝜇(2)𝑙22(2)𝐴(2)

4 = 𝐴(1)(
18
5
𝜇(1)𝑙

2
0(1) +

4
5
𝜇(1)𝑙

2
1(1)) + 𝐴(2)(

18
5
𝜇(2)𝑙

2
0(2) +

4
5
𝜇(2)𝑙

2
1(2))

5 = 𝑆(1)(
18
5
𝜇(1)𝑙

2
0(1) +

4
5
𝜇(1)𝑙

2
1(1)) + 𝑆(2)(

18
5
𝜇(2)𝑙

2
0(2) +

4
5
𝜇(2)𝑙

2
1(2))

6 = 𝐼(1)(
18
5
𝜇(1)𝑙

2
0(1) +

4
5
𝜇(1)𝑙

2
1(1)) + 𝐼(2)(

18
5
𝜇(2)𝑙

2
0(2) +

4
5
𝜇(2)𝑙

2
1(2))

(28)

ere, 𝑢(1)0 = 𝑑𝑢0∕𝑑𝑥, 𝑢(2)0 = 𝑑2𝑢0∕𝑑𝑥2. The material parameters of the
pper piezoelectric layer are denoted by the subscript (2). 𝜇 is the
(2)
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Fig. 1. The laminated microbeam with a partially covered piezoelectric layer.
shear modulus. 𝐸(2) is the elasticity modulus. 𝐴(2) is the cross section.
𝑙𝑖(2)(𝑖 = 0, 1, 2) are the material length-scale parameters. 𝐼(𝑗)(𝑗 = 1, 2)
are respectively the moment of inertia of the lower elastic and upper
piezoelectric layer. 𝑆(𝑗)(𝑗 = 1, 2) are the static moment of the lower
elastic and upper piezoelectric layer, respectively.

The electric enthalpy of the laminated region (𝐿1 < 𝑥 < 𝐿2) is
written as

𝐻1 = 𝑈2 −
1
2 ∫

𝐿2

𝐿1
∫𝐴(2)

[ 1
2
𝜀0

𝑑𝜑
𝑑𝑧

𝑑𝜑
𝑑𝑧

+
𝑑𝜑
𝑑𝑧

𝑃𝑧]𝑑𝐴(2)𝑑𝑥 (29)

The work of the laminated region (𝐿1 < 𝑥 < 𝐿2) is written as

𝑊1 =
1
2 ∫

𝐿2

𝐿1

𝑞(𝑥)𝑤(𝑥)𝑑𝑥 + [𝑉 𝑤]𝐿2
𝐿1

+ [𝑀𝑤(1)]𝐿2
𝐿1

+ [𝑀ℎ𝑤(2)]𝐿2
𝐿1

(30)

where 𝑞(𝑥) is the distributed load. 𝑉 is the shear force. 𝑀 is the classical
moment. 𝑀ℎ is the non-classical moment. In addition, the work of non-
laminated region is similar to that in the Eq. (30) while the distributed
load 𝑞(𝑥) is zero and the integral scope should be from 0 to 𝐿1 or 𝐿2 to
𝐿, respectively.

According to the strain energy of the non-laminated region (0 <
𝑥 < 𝐿1) in Eq. (25) and the corresponding work, with the help of the
variational principle, the formulation after the variation is derived as

∫

𝐿1

0
[−𝑘 ⋅𝑤(6) + 𝑠 ⋅𝑤(4)]𝛿𝑤𝑑𝑥 + [𝑘 ⋅𝑤(5) − 𝑠 ⋅𝑤(3) − 𝑉 ]𝛿𝑤|

𝐿1
0

+ [−𝑘 ⋅𝑤(4) + 𝑠 ⋅𝑤(2) −𝑀]𝛿𝑤(1)
|

𝐿1
0 + [−𝑀ℎ + 𝑘 ⋅𝑤(3)]𝛿𝑤(2)

|

𝐿1
0 = 0

(31)

with

𝑠 = 𝑐1111(1)𝐼(1) + 𝑔311311(1) 𝑘 = 𝑔111111(1)𝐼(1) (32)

From Eq. (31), the bending governing equation is obtained as

−𝑘 ⋅𝑤(6) + 𝑠 ⋅𝑤(4) = 0 (33)

The bending boundary conditions are obtained as

− 𝑠 ⋅𝑤(3) + 𝑘 ⋅𝑤(5) = 𝑉

𝑜𝑟 𝑤 = �̄� 𝑤ℎ𝑒𝑛 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝐿1
(34)

− 𝑘 ⋅𝑤(4) + 𝑠 ⋅𝑤(2) = 𝑀

𝑜𝑟 𝑤(1) = �̄�(1) 𝑤ℎ𝑒𝑛 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝐿1
(35)

𝑘 ⋅𝑤(3) = 𝑀ℎ

𝑜𝑟 𝑤(2) = �̄�(2) 𝑤ℎ𝑒𝑛 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝐿1
(36)

The non-laminated region (𝐿2 < 𝑥 < 𝐿) governing equation is same as
that in Eq. (33). The corresponding boundary conditions can also be
obtained from Eqs. (34)–(36) when 𝑥 = 𝐿2 and 𝑥 = 𝐿. It can be seen
from Eqs. (7), (16) and (17) that by taking 𝑙23 = 𝑙20, 𝑙

2
4 = 𝑙21 and 𝑙25 = 2𝑙22,

the governing equation and boundary conditions of the general strain
gradient elasticity in Eq. (31)–(36) can reduce to that of the modified
strain gradient elasticity. From Eqs. (7), (18) and (19), it can be seen
that by taking 𝑙20 = 𝑙22, 𝑙

2
1 = 3𝑙22 and 𝑙2𝑎 = 3𝑙22, the governing equation

and boundary conditions of the general strain gradient elasticity in
5

Eq. (31)–(36) can also reduce to that of the modified strain gradient
elasticity [25].

Similarly, based on the electric enthalpy of the laminated region
(𝐿1 < 𝑥 < 𝐿2) in Eq. (29), the work in Eq. (30) and the variational
principle, the formulation after the variation is obtained. For brevity,
the formulation was shown in Eq. (A.1) in Appendix A. From Eq. (A.1),
the electro-mechanical coupling governing equations of the laminated
region (𝐿1 < 𝑥 < 𝐿2) are derived as

𝐴3 ⋅𝑤
(4) − 𝐴6 ⋅𝑤

(6) + 𝐴5 ⋅ 𝑢
(5)
0 − 𝐴2 ⋅ 𝑢

(3)
0 + ∫𝐴(2)

[ − 𝑓3113
𝑑2𝑃3

𝑑𝑥2

+ 𝑓3311𝑧
𝑑3𝑃3

𝑑𝑥2𝑑𝑧
+ 𝑓1113

𝑑3𝑃3

𝑑𝑥3
𝑧 − 𝑑113𝑧

𝑑2𝑃3

𝑑𝑥2
]𝑑𝐴(2) − 𝑞(𝑥) = 0

(37)

𝐴2 ⋅𝑤
(3) − 𝐴5 ⋅𝑤

(5) + 𝐴4 ⋅ 𝑢
(4)
0 − 𝐴1 ⋅ 𝑢

(2)
0 + ∫𝐴(2)

[𝑓1113
𝑑2𝑃3

𝑑𝑥2

+ 𝑓3311
𝑑2𝑃3
𝑑𝑥𝑑𝑧

− 𝑑113
𝑑𝑃3
𝑑𝑥

]𝑑𝐴(2) = 0

(38)

The electric governing equations of the laminated region (𝐿1 < 𝑥 < 𝐿2)
are derived as

𝛼𝑃3 − 𝑏33
𝑑2𝑃3

𝑑𝑧2
+ 𝑓1113(𝑢

(2)
0 − 𝑧𝑤(3)) − 𝑓3113𝑤

(2) − 𝑓3311𝑤
(2) +

𝑑𝜑
𝑑𝑧

+ 𝑑113(𝑢
(1)
0 − 𝑧𝑤(2)) = 0

(39)

− 𝜀0
𝑑2𝜑
𝑑𝑧2

+
𝑑𝑃3
𝑑𝑧

= 0 (40)

From Eqs. (37)–(40), it should be noted that the terms with the co-
efficients 𝑓3113 or 𝑓1113 represent the influences from the direct flexo-
electric effects respectively induced from the strain gradients 𝜂𝑧𝑥𝑥 and
𝜂𝑥𝑥𝑥. The terms with the coefficient 𝑓3311 represent the influences from
the inverse flexoelectric effects induced from the polarization gradient
𝑃𝑧,𝑧. The terms with the coefficient 𝑑113 represent the influences from
the piezoelectric effects. The shear force boundary condition is derived
as

− 𝐴3 ⋅𝑤
(3) + 𝐴6 ⋅𝑤

(5) − 𝐴5 ⋅ 𝑢
(4)
0 + 𝐴2 ⋅ 𝑢

(2)
0 + ∫𝐴(2)

[𝑓3113
𝑑𝑃3
𝑑𝑥

− 𝑓3311𝑧
𝑑2𝑃3
𝑑𝑥𝑑𝑧

− 𝑓1113
𝑑2𝑃3

𝑑𝑥2
𝑧 + 𝑑113𝑧

𝑑𝑃3
𝑑𝑥

]𝑑𝐴(2) = 𝑉

𝑜𝑟 𝑤 = �̄� 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2

(41)

The moment boundary condition is derived as

𝐴3 ⋅𝑤
(2) − 𝐴6 ⋅𝑤

(4) + 𝐴5 ⋅ 𝑢
(3)
0 − 𝐴2 ⋅ 𝑢

(1)
0 + ∫𝐴(2)

[ − 𝑓3113𝑃3 + 𝑓3311𝑧
𝑑𝑃3
𝑑𝑧

+ 𝑓1113
𝑑𝑃3
𝑑𝑥

𝑧 − 𝑑113𝑧𝑃3]𝑑𝐴(2) = 𝑀

𝑜𝑟 𝑤(1) = �̄�(1) 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2

(42)

The non-classical moment boundary condition is derived as

𝐴6 ⋅𝑤
(3) − 𝐴5 ⋅ 𝑢

(2)
0 − 𝑓1113𝑧𝑃3 = 𝑀ℎ

(2) (2)
(43)
𝑜𝑟 𝑤 = �̄� 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2
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𝑜

[

A
i

𝑃

I
b

𝜑

I
f

𝐴

The axial force boundary condition is derived as

− 𝐴2 ⋅𝑤
(2) + 𝐴5 ⋅𝑤

(4) − 𝐴4 ⋅ 𝑢
(3)
0 + 𝐴1 ⋅ 𝑢

(1)
0 + ∫𝐴(2)

[ − 𝑓1113
𝑑𝑃3
𝑑𝑥

− 𝑓3311
𝑑𝑃3
𝑑𝑧

+ 𝑑113𝑃3]𝑑𝐴(2) = 0

𝑜𝑟 𝑢0 = �̄�0 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2

(44)

The non-classical axial force boundary condition is derived as

− 𝐴5 ⋅𝑤
(3) + 𝐴4 ⋅ 𝑢

(2)
0 + 𝑓1113𝑃3 = 0

𝑜𝑟 𝑢(1)0 = �̄�(1)0 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2
(45)

The electric boundary conditions are derived as

𝑏33
𝑑𝑃3
𝑑𝑧

+ 𝑓3311𝑧𝑤
(2) − 𝑓3311𝑢

(1)
0 = 0

𝑜𝑟 𝑃3 = 𝑃3 𝑤ℎ𝑒𝑛 𝑧 = −(ℎ2 +
ℎ1
2
) 𝑎𝑛𝑑 𝑧 = −

ℎ1
2

(46)

− 𝜀0
𝑑𝜑
𝑑𝑧

+ 𝑃3 = 0

𝑟 𝜑 = �̄�3 𝑤ℎ𝑒𝑛 𝑧 = −(ℎ2 +
ℎ1
2
) 𝑎𝑛𝑑 𝑧 = −

ℎ1
2

(47)

It should be noted that the governing equations and boundary
conditions of the extended flexoelectric theory with general strain
gradient elasticity in Eq. (37)–(47) can respectively reduce to that of
the extended flexoelectric theory with modified or simplified strain
gradient elasticity when the material length-scale parameters satisfy
𝑙23 = 𝑙20, 𝑙

2
4 = 𝑙21 and 𝑙25 = 2𝑙22, or 𝑙20 = 𝑙22, 𝑙

2
1 = 3𝑙22 and 𝑙2𝑎 = 3𝑙22 [25].

It can be seen from Eqs. (33)–(47) that the present model with the
strain gradients and flexoelectricity can describe the size-dependent
electro-mechanical response. When the piezoelectricity is ignored, the
present model will reduce to the beam model with strain gradients
and flexoelectricity [45]. When the piezoelectricity and flexoelectricity
are further ignored, the present model will reduce to the beam model
with only strain gradients [68]. Moreover, when the piezoelectricity,
flexoelectricity and strain gradients are ignored simultaneously, the
classical beam model is obtained.

4. Direct electro-mechanical problem

For a microbeam subjected with the uniformly distributed load 𝑞
along the laminated region (𝐿1 < 𝑥 < 𝐿2), the electric governing
equations are obtained from Eqs. (39) and (40) as

𝛼𝑃3 − 𝑏33
𝑑2𝑃3

𝑑𝑧2
+ 𝑓1113(𝑢

(2)
0 − 𝑧𝑤(3)) − 𝑓3113𝑤

(2) − 𝑓3311𝑤
(2) +

𝑑𝜑
𝑑𝑧

+ 𝑑113(𝑢
(1)
0 − 𝑧𝑤(2)) = 0

(48)

− 𝜀0
𝑑2𝜑
𝑑𝑧2

+
𝑑𝑃3
𝑑𝑧

= 0 (49)

The electric boundary conditions are obtained from Eqs. (46) and (47)
as

𝜑|
𝑧=− ℎ1

2
= 0 [−𝜀0

𝑑𝜑
𝑑𝑧

+ 𝑃3]|𝑧=−(ℎ2+
ℎ1
2 )

= 0 (50)

𝑏33
𝑑𝑃3
𝑑𝑧

+ 𝑓3311𝑧𝑤
(2) − 𝑓3311𝑢

(1)
0 ]|

𝑧=− ℎ1
2

= 0

[𝑏33
𝑑𝑃3
𝑑𝑧

+ 𝑓3311𝑧𝑤
(2) − 𝑓3311𝑢

(1)
0 ]|

𝑧=−(ℎ2+
ℎ1
2 )

= 0
(51)

ccording to Eqs. (48) and (49), the induced polarization 𝑃3 and
nduced electric potential 𝜑 are respectively derived as

3 = 𝑐1 + 𝑐2𝑒
𝑔𝑧 + 𝑐3𝑒

−𝑔𝑧 +
𝑓1113𝜀0𝑤(3)

(1 + 𝛼𝜀0)
𝑧 +

𝑑113𝜀0𝑤(2)

(1 + 𝛼𝜀0)
𝑧 (52)

𝜑 = 𝑐4 + 𝑐5𝑧 +
𝑐2
𝑔𝜀0

𝑒𝑔𝑧 −
𝑐3
𝑔𝜀0

𝑒−𝑔𝑧 +
𝑓1113𝑤(3)

2(1 + 𝛼𝜀0)
𝑧2 +

𝑑113𝑤(2)

2(1 + 𝛼𝜀0)
𝑧2 (53)

n Eqs. (52) and (53), 𝑐𝑛(𝑛 = 1, 2, 3, 4, 5) are unknown constants to
e determined. Substituting the induced polarization of Eq. (52) and
6

induced electric potential of Eq. (53) into the electric boundary con-
ditions in Eqs. (50)–(51), the unknown constants are determined and
shown in Appendix B. The induced polarization 𝑃3 and induced electric
potential 𝜑 are respectively derived as

𝑃3 =
2𝑓3113𝜀0𝑤(2)

(1 + 𝛼𝜀0)
−

𝑓1113𝜀0𝑢
(2)
0

(1 + 𝛼𝜀0)
−

𝑑113𝜀0𝑢
(1)
0

(1 + 𝛼𝜀0)
+

𝑓1113𝜀0𝑤(3)

(1 + 𝛼𝜀0)
𝑧

+
𝜀0𝑓1113𝑤(3)

𝑔(1 + 𝛼𝜀0)
(𝐴𝑠1𝑒

𝑔𝑧 + 𝐴𝑠4𝑒
−𝑔𝑧) +

𝑓3311𝜀0𝑔ℎ1𝑤(2)

2(1 + 𝛼𝜀0)
(𝐴𝑠2𝑒

𝑔𝑧 + 𝐴𝑠5𝑒
−𝑔𝑧)

+
𝑓3311𝜀0𝑔(ℎ2 +

ℎ1
2 )𝑤(2)

(1 + 𝛼𝜀0)
(−𝐴𝑠3𝑒

𝑔𝑧 − 𝐴𝑠6𝑒
−𝑔𝑧) +

𝑑113𝜀0𝑤(2)

(1 + 𝛼𝜀0)
𝑧

+
𝑓3311𝑔𝜀0𝑢

(1)
0

(1 + 𝛼𝜀0)
(−𝐴𝑠1𝑒

𝑔𝑧 − 𝐴𝑠4𝑒
−𝑔𝑧) +

𝑑31𝜀0𝑤(2)

𝑔(1 + 𝛼𝜀0)
(𝐴𝑠1𝑒

𝑔𝑧 + 𝐴𝑠4𝑒
−𝑔𝑧)

(54)

= [
𝑏33𝑓1113𝜀0
(1 + 𝛼𝜀0)2

−
𝑓1113ℎ21

8(1 + 𝛼𝜀0)
]𝑤(3) + [

𝑓3311ℎ1
2(1 + 𝛼𝜀0)

+
𝑏33𝑑31𝜀0
(1 + 𝛼𝜀0)2

−
𝑑31ℎ21

8(1 + 𝛼𝜀0)
]𝑤(2) −

𝑓1113ℎ1
2(1 + 𝛼𝜀0)

𝑢(2)0 − [
𝑑31ℎ1

2(1 + 𝛼𝜀0)
+

𝑓3311
(1 + 𝛼𝜀0)

]𝑢(1)0

+
2𝑓3113

(1 + 𝛼𝜀0)
𝑧𝑤(2) −

𝑓1113
(1 + 𝛼𝜀0)

𝑧𝑢(2)0 −
𝑑113

(1 + 𝛼𝜀0)
𝑧𝑢(1)0 +

𝑑113
2(1 + 𝛼𝜀0)

𝑧2𝑤(2)

+
𝑓1113𝑤(3)

𝑔2(1 + 𝛼𝜀0)
(𝐴𝑠1𝑒

𝑔𝑧 − 𝐴𝑠4𝑒
−𝑔𝑧) +

𝑓3311ℎ1𝑤(2)

2(1 + 𝛼𝜀0)
(𝐴𝑠2𝑒

𝑔𝑧 − 𝐴𝑠5𝑒
−𝑔𝑧)

+
𝑓3311(ℎ2 +

ℎ1
2 )𝑤(2)

(1 + 𝛼𝜀0)
(−𝐴𝑠3𝑒

𝑔𝑧 + 𝐴𝑠6𝑒
−𝑔𝑧) +

𝑓1113
2(1 + 𝛼𝜀0)

𝑧2𝑤(3)

+
𝑓3311𝑢

(1)
0

(1 + 𝛼𝜀0)
(−𝐴𝑠1𝑒

𝑔𝑧 + 𝐴𝑠4𝑒
−𝑔𝑧) +

𝑑31𝑤(2)

𝑔2(1 + 𝛼𝜀0)
(𝐴𝑠1𝑒

𝑔𝑧 − 𝐴𝑠4𝑒
−𝑔𝑧)

(55)

n Eqs. (54) and (55), the parameters 𝐴𝑠𝑛(𝑛 = 1, 2,… , 6) are defined as
ollows

𝑠1 =
(1 − 𝑒𝑔ℎ2 )

(𝑒𝑔(ℎ2−
ℎ1
2 ) − 𝑒−𝑔(ℎ2+

ℎ1
2 ))

𝐴𝑠2 =
𝑒𝑔ℎ2

(𝑒𝑔(ℎ2−
ℎ1
2 ) − 𝑒−𝑔(ℎ2+

ℎ1
2 ))

𝐴𝑠3 =
1

(𝑒𝑔(ℎ2−
ℎ1
2 ) − 𝑒−𝑔(ℎ2+

ℎ1
2 ))

𝐴𝑠4 =
(1 − 𝑒−𝑔ℎ2 )

(𝑒𝑔(ℎ2+
ℎ1
2 ) − 𝑒𝑔(

ℎ1
2 −ℎ2))

𝐴𝑠5 =
𝑒−𝑔ℎ2

(𝑒𝑔(ℎ2+
ℎ1
2 ) − 𝑒𝑔(

ℎ1
2 −ℎ2))

𝐴𝑠6 =
1

(𝑒𝑔(ℎ2+
ℎ1
2 ) − 𝑒𝑔(

ℎ1
2 −ℎ2))

(56)

with

𝑔 =

√

(1 + 𝛼𝜀0)
𝑏33𝜀0

(57)

For the mechanical governing equations of the laminated region
(𝐿1 < 𝑥 < 𝐿2), substituting the induced polarization of Eq. (54) into
the electro-mechanical coupling governing equations of Eqs. (37) and
(38), the following equations are derived as

𝑎3 ⋅𝑤
(4) + 𝑎6 ⋅𝑤

(6) + 𝑎5 ⋅ 𝑢
(5)
0 + 𝑇4 ⋅ 𝑢

(4)
0 + 𝑎7 ⋅ 𝑢

(3)
0 = 𝑞 (58)

𝑎2 ⋅𝑤
(3) + 𝑇10 ⋅𝑤

(4) + 𝑎8 ⋅𝑤
(5) + 𝑎4 ⋅ 𝑢

(4)
0 + 𝑎1 ⋅ 𝑢

(2)
0 = 0 (59)

Similarly, according to the induced polarization in Eq. (54) and the
boundary conditions in Eqs. (41)–(45), the mechanical boundary con-
ditions of the laminated region (𝐿1 < 𝑥 < 𝐿2) are derived as

− 𝑎3 ⋅𝑤
(3) − 𝑎6 ⋅𝑤

(5) − 𝑎5 ⋅ 𝑢
(4)
0 − 𝑇4 ⋅ 𝑢

(3)
0 − 𝑎7 ⋅ 𝑢

(2)
0 = 𝑉

𝑜𝑟 𝑤 = �̄� 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2
(60)

𝑎3 ⋅𝑤
(2) + 𝑎6 ⋅𝑤

(4) + 𝑎5 ⋅ 𝑢
(3)
0 + 𝑇4 ⋅ 𝑢

(2)
0 + 𝑎7 ⋅ 𝑢

(1)
0 = 𝑀

𝑜𝑟 𝑤(1) = �̄�(1) 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2
(61)

− 𝑎6 ⋅𝑤
(3) − 𝑎5 ⋅ 𝑢

(2)
0 − 𝑇6 ⋅𝑤

(2) − 𝑇7 ⋅ 𝑢
(1)
0 = 𝑀ℎ

(2) (2)
(62)
𝑜𝑟 𝑤 = �̄� 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2
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𝑚

𝑚

𝑚

𝑚

𝑚

𝑄

𝑅

A
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n
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f

𝑠

𝑎

F
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𝑘

F
f

𝑤

𝑤

𝑤

𝑤

F
b

𝑤

𝑠

A
d
i
t
t
e
a
p
t
w

𝜌

H
r

− 𝑎2 ⋅𝑤
(2) − 𝑎8 ⋅𝑤

(4) − 𝑎4 ⋅ 𝑢
(3)
0 − 𝑇10 ⋅𝑤

(3) − 𝑎1 ⋅ 𝑢
(1)
0 = 0

𝑜𝑟 𝑢0 = �̄�0 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2
(63)

𝑎8 ⋅𝑤
(3) + 𝑎4 ⋅ 𝑢

(2)
0 + 𝑇13 ⋅𝑤

(2) + 𝑇14 ⋅ 𝑢
(1)
0 = 0

𝑜𝑟 𝑢(1)0 = �̄�(1)0 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2
(64)

Here, the parameters 𝑎𝑛(𝑛 = 1, 2,… , 7) in Eqs. (58)–(64) are defined as
follows
𝑎1 = −𝐴1 + 𝑇12 𝑎2 = 𝐴2 + 𝑇8 𝑎3 = 𝐴3 + 𝑇1 𝑎4 = 𝐴4 + 𝑇11
𝑎5 = 𝐴5 + 𝑇3 𝑎6 = −𝐴6 + 𝑇2 𝑎7 = −𝐴2 + 𝑇5 𝑎8 = −𝐴5 + 𝑇9

(65)

For brevity, the parameters 𝑇𝑛(𝑛 = 1, 2,… , 14) in the direct electro-
mechanical governing equations of Eqs. (58)–(59) and boundary con-
ditions of Eqs. (60)–(65) are given in Appendix C.

According to the mechanical governing equations in Eqs. (58) and
(59), together with the operator method, the deflection and axial
displacement solution for the laminated region (𝐿1 < 𝑥 < 𝐿2) are
derived as

𝑤1(𝑥) = 𝑐6 + 𝑐7𝑥 + 𝑐8𝑥
2 + 𝑐9𝑥

3 +
𝑞𝑎1

24(𝑎1𝑎3 − 𝑎2𝑎7)
𝑥4 + 𝑐10𝑒

𝑟1𝑥 + 𝑐11𝑒
𝑟2𝑥

+ 𝑐12𝑒
𝑟3𝑥 + 𝑐13𝑒

𝑟4𝑥

(66)

𝑢0(𝑥) = 𝑐14 + 𝑐15𝑥 + (−
3𝑎2
𝑎1

𝑐9 −
𝑞𝑇10

2(𝑎1𝑎3 − 𝑎2𝑎7)
)𝑥2 +

𝑞𝑎2
6

𝑥3

+
(−𝑎3𝑟41 − 𝑎6𝑟61)

(−𝑎8𝑟51 + 𝑇4𝑟41 + 𝑎7𝑟31)
𝑐10𝑒

𝑟1𝑥 +
(−𝑎3𝑟42 − 𝑎6𝑟62)

(−𝑎8𝑟52 + 𝑇4𝑟42 + 𝑎7𝑟32)
𝑐11𝑒

𝑟2𝑥

+
(−𝑎3𝑟43 − 𝑎6𝑟63)

(−𝑎8𝑟53 + 𝑇4𝑟43 + 𝑎7𝑟33)
𝑐12𝑒

𝑟3𝑥 +
(−𝑎3𝑟44 − 𝑎6𝑟64)

(−𝑎8𝑟54 + 𝑇4𝑟44 + 𝑎7𝑟34)
𝑐13𝑒

𝑟4𝑥

(67)

with

𝑟1 = −
𝑚2
4𝑚1

+
√

𝑚6 +

√

−𝑚6 −
𝑃
2
+ 2

√

𝑚2
6 +

1
2
𝑃𝑚6 +

1
16

(𝑃 2 − 4𝑅)

2 = −
𝑚2
4𝑚1

+
√

𝑚6 −

√

−𝑚6 −
𝑃
2
+ 2

√

𝑚2
6 +

1
2
𝑃𝑚6 +

1
16

(𝑃 2 − 4𝑅)

3 = −
𝑚2
4𝑚1

−
√

𝑚6 +

√

−𝑚6 −
𝑃
2
− 2

√

𝑚2
6 +

1
2
𝑃𝑚6 +

1
16

(𝑃 2 − 4𝑅)

4 = −
𝑚2
4𝑚1

−
√

𝑚6 −

√

−𝑚6 −
𝑃
2
− 2

√

𝑚2
6 +

1
2
𝑃𝑚6 +

1
16

(𝑃 2 − 4𝑅)

(68)

he derive process is given in Appendix C. In Eq. (68), the parameters
re defined as

1 = 𝑎6𝑎4 + 𝑎25
2 = −𝑇10𝑎5 + 𝑇4𝑎5

3 = 𝑎3𝑎4 + 𝑎6𝑎1 + 𝑎2𝑎8 − 𝑇10𝑇4 − 𝑎7𝑎8
𝑚4 = −𝑎2𝑇4 − 𝑇10𝑎7
𝑚5 = 𝑎3𝑎7 − 𝑎2𝑎7

𝑚6 = −𝑃
6
+ 3
√

𝑚7 +
√

𝑚8 +
3
√

𝑚7 −
√

𝑚8

7 =
(−72𝑃𝑅 + 27𝑄2 + 2𝑃 3)

3456

8 = (72𝑃𝑅 − 27𝑄2 − 2𝑃 3

3456
)2 − (𝑃

2 + 12𝑅
144

)3

𝑃 =
(8𝑚1𝑚3 − 3𝑚2

2)

8𝑚2
1

=
(𝑚3

2 − 4𝑚1𝑚2𝑚3 + 8𝑚2
1𝑚4)

8𝑚3
1

=
(16𝑚1𝑚3

2𝑚3 − 3𝑚4
2 − 64𝑚2

1𝑚2𝑚4 + 256𝑚3
1𝑚5)

4

(69)
7

256𝑚1
ccording to the mechanical governing equations of the non-laminated
egion (0 < 𝑥 < 𝐿1) in the Eq. (33), using the reduction method, the
on-laminated region (0 < 𝑥 < 𝐿1) deflection is easily derived as

𝑤2(𝑥) = 𝑐16 + 𝑐17𝑥 + 𝑐18𝑥
2 + 𝑐19𝑥

3 + 𝑐20𝑒
√ 𝑠

𝑘 𝑥 + 𝑐21𝑒
−
√ 𝑠

𝑘 𝑥 (70)

Similarly, the non-laminated region (𝐿2 < 𝑥 < 𝐿) deflection is derived
as

𝑤3(𝑥) = 𝑐22 + 𝑐23𝑥 + 𝑐24𝑥
2 + 𝑐25𝑥

3 + 𝑐26𝑒
√ 𝑠

𝑘 𝑥 + 𝑐27𝑒
−
√ 𝑠

𝑘 𝑥 (71)

The deflection in Eqs. (66), (70) and (71), and axial displacement in
Eq. (67) with unknown constants 𝑐𝑛(𝑛 = 6, 7,… , 27) can be determined
by using the equilibrium conditions of internal forces, the deforma-
tion compatibility conditions and the boundary conditions. For the
equilibrium conditions of shear force at the conjunction, the following
equations are given

− 𝑠 ⋅𝑤(3)
2 (𝐿1) + 𝑘 ⋅𝑤(5)

2 (𝐿1) = −𝑎3 ⋅𝑤
(3)
1 (𝐿1) − 𝑎6 ⋅𝑤

(5)
1 (𝐿1)

− 𝑎5 ⋅ 𝑢
(4)
0 (𝐿1) − 𝑇4 ⋅ 𝑢

(3)
0 (𝐿1) − 𝑎7 ⋅ 𝑢

(2)
0 (𝐿1)

− 𝑎3 ⋅𝑤
(3)
1 (𝐿2) − 𝑎6 ⋅𝑤

(5)
1 (𝐿2) − 𝑎5 ⋅ 𝑢

(4)
0 (𝐿2) − 𝑇4 ⋅ 𝑢

(3)
0 (𝐿2)

− 𝑎7 ⋅ 𝑢
(2)
0 (𝐿2) = −𝑠 ⋅𝑤(3)

3 (𝐿2) + 𝑘 ⋅𝑤(5)
3 (𝐿2)

(72)

or the equilibrium conditions of moment at the conjunction, the
ollowing equations are given

⋅𝑤(2)
2 (𝐿1) − 𝑘 ⋅𝑤(4)

2 (𝐿1) = 𝑎3 ⋅𝑤
(2)
1 (𝐿1) + 𝑎6 ⋅𝑤

(4)
1 (𝐿1)

+ 𝑎5 ⋅ 𝑢
(3)
0 (𝐿1) + 𝑇4 ⋅ 𝑢

(2)
0 (𝐿1) + 𝑎7 ⋅ 𝑢

(1)
0 (𝐿1)

3 ⋅𝑤
(2)
1 (𝐿2) + 𝑎6 ⋅𝑤

(4)
1 (𝐿2) + 𝑎5 ⋅ 𝑢

(3)
0 (𝐿2) + 𝑇4 ⋅ 𝑢

(2)
0 (𝐿2)

+ 𝑎7 ⋅ 𝑢
(1)
0 (𝐿2) = 𝑠 ⋅𝑤(2)

3 (𝐿2) − 𝑘 ⋅𝑤(4)
3 (𝐿2)

(73)

or the equilibrium conditions of non-classical moment at the conjunc-
ion, the following equations are given

⋅𝑤(3)
2 (𝐿1) = −𝑎6 ⋅𝑤

(3)
1 (𝐿1) − 𝑎5 ⋅ 𝑢

(2)
0 (𝐿1)

− 𝑇6 ⋅𝑤
(2)
1 (𝐿1) − 𝑇7 ⋅ 𝑢

(1)
0 (𝐿1)

− 𝑎6 ⋅𝑤
(3)
1 (𝐿2) − 𝑎5 ⋅ 𝑢

(2)
0 (𝐿2) − 𝑇6 ⋅𝑤

(2)
1 (𝐿2)

− 𝑇7 ⋅ 𝑢
(1)
0 (𝐿2) = 𝑘 ⋅𝑤(3)

3 (𝐿2)

(74)

or the deformation compatibility conditions at the conjunction, the
ollowing equations are given

2(𝐿1) = 𝑤1(𝐿1) 𝑢0(𝐿1) = 0 𝑤(1)
2 (𝐿1) = 𝑤(1)

1 (𝐿1)
(2)
2 (𝐿1) = 𝑤(2)

1 (𝐿1) 𝑢(1)0 (𝐿1) = 0

1(𝐿2) = 𝑤3(𝐿2) 𝑢0(𝐿2) = 0 𝑤(1)
1 (𝐿2) = 𝑤(1)

3 (𝐿2)
(2)
1 (𝐿2) = 𝑤(2)

3 (𝐿2) 𝑢(1)0 (𝐿2) = 0

(75)

or a beam with one end is free and the other end is clamped, the
oundary conditions are written as follows
(1)
2 (0) = 0 𝑤2(0) = 0 𝑤(2)

2 (𝐿) = 0 𝑤(2)
3 (0) = 0

⋅𝑤(2)
3 (𝐿) − 𝑘 ⋅𝑤(4)

3 (𝐿) = 0 − 𝑠 ⋅𝑤(3)
3 (𝐿) + 𝑘 ⋅𝑤(5)

3 (𝐿) = 0
(76)

ccording to the deflection in Eqs. (66), (70) and (71), and axial
isplacement in Eq. (67), together with the equilibrium conditions of
nternal forces in Eqs. (72)–(74), the deformation compatibility condi-
ions in Eq. (75) and the cantilever boundary conditions in Eq. (76),
he deflection and axial displacement solution for the cantilever piezo-
lectric microbeam is obtained. Then, based on the obtained deflection
nd axial displacement, together with Eqs. (54) and (55), the induced
olarization and induced electric potential are determined. Moreover,
he density of the charge induced from the piezoelectric layer can be
ritten as

(𝑥) = 𝐶𝜑(𝑥) (77)

ere, 𝐶 is the capacitance per unit surface, 𝐶 = 𝜀𝑟𝜀0∕ℎ2. 𝜀𝑟 is the
elative dielectric constant. 𝜀 is the vacuum constant. The collected
0
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charge of the piezoelectric layer is derived as

𝑄(𝑥) = 𝑏2 ∫

𝐿2

𝐿1

|𝜌 − (ℎ2 +
1
2
ℎ1)|𝑑𝑥

= 𝑏2𝐶|[
𝑏33𝑓1113𝜀0
(1 + 𝛼𝜀0)2

−
𝑓1113

𝑔2(1 + 𝛼𝜀0)
+

𝑓1113ℎ2(ℎ2 + ℎ1)
2(1 + 𝛼𝜀0)

]

[𝑤(2)
1 (𝐿2) −𝑤(2)

1 (𝐿1)]| + 𝑏2𝐶|[ −
𝑓3311ℎ2
(1 + 𝛼𝜀0)

+
𝑏33𝑑31𝜀0
(1 + 𝛼𝜀0)2

−
𝑑31

𝑔2(1 + 𝛼𝜀0)

+
𝑑31ℎ2(ℎ2 + ℎ1)
2(1 + 𝛼𝜀0)

][𝑤(1)
1 (𝐿2) −𝑤(1)

1 (𝐿1)]| + 𝑏2𝐶|

𝑓1113ℎ2
(1 + 𝛼𝜀0)

[𝑢(1)0 (𝐿2)

− 𝑢(1)0 (𝐿1)]| + 𝑏2𝐶|

𝑏𝑑31ℎ2
(1 + 𝛼𝜀0)

[𝑢0(𝐿2) − 𝑢0(𝐿1)]|

(78)

Thus, the polarization, electric potential and collected charge in-
duced from the direct electro-mechanical process are obtained. The
direct electro-mechanical response of the cantilever piezoelectric mi-
crobeam is determined. Similarly, the direct electro-mechanical prob-
lem of the piezoelectric microbeam under other boundary conditions
can also be solved.

5. Inverse electro-mechanical problem

For a microbeam subjected with the external voltage 𝑉 along the
thickness direction of the piezoelectric layer, the electric governing
equations are obtained from Eqs. (39) and (40) as

𝛼𝑃3 − 𝑏33
𝑑2𝑃3

𝑑𝑧2
+ 𝑓1113(𝑢

(2)
0 − 𝑧𝑤(3)) − 𝑓3113𝑤

(2) − 𝑓3311𝑤
(2) +

𝑑𝜑
𝑑𝑧

+ 𝑑113(𝑢
(1)
0 − 𝑧𝑤(2)) = 0

(79)

− 𝜀0
𝑑2𝜑
𝑑𝑧2

+
𝑑𝑃3
𝑑𝑧

= 0 (80)

The electric boundary conditions are obtained from Eqs. (46) and (47)
as
𝜑|

𝑧=− ℎ1
2

= 0 𝜑|
𝑧=−(ℎ2+

ℎ1
2 )

= 𝑉 (81)

[𝑏33
𝑑𝑃3
𝑑𝑧

+ 𝑓3311𝑧𝑤
(2) − 𝑓3311𝑢

(1)
0 ]|

𝑧=− ℎ1
2

= 0

[𝑏33
𝑑𝑃3
𝑑𝑧

+ 𝑓3311𝑧𝑤
(2) − 𝑓3311𝑢

(1)
0 ]|

𝑧=−(ℎ2+
ℎ1
2 )

= 0
(82)

ccording to the Eqs. (79) and (80), the induced polarization 𝑃3 and
nduced electric potential 𝜑 are respectively derived as

3 = 𝑏1 + 𝑏2𝑒
𝑔𝑧 + 𝑏3𝑒

−𝑔𝑧 +
𝑓1113𝜀0𝑤(3)

(1 + 𝛼𝜀0)
𝑧 +

𝑑113𝜀0𝑤(2)

(1 + 𝛼𝜀0)
𝑧 (83)

𝜑 = 𝑏4 + 𝑏5𝑧 +
𝑏2
𝑔𝜀0

𝑒𝑔𝑧 −
𝑏3
𝑔𝜀0

𝑒−𝑔𝑧 +
𝑓1113𝑤(3)

2(1 + 𝛼𝜀0)
𝑧2 +

𝑑113𝑤(2)

2(1 + 𝛼𝜀0)
𝑧2 (84)

Here, 𝑏𝑛(𝑛 = 1, 2, 3, 4, 5) are constants to be determined. Inserting the
nduced polarization of Eqs. (83) and induced electric potential of (84)
nto the electric boundary conditions in Eqs. (81)–(82), the constants
re determined and shown in Appendix D. Therefore, the induced
olarization 𝑃3 and induced electric potential 𝜑 are respectively written

as

𝑃3 = (
2𝑓3113

𝛼
−

𝑓3113
𝛼(1 + 𝛼𝜀0)

−
𝑑31(ℎ2 + ℎ1)
2𝛼(1 + 𝛼𝜀0)

)𝑤(2) −
𝑓1113(ℎ2 + ℎ1)
2𝛼(1 + 𝛼𝜀0)

𝑤(3)

−
𝑓1113
𝛼

𝑢(2)0 −
𝑑31
𝛼

𝑢(1)0 + 𝑉
ℎ2𝛼

+
𝑓1113𝜀0𝑤(3)

(1 + 𝛼𝜀0)
𝑧 +

𝑑113𝜀0𝑤(2)

(1 + 𝛼𝜀0)
𝑧

+
𝜀0𝑓1113𝑤(3)

𝑔(1 + 𝛼𝜀0)
(𝐴𝑠1𝑒

𝑔𝑧 + 𝐴𝑠4𝑒
−𝑔𝑧) +

𝑓3311𝜀0𝑔ℎ1𝑤(2)

2(1 + 𝛼𝜀0)
(𝐴𝑠2𝑒

𝑔𝑧 + 𝐴𝑠5𝑒
−𝑔𝑧)

+
𝑓3311𝜀0𝑔(ℎ2 +

ℎ1
2 )𝑤(2)

(1 + 𝛼𝜀0)
(−𝐴𝑠3𝑒

𝑔𝑧 − 𝐴𝑠6𝑒
−𝑔𝑧) +

𝑓3311𝑔𝜀0𝑢
(1)
0

(1 + 𝛼𝜀0)

(−𝐴𝑠1𝑒
𝑔𝑧 − 𝐴𝑠4𝑒

−𝑔𝑧) +
𝑑31𝜀0𝑤(2)

𝑔(1 + 𝛼𝜀0)
(𝐴𝑠1𝑒

𝑔𝑧 + 𝐴𝑠4𝑒
−𝑔𝑧)
8

(85)
𝜑 = [
𝑓1113ℎ1(2ℎ2 + ℎ1)

8(1 + 𝛼𝜀0)
+

𝑓1113𝑏33𝜀0
(1 + 𝛼𝜀0)2

]𝑤(3) −
𝑉 ℎ1
2ℎ2

+ [
𝑏33𝑑31𝜀0
(1 + 𝛼𝜀0)2

+
𝑑31ℎ1(2ℎ2 + ℎ1)

8(1 + 𝛼𝜀0)
]𝑤(2) −

𝑓3311
(1 + 𝛼𝜀0)

𝑢(1)0 + [
𝑓3311

(1 + 𝛼𝜀0)

+
𝑑31(ℎ2 + ℎ1)
2(1 + 𝛼𝜀0)

]𝑤(2)𝑧 +
𝑓1113(ℎ2 + ℎ1)
2(1 + 𝛼𝜀0)

𝑧𝑤(3) − 𝑉
ℎ2

𝑧

+
𝑓1113

2(1 + 𝛼𝜀0)
𝑧2𝑤(2) +

𝑑31
2(1 + 𝛼𝜀0)

𝑧2𝑤(2) +
𝑓1113𝑤(3)

𝑔2(1 + 𝛼𝜀0)

𝐴𝑠1𝑒
𝑔𝑧 − 𝐴𝑠4𝑒

−𝑔𝑧) +
𝑓3311ℎ1𝑤(2)

2(1 + 𝛼𝜀0)
(𝐴𝑠2𝑒

𝑔𝑧 − 𝐴𝑠5𝑒
−𝑔𝑧)

+
𝑓3311(ℎ2 +

ℎ1
2 )𝑤(2)

(1 + 𝛼𝜀0)
(−𝐴𝑠3𝑒

𝑔𝑧 + 𝐴𝑠6𝑒
−𝑔𝑧) +

𝑓3311𝑢
(1)
0

(1 + 𝛼𝜀0)

−𝐴𝑠1𝑒
𝑔𝑧 + 𝐴𝑠4𝑒

−𝑔𝑧) +
𝑑31𝑤(2)

𝑔2(1 + 𝛼𝜀0)
(𝐴𝑠1𝑒

𝑔𝑧 − 𝐴𝑠4𝑒
−𝑔𝑧)

(86)

For the mechanical governing equations of the laminated region
𝐿1 < 𝑥 < 𝐿2), based on the induced polarization in Eq. (85) and

electro-mechanical coupling governing equations in Eqs. (37) and (38),
the following equations are derived as

𝑎𝑖3 ⋅𝑤
(4) + 𝑎𝑖6 ⋅𝑤

(6) + 𝑎5 ⋅ 𝑢
(5)
0 + 𝑇𝑖4 ⋅ 𝑢

(4)
0 + 𝑎𝑖7 ⋅ 𝑢

(3)
0 = 𝑞 (87)

𝑎𝑖2 ⋅𝑤
(3) + 𝑇𝑖10 ⋅𝑤

(4) + 𝑎𝑖8 ⋅𝑤
(5) + 𝑎𝑖4 ⋅ 𝑢

(4)
0 + 𝑎𝑖1 ⋅ 𝑢

(2)
0 = 0 (88)

Similarly, according to the induced polarization in Eq. (85) and electro-
mechanical coupling boundary conditions in Eqs. (41)–(45), the me-
chanical boundary conditions of the laminated region (𝐿1 < 𝑥 < 𝐿2)
are derived as

− 𝑎𝑖3 ⋅𝑤
(3) − 𝑎𝑖6 ⋅𝑤

(5) − 𝑎𝑖5 ⋅ 𝑢
(4)
0 − 𝑇𝑖4 ⋅ 𝑢

(3)
0 − 𝑎𝑖7 ⋅ 𝑢

(2)
0 = 𝑉

𝑜𝑟 𝑤 = �̄� 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2
(89)

𝑎𝑖3 ⋅𝑤
(2) + 𝑎𝑖6 ⋅𝑤

(4) + 𝑎𝑖5 ⋅ 𝑢
(3)
0 + 𝑇𝑖4 ⋅ 𝑢

(2)
0 + 𝑎𝑖7 ⋅ 𝑢

(1)
0

+ [
−𝑏𝑉 𝑓3113

𝛼
+

𝑏𝑉 𝑑31(ℎ1 + ℎ2)
2𝛼

] = 𝑀

𝑟 𝑤(1) = �̄�(1) 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2

(90)

− 𝑎𝑖6 ⋅𝑤
(3) − 𝑎𝑖5 ⋅ 𝑢

(2)
0 − 𝑇𝑖6 ⋅𝑤

(2) − 𝑇𝑖7 ⋅ 𝑢
(1)
0

+
𝑏𝑉 𝑓1113(ℎ1 + ℎ2)

2𝛼
= 𝑀ℎ

𝑟 𝑤(2) = �̄�(2) 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2

(91)

− 𝑎𝑖2 ⋅𝑤
(2) − 𝑎𝑖8 ⋅𝑤

(4) − 𝑎𝑖4 ⋅ 𝑢
(3)
0 − 𝑇𝑖10 ⋅𝑤

(3) − 𝑎𝑖1 ⋅ 𝑢
(1)
0 +

𝑏𝑉 𝑑31
𝛼

= 0

𝑜𝑟 𝑢0 = �̄�0 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2

(92)

𝑎𝑖8 ⋅𝑤
(3) + 𝑎𝑖4 ⋅ 𝑢

(2)
0 + 𝑇𝑖13 ⋅𝑤

(2) + 𝑇𝑖14 ⋅ 𝑢
(1)
0 +

𝑏𝑉 𝑓1113
𝛼

= 0

𝑜𝑟 𝑢(1)0 = �̄�(1)0 𝑤ℎ𝑒𝑛 𝑥 = 𝐿1 𝑎𝑛𝑑 𝑥 = 𝐿2

(93)

Here, the parameters 𝑎𝑛(𝑛 = 1, 2,… , 7) in Eqs. (87)–(93) are defined as
follows
𝑎𝑖1 = −𝐴1 + 𝑇𝑖12 𝑎𝑖2 = 𝐴2 + 𝑇𝑖8 𝑎𝑖3 = 𝐴3 + 𝑇𝑖1 𝑎𝑖4 = 𝐴4 + 𝑇𝑖11
𝑎𝑖5 = 𝐴5 + 𝑇𝑖3 𝑎𝑖6 = −𝐴6 + 𝑇𝑖2 𝑎𝑖7 = −𝐴2 + 𝑇𝑖5 𝑎𝑖8 = −𝐴5 + 𝑇𝑖9

(94)

For brevity, the parameters 𝑇𝑖𝑛(𝑛 = 1, 2,… , 14) in inverse electro-
mechanical governing equations of Eqs. (87)–(88) and boundary con-
ditions of Eqs. (89)–(94) are given in Appendix F.

From the comparison between the mechanical governing equation
in the Eqs. (87) and (88) of the inverse electro-mechanical problem, and
that in the Eqs. (66) and (67) of the direct electro-mechanical problem,
the expression of the deflection and axial displacement solution for
the laminated region (𝐿1 < 𝑥 < 𝐿2) of the direct/inverse electro-
mechanical problem are similar. Moreover, the deflection solutions for
the non-laminated region (0 < 𝑥 < 𝐿 , 𝐿 < 𝑥 < 𝐿) of the inverse
1 2
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Fig. 2. The deflection comparison among the present model and existed models.
a

s

lectro-mechanical problem are respectively similar to those of the
irect electro-mechanical problem in the Eqs. (70) and (71).

The deflection and axial displacement induced from the inverse
lectro-mechanical problem can also be determined by using the equi-
ibrium of forces conditions, the deformation compatibility conditions
nd the boundary conditions. For the equilibrium conditions of internal
orces of the inverse electro-mechanical problem, the shear force is sim-
lar to those of the direct electro-mechanical problem in the Eqs. (72)
hile the classical moment and non-classical moment are different from

hat in the Eqs. (73) and (74) of the direct electro-mechanical problem.
or the equilibrium conditions of classical moment at the conjunction,
he following equations are given

⋅𝑤(2)
2 (𝐿1) − 𝑘 ⋅𝑤(4)

2 (𝐿1) = 𝑎𝑖3 ⋅𝑤
(2)
1 (𝐿1) + 𝑎𝑖6 ⋅𝑤

(4)
1 (𝐿1)

+ 𝑎𝑖5 ⋅ 𝑢
(3)
0 (𝐿1) + 𝑇𝑖4 ⋅ 𝑢

(2)
0 (𝐿1) + 𝑎𝑖7 ⋅ 𝑢

(1)
0 (𝐿1)

+ [
−𝑏𝑉 𝑓3113

𝛼
+

𝑏𝑉 𝑑31(ℎ1 + ℎ2)
2𝛼

]

𝑖3 ⋅𝑤
(2)
1 (𝐿2) + 𝑎𝑖6 ⋅𝑤

(4)
1 (𝐿2) + 𝑎𝑖5 ⋅ 𝑢

(3)
0 (𝐿2) + 𝑇𝑖4 ⋅ 𝑢

(2)
0 (𝐿2)

+ 𝑎𝑖7 ⋅ 𝑢
(1)
0 (𝐿2) + [

−𝑏𝑉 𝑓3113
𝛼

+
𝑏𝑉 𝑑31(ℎ1 + ℎ2)

2𝛼
]

= 𝑠 ⋅𝑤(2)
3 (𝐿2) − 𝑘 ⋅𝑤(4)

3 (𝐿2)

(95)

For the equilibrium conditions of non-classical moment at the conjunc-
tion, the following equations are given

𝑘 ⋅𝑤(3)
2 (𝐿1) = −𝑎𝑖6 ⋅𝑤

(3)
1 (𝐿1) − 𝑎𝑖5 ⋅ 𝑢

(2)
0 (𝐿1) − 𝑇𝑖6 ⋅𝑤

(2)
1 (𝐿1)

− 𝑇𝑖7 ⋅ 𝑢
(1)
0 (𝐿1) +

𝑏𝑉 𝑓1113(ℎ1 + ℎ2)
2𝛼

− 𝑎𝑖6 ⋅𝑤
(3)
1 (𝐿2) − 𝑎𝑖5 ⋅ 𝑢

(2)
0 (𝐿2) − 𝑇𝑖6 ⋅𝑤

(2)
1 (𝐿2) − 𝑇𝑖7 ⋅ 𝑢

(1)
0 (𝐿2)

+
𝑏𝑉 𝑓1113(ℎ1 + ℎ2)

2𝛼
= 𝑘 ⋅𝑤(3)

3 (𝐿2)

(96)

The deformation compatibility conditions at the conjunction of the
direct and inverse electro-mechanical problem are the same and already
shown in Eq. (75). The cantilever boundary conditions are also given
in Eqs. (76).

Thus, according to the equilibrium of forces conditions, the defor-
mation compatibility conditions and the cantilever boundary condi-
tions, the deflection and axial displacement induced from the inverse
electro-mechanical process is obtained. The inverse electro-mechanical
response of the cantilever piezoelectric microbeam is determined. Sim-
ilarly, the inverse electro-mechanical problem of the piezoelectric mi-
crobeam under other boundary conditions can also be solved.

6. Results and discussions

The size-dependent electro-mechanical analysis of the piezoelectric
microbeam is performed. The material of lower beam is silicon. The ma-
terial parameters are 𝐸 = 130 Gpa. 𝜈 = 0.35. The geometric parameters
9

1 1
Fig. 3. Size effects of the deflection of the cantilever beam with 𝑇𝑅 = 0.2, 𝐿𝑅 = 0.6
nd 𝐿1 + 𝐿2 = 𝐿.

atisfy: 𝐿 = 25ℎ1, 𝑏1 = 2ℎ1. The material of upper beam is BaTio3. The
material parameters are 𝑐11 = 131 Gpa. 𝜈2 = 0.3, 𝜖0 = 8.85×10−15 F/ μm,
𝛼33 = 0.79×108 V m/C, 𝑏33 = 1×10−9 J m3/C2, 𝑑31 = 1.87×108 V/m [66].
The flexoelectric coefficients are 𝑓1113 = 𝑓3311 = 𝑓3113 = 5𝑉 [3].
The thickness of upper layer is ℎ2. The width of upper layer satisfies:
𝑏2 = 𝑏1. The total thickness of the beam is ℎ = ℎ1 + ℎ2. We define 𝑇𝑅
as the thickness ratio, 𝑇𝑅 = ℎ2∕ℎ1. 𝐿𝑅 is defined as the length ratio,
𝐿𝑅 = (𝐿2 − 𝐿1)∕𝐿. In addition, the length parameters satisfy: 𝑙𝑖(1) = 𝑙,
𝑙𝑖(2) = 0.5𝑙(𝑖 = 0, 1, 2), 𝑙 = 0.428 μm [68]. The uniformly distributed load
𝑞 = 10 μN/m. The external voltage is 𝑉 = 20 V.

The deflection of present model with different strain gradient elas-
ticity and laminated region geometric parameters is shown in Fig. 2.
From the figure, it can be seen that the present model with only the
general or simplified strain gradient elasticity can respectively reduce
to the general or simplified strain gradient monolayer beam model
without surface effects in Ref. [25] when the laminated region geomet-
ric parameters satisfy 𝑇𝑅 = 0, 𝐿𝑅 = 1. Moreover, when the laminated
region geometric parameters satisfy 𝑇𝑅 = 1, 𝐿𝑅 = 0.6, by ignoring the
electric elasticity, the present model with only general strain gradient
elasticity reduces to the elastic partially covered laminated beam model
in Ref. [68]. When the laminated region geometric parameters satisfy
𝑇𝑅 = 0.2, 𝐿𝑅 = 1, the present model without electric elasticity reduces
to the general strain gradient bilayer beam model in Ref. [68].

The comparison of the deflection of the non-classical model and
classical model is shown in Fig. 3. 𝑤(𝐿) is the deflection of the non-
classical model. 𝑤 (𝐿) is the deflection of the classical model. It can be
𝑐
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Fig. 4. Size effects of the collected charge of the cantilever beam with 𝑇𝑅 = 0.2,
𝑅 = 0.6 and 𝐿1 + 𝐿2 = 𝐿.

een that the deflections of the non-classical models decrease gradually
ith the decrease of the ratio of the thickness and the length parame-

ers, and thus show size dependency obviously. However, the deflection
f the classical model is independent of the ratio. The flexoelectric
lasticity theories with the strain gradient elasticity can describe the
ize-dependent behaviour of the deflection while the classical piezo-
lectric elasticity theory fails to explain the size effects. Moreover,
ompared with the flexoelectric elasticity theory with the general strain
radient elasticity, the simplified flexoelectric elasticity theories with
he approximated strain gradient elasticity predict larger deflection.
he simplified flexoelectric elasticity theories include only part of strain
radients and thus underestimate the size effects.

The collected charge induced from the direct electro-mechanical
rocess is shown in Fig. 4. 𝑄 is the collected charge of the non-classical
odel. 𝑄𝑐 is the collected charge of the classical model. From the

igure, the collected charge of the non-classical model is dependent
n the ratio of the thickness and the length parameters, and varies
ith the ratio. However, the collected charge of the classical model is

ndependent of the ratio. The limitations of the classical model is thus
evealed. In addition, it can be seen that the collected charge of the
lexoelectric elasticity theory with the general strain gradient elasticity
s much smaller than that of the simplified flexoelectric elasticity theo-
ies with the modified or simplified strain gradient elasticity. Compared
ith the general strain gradient elasticity, the modified or simplified

train gradient elasticity includes only part of strain gradients. The
implified strain gradient elasticity has less strain gradients than that
10

f the modified strain gradient elasticity. The bending stiffness of the p
eam with the modified strain gradient elasticity is largest while the
ollected charge induced from the bending process is smallest. The
lexoelectric elasticity theory with the general strain gradient elasticity
ncludes all strain gradients and thus can reflect the size effects more
ppropriately.

The polarization and electric potential induced from the direct
lectro-mechanical process are respectively shown in Fig. 5. 𝜉 = (𝑧 +
ℎ2 +

1
2ℎ1)∕ℎ2 is the dimensionless thickness. 𝜉 = 0 is the upper surface.

= 1 is the lower surface. The polarization and electric potential
istribute non-uniformly along the thickness direction. The polarization
aries obviously when the dimensionless parameter 𝜉 closes to the
urface of the piezoelectric layer while the electric potential decreases
long most part of the thickness. The direction of the electric potential
hanges due to the combined effects of the flexoelectricity and piezo-
lectricity. Moreover, compared with the flexoelectric elasticity theory
ith the general strain gradient elasticity, the polarization and electric
otential of the flexoelectric elasticity theories with the modified or
implified strain gradient elasticity are larger. Due to contain only
art of strain gradients, the bending stiffness of the microbeam of the
odified or simplified theories is smaller, the beam undergoes larger

ending deformation and produces stronger polarization and electric
otential. Compared with the flexoelectric elasticity theory with the
odified strain gradient elasticity, the polarization and electric poten-

ial of the flexoelectric elasticity theory with the general or simplified
train gradient elasticity is smaller or larger. Therefore, the simplified
lexoelectric elasticity theories with the approximated strain gradient
lasticity underestimate the size-dependent direct electro-mechanical
rocess.

The size effects of the induced polarization is shown in Fig. 6.
= (𝑧 + ℎ2 + 1

2ℎ1)∕ℎ2 is the dimensionless thickness. 𝜉 = 0 is the
upper surface. 𝜉 = 1 is the lower surface. The polarization increases
gradually with the increase of the dimensionless thickness ℎ∕𝑙, depends
on the dimensionless thickness ℎ∕𝑙 and thus exhibits size dependency.
When the dimensionless thickness ℎ∕𝑙 decreases, the effects from strain
gradient become obvious, the beam bending rigidity increases, the
bending deformation decreases, and thus the quantity of the induced
polarization decreases. When the dimensionless thickness ℎ∕𝑙 increases,
the effects from strain gradient become weak, the beam bending rigid-
ity decreases and the bending deformation increases, and thus the
quantity of the induced polarization increases. As shown in Fig. 5a,
when the dimensionless parameter 𝜉 satisfies 𝜉 = 0.5, the dimensionless
thickness ℎ∕𝑙 increases from 0.1 to 2, the induced polarization almost
increases by two times. In addition, it can be seen that the induced
polarization distributes non-uniformly along the thickness direction.
When the dimensionless parameter 𝜉 satisfies 0 < 𝜉 < 0.1 or 0.9 < 𝜉 <
1, the induced polarization varies obviously. When the dimensionless
parameter 𝜉 satisfies 0.1 < 𝜉 < 0.9, the induced polarization varies
lowly.

The effects of strain gradient elasticity and flexoelectricity on the

olarization induced from the direct electro-mechanical process are
Fig. 5. The polarization and electric potential at the midpoint of the cantilever beam induced from the direct electro-mechanical process with 𝑇𝑅 = 0.2, ℎ1 = 1 μm, 𝐿𝑅 = 0.6 and
1 + 𝐿2 = 𝐿.
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Fig. 6. Size effects of the polarization at the midpoint of the cantilever beam with
𝑅 = 0.2, 𝐿𝑅 = 0.6 and 𝐿1 + 𝐿2 = 𝐿.

shown in Fig. 7. 𝜉 = (𝑧 + ℎ2 +
1
2ℎ1)∕ℎ2 is the dimensionless thickness.

𝜉 = 0 is the upper surface. 𝜉 = 1 is the lower surface. The polarization
induced from the piezoelectricity decreases slightly along the thickness
direction. However, the polarization induced from the flexoelectric-
ity varies obviously when the dimensionless parameter 𝜉 closes to
the surface of the piezoelectric layer. The flexoelectricity affects the
polarization greatly and enhances the polarization of the surface of
the piezoelectric layer. Moreover, the effects from the strain gradient
elasticity on the induced polarization are significant. The inclusion of
strain gradient elasticity enhances the bending rigidity, weakens the
bending deformation, and reduces the induced polarization. As shown
in Figs. 6a and 6b, when the dimensionless parameter 𝜉 is 𝜉 = 0.5,
the induced polarization from the flexoelectricity and piezoelectric-
ity with strain gradient elasticity is almost 2% of that without the
strain gradient elasticity. Therefore, the strain gradient elasticity should
be considered to appropriately describe the size dependency of the
induced polarization.

The size dependency of the electric potential induced from the direct
electro-mechanical process is shown in Fig. 8. 𝜉 = (𝑧+ℎ2+

1
2ℎ1)∕ℎ2 is the

dimensionless thickness. 𝜉 = 0 is the upper surface. 𝜉 = 1 is the lower
surface. The electric potential decreases gradually with the decrease of
the dimensionless thickness ℎ∕𝑙, depends on the dimensionless thick-
ness ℎ∕𝑙 and shows size dependency. When the dimensionless thickness
ℎ∕𝑙 increases, the strain gradient effects decreases, the bending rigidity
decreases, and thus the induced electric potential increases. When
the dimensionless thickness ℎ∕𝑙 decreases, the strain gradient effects
increases, the bending rigidity increases, and thus the induced electric
potential decreases. As shown in Fig. 7a, when the dimensionless thick-
ness is 𝜉 = 0, the dimensionless thickness ℎ∕𝑙 increases from 5 to 10, the
nduced electric potential has almost increased by 2.4 times. Moreover,
t can be seen that the induced electric potential decreases gradually
11
along the most part of the thickness. However, when the dimensionless
parameter 𝜉 closes to the bottom surface of the piezoelectric layer,
the direction of the induced electric potential changes. The variation
of the direction of the induced electric potential is the results of the
superposition of the piezoelectricity and flexoelectricity.

The influence of strain gradient elasticity and flexoelectricity on
the induced electric potential is shown in Fig. 9. 𝜉 = (𝑧 + ℎ2 +
1
2ℎ1)∕ℎ2 is the dimensionless thickness. 𝜉 = 0 is the upper surface.
= 1 is the lower surface. From the figure, it can be seen that the

ariation law of the electric potential respectively induced from the
iezoelectricity and flexoelectricity along the dimensionless thickness
s different. The induced electric potential from the piezoelectricity
ecreases constantly along the dimensionless thickness. However, the
lectric potential induced from the flexoelectricity increases gradually
hen the dimensionless parameter 𝜉 satisfies 0 < 𝜉 < 0.1, and then
ecreases along the dimensionless thickness. The electric potential
nduced from the piezoelectricity is much larger than that induced
rom the flexoelectricity and piezoelectricity. Namely, the flexoelec-
ricity weakens the electric potential of the piezoelectric microbeam.
oreover, the induced electric potential is highly affected by strain

radient elasticity. When the strain gradient elasticity is considered,
he bending deformation is weakened and thus the induced electric
otential becomes smaller. As shown in Figs. 8a and 8b, when the
imensionless parameter 𝜉 is 𝜉 = 0.5, the induced electric potential from
he flexoelectricity and piezoelectricity with strain gradient elasticity is
lmost 2% of that without the strain gradient elasticity. Thus, the strain
radient elasticity should be included to estimate the size-dependent
esponse of the induced electric potential.

The bending deformation induced from the inverse electro-
echanical process is shown in Fig. 10. It can be seen that the induced
eflections from the simplified flexoelectric elasticity theories with
he approximated strain gradient elasticity are much larger than that
rom the flexoelectric elasticity theory with the general strain gradient
lasticity. As shown in Fig. 9a, when the dimensionless length is 𝑥∕𝐿 =
, the deflection induced from the flexoelectric elasticity theory with
he simplified strain gradient elasticity and the flexoelectric elasticity
heory with the modified strain gradient elasticity is almost 3.5 times
nd 2 times than that from the flexoelectric elasticity theory with
he general strain gradient elasticity, respectively. This implies that
ompared with the general theory, the simplified theories with only
art of the strain gradients underestimate the size-dependent inverse
lectro-mechanical response.

The deflection of the piezoelectric microbeam induced from the
ifferent inverse electro-mechanical mechanism is shown in Fig. 11. It
an be seen that the deflection induced from the inverse piezoelectric
echanism is much larger than that from the inverse flexoelectric
echanism. As shown in Fig. 10a, when the dimensionless length is
∕𝐿 = 1, the deflection induced from the piezoelectricity is almost
0 times than that from the flexoelectricity. In addition, it should be
oted that the induced deflection from the piezoelectricity is almost
ame as that from the piezoelectricity and flexoelectricity. This implies
Fig. 7. Influence of the strain gradient elasticity and flexoelectricity on the polarization at the midpoint of the cantilever beam with 𝑇𝑅 = 0.2, ℎ1 = 1 μm, 𝐿𝑅 = 0.6 and 𝐿1+𝐿2 = 𝐿.



Composite Structures 321 (2023) 117225G. Fu et al.

w

G
t
Z
F
W

D

c
i

D

A

(
o
P
t
t ,
2
t
A
L
a
i

Fig. 8. Size effects of the electric potential at the midpoint of the cantilever beam
ith 𝑇𝑅 = 0.2, 𝐿𝑅 = 0.6 and 𝐿1 + 𝐿2 = 𝐿.

that compared with the flexoelectricity, the piezoelectricity is predom-
inant on the inverse electro-mechanical process of the piezoelectric
microbeam when the beam thickness is in micron range.

The size effects of the deflection induced from the inverse electro-
mechanical process is shown in Fig. 12. 𝑤(𝐿) is the deflection of the
non-classical model. 𝑤𝑐 (𝐿) is the deflection of the classical model. As
the decrease of the ratio of the thickness and the length parameters,
the dimensionless deflection decreases gradually, thus shows size de-
pendency obviously. When the ratio is small enough, the dimensionless
deflection of the non-classical model is much smaller than that of the
classical model. When the ratio is large enough, the dimensionless
deflection of the non-classical model is constant and independent of
the variation of the ratio. The effectiveness of the non-classical model
and the limitation of the classical model is simultaneously revealed via
the inverse electro-mechanical problem.

The bending direction of the piezoelectric microbeam under differ-
ent external voltage is shown in Fig. 13. The direction of the deflection
induced from the inverse electro-mechanical process is dependent on
the positive or negative of the external voltage. When the external
voltage is applied at the surface layer of the piezoelectric layer, due to
the inverse piezoelectric/flexoelectric process, the equivalent bending
moment will produce at the ends of the piezoelectric layer. From
the classical moment equilibrium conditions in Eqs. (95), it can seen
that the equivalent bending moments induced from the inverse flex-
oelectric process and inverse piezoelectric process are 𝑏𝑉 𝑓3113∕𝛼 and
𝑏𝑉 𝑑31(ℎ1+ℎ2)∕2𝛼, respectively. The positive or negative of the external
voltage affects the direction of the equivalent bending moment, and
thus determines the bending direction of the beam. For a cantilever
piezoelectric microbeam, if the external voltage is positive, then the
negative equivalent bending moment is generated at the ends of the
piezoelectric layer, and makes the beam bend downward. When the
external voltage is negative, then the positive equivalent bending mo-
ment is generated at the ends of the piezoelectric layer, and makes the
beam bend upward.

7. Conclusions

In this paper, the general strain gradient elasticity with three inde-
pendent material length-scale parameters is incorporated into the flexo-
electric elasticity theory. The degeneration analysis of the flexoelectric
elasticity theory with the general strain gradient elasticity is performed.
By neglecting some strain gradients, the flexoelectric elasticity theory
with the general strain gradient elasticity can reduce to the simpli-
fied flexoelectric elasticity theory with the approximated strain gradi-
ent elasticity including the modified strain gradient elasticity and the
12
simplified strain gradient elasticity. Subsequently, the direct/inverse
electro-mechanical analysis of the laminated microbeam with a par-
tially covered piezoelectric layer under the uniformly distributed load
and external voltage is performed.

For the direct electro-mechanical analysis, the collected charge, the
polarization, the electric potential increase with the increase of the
ratio of the thickness and length parameters, and show size dependency
apparently. Compared with the general theory, the simplified theories
predict larger collected charge, polarization and electric potential, and
underestimate the direct electro-mechanical response. The polarization
induced from the piezoelectricity decreases slowly along the thickness
direction while the polarization induced from the flexoelectricity de-
creases obviously at the surface of the piezoelectric layer. The electric
potential induced from the piezoelectricity decreases more obvious
than that induced from the flexoelectricity. The flexoelectricity en-
hances the polarization while weakens the electric potential of the
piezoelectric microbem. For the inverse electro-mechanical analysis,
the deflection relies on the ratio of the thickness and length parameters,
and decreases with the decrease of the ratio. Compared with the general
theory, the simplified theories predict larger deflection, and underesti-
mate the inverse electro-mechanical response. The deflection induced
from the piezoelectricity is larger than that from the flexoelectricity.
The flexoelectricity along hardly affects the deflection of the piezo-
electric microbem when the thickness is in micron range. Moreover,
the strain gradient elasticity greatly weakens the direct/inverse electro-
mechanical response when the thickness is comparable to the material
length-scale parameters. The limitations of this study include the ideal
interface contact conditions and the simple geometry. In the future, we
will devote to study the more complicated case that the multiphysics
field response of the laminated structure with a partially covered smart
layer under the imperfect interface contact conditions. We hope a more
firm conclusions can be formulated and offer theoretical basis for the
design of the partially covered laminated structure-based microdevice.
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Fig. 9. Influence of the strain gradient elasticity and flexoelectricity on the electric potential induced from the direct electro-mechanical problem at the midpoint of the cantilever
eam with 𝑇𝑅 = 0.2, ℎ1 = 1 μm, 𝐿𝑅 = 0.6 and 𝐿1 + 𝐿2 = 𝐿.
Fig. 10. The deflection of the cantilever beam induced from the inverse electro-
mechanical process with 𝑇𝑅 = 0.2, ℎ1 = 1 μm, 𝐿𝑅 = 0.6 and 𝐿1 + 𝐿2 =
𝐿.

Fig. 11. Influence of the flexoelectricity and piezoelectricity on the induced deflection
f the cantilever beam with 𝑇𝑅 = 0.2, ℎ1 = 1 μm, 𝐿𝑅 = 0.6 and 𝐿1 + 𝐿2 = 𝐿.
13
Fig. 12. Size effects of the induced deflection of the cantilever beam with 𝑇𝑅 = 0.2,
𝐿𝑅 = 0.6 and 𝐿1 + 𝐿2 = 𝐿.

Fig. 13. The bending direction of the cantilever beam under different external voltage
with 𝑇𝑅 = 0.2, ℎ1 = 1 μm, 𝐿𝑅 = 0.6 and 𝐿1 + 𝐿2 = 𝐿.
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Appendix A

The formulation of the laminated region (𝐿1 < 𝑥 < 𝐿2) after the
ariation are shown as follows

∫

𝐿2

𝐿1

[𝐴3 ⋅𝑤
(4) − 𝐴6 ⋅𝑤

(6) + 𝐴5 ⋅ 𝑢
(5)
0 − 𝐴2 ⋅ 𝑢

(3)
0 + ∫𝐴(2)

[ − 𝑓3113
𝑑2𝑃3

𝑑𝑥2

+ 𝑓3311𝑧
𝑑3𝑃3

𝑑𝑥2𝑑𝑧
+ 𝑓1113

𝑑3𝑃3

𝑑𝑥3
𝑧 − 𝑑113𝑧

𝑑2𝑃3

𝑑𝑥2
]𝑑𝐴(2) − 𝑞(𝑥)]𝛿𝑤𝑑𝑥

+ [ − 𝐴3 ⋅𝑤
(3) + 𝐴6 ⋅𝑤

(5) − 𝐴5 ⋅ 𝑢
(4)
0 + 𝐴2 ⋅ 𝑢

(2)
0 + ∫𝐴(2)

[𝑓3113
𝑑𝑃3
𝑑𝑥

− 𝑓3311𝑧
𝑑2𝑃3
𝑑𝑥𝑑𝑧

− 𝑓1113
𝑑2𝑃3

𝑑𝑥2
𝑧 + 𝑑113𝑧

𝑑𝑃3
𝑑𝑥

]𝑑𝐴(2) − 𝑉 ]𝛿𝑤|

𝐿2
𝐿1

+ [𝐴3 ⋅𝑤
(2)

− 𝐴6 ⋅𝑤
(4) + 𝐴5 ⋅ 𝑢

(3)
0 − 𝐴2 ⋅ 𝑢

(1)
0 + ∫𝐴(2)

[ − 𝑓3113𝑃3 + 𝑓3311𝑧
𝑑𝑃3
𝑑𝑧

+ 𝑓1113
𝑑𝑃3
𝑑𝑥

𝑧 − 𝑑113𝑧𝑃3]𝑑𝐴(2) −𝑀]𝛿𝑤(1)
|

𝐿2
𝐿1

+ [𝐴6 ⋅𝑤
(3) − 𝐴5 ⋅ 𝑢

(2)
0

− 𝑓1113𝑧𝑃3 −𝑀ℎ]𝛿𝑤(2)
|

𝐿2
𝐿1

+ ∫

𝐿1

0
[𝐴2 ⋅𝑤

(3) − 𝐴5 ⋅𝑤
(5) + 𝐴4 ⋅ 𝑢

(4)
0

− 𝐴1 ⋅ 𝑢
(2)
0 + ∫𝐴(2)

[𝑓1113
𝑑2𝑃3

𝑑𝑥2
+ 𝑓3311

𝑑2𝑃3
𝑑𝑥𝑑𝑧

− 𝑑113
𝑑𝑃3
𝑑𝑥

]𝑑𝐴(2)]𝛿𝑢0𝑑𝑥

+ [ − 𝐴2 ⋅𝑤
(2) + 𝐴5 ⋅𝑤

(4) − 𝐴4 ⋅ 𝑢
(3)
0 + 𝐴1 ⋅ 𝑢

(1)
0 + ∫𝐴(2)

[ − 𝑓1113
𝑑𝑃3
𝑑𝑥

− 𝑓3311
𝑑𝑃3
𝑑𝑧

+ 𝑑113𝑃3]𝑑𝐴(2)]𝛿𝑢0|
𝐿2
𝐿1

+ [ − 𝐴5 ⋅𝑤
(3) + 𝐴4 ⋅ 𝑢

(2)
0 + 𝑓1113𝑃3

𝛿𝑢(1)0 |

𝐿2
𝐿1

+ 𝑏∫

𝐿1

0 ∫

− ℎ1
2

−(ℎ2+
ℎ1
2 )

[𝛼𝑃3 − 𝑏33
𝑑2𝑃3

𝑑𝑧2
+ 𝑓1113(𝑢

(2)
0 − 𝑧𝑤(3))

− 𝑓3113𝑤
(2) − 𝑓3311𝑤

(2) +
𝑑𝜑
𝑑𝑧

+ 𝑑113(𝑢
(1)
0 − 𝑧𝑤(2))]𝛿𝑃3𝑑𝑧𝑑𝑥

+ 𝑏∫

𝐿2

𝐿1
∫

− ℎ1
2

−(ℎ2+
ℎ1
2 )
[−𝜀0

𝑑2𝜑
𝑑𝑧2

+
𝑑𝑃3
𝑑𝑧

]𝛿𝜑3𝑑𝑧𝑑𝑥 + [𝑏33
𝑑𝑃3
𝑑𝑧

+ 𝑓3311𝑧𝑤
(2)

− 𝑓3311𝑢
(1)
0 ]𝛿𝑃3|

− ℎ1
2

−(ℎ2+
ℎ1
2 )

+ [−𝜀0
𝑑𝜑
𝑑𝑧

+ 𝑃3]𝛿𝜑3|
− ℎ1

2

−(ℎ2+
ℎ1
2 )

= 0

(A.1)

Appendix B

The unknown constants 𝑐𝑛(𝑛 = 1, 2, 3, 4, 5) in the Eqs. (52) and (53)
re determined as follows

𝑠 = 𝑒𝑔(ℎ2−
ℎ1
2 ) − 𝑒−𝑔(ℎ2+

ℎ1
2 ) (B.1)

𝐵𝑠 = 𝑒𝑔(ℎ2+
ℎ1
2 ) − 𝑒𝑔(

ℎ1
2 −ℎ2) (B.2)

1𝑓 =
2𝑓3113𝜀0
(1 + 𝛼𝜀0)

𝑤(2) −
𝑓1113𝜀0
(1 + 𝛼𝜀0)

𝑢(2)0 (B.3)

𝑐1𝑝 = −
𝑑31𝜀0

(1 + 𝛼𝜀0)
𝑢(1)0 (B.4)

𝑐2𝑓 =
𝑓1113𝜀0

𝑔(1 + 𝛼𝜀0)
(1 − 𝑒𝑔ℎ2 )𝐴𝑠𝑤

(3) +
ℎ1
2 𝑓3311𝑔𝜀0
(1 + 𝛼𝜀0)

𝑒𝑔ℎ2𝐴𝑠𝑤
(2)

−
(ℎ2 +

ℎ1
2 )𝑓3311𝑔𝜀0

(1 + 𝛼𝜀0)
𝐴𝑠𝑤

(2) +
𝑓3311𝑔𝜀0
(1 + 𝛼𝜀0)

(𝑒𝑔ℎ2 − 1)𝐴𝑠𝑢
(1)
0

(B.5)

𝑐2𝑝 =
𝑑31𝜀0

𝑔(1 + 𝛼𝜀0)
(1 − 𝑒𝑔ℎ2 )𝐴𝑠𝑤

(2) (B.6)

𝑐3𝑓 =
𝑓1113𝜀0

𝑔(1 + 𝛼𝜀0)
(1 − 𝑒−𝑔ℎ2 )𝐵𝑠𝑤

(3) +
ℎ1
2 𝑓3311𝑔𝜀0
(1 + 𝛼𝜀0)

𝑒−𝑔ℎ2𝐵𝑠𝑤
(2)

−
(ℎ2 +

ℎ1
2 )𝑓3311𝑔𝜀0

(1 + 𝛼𝜀0)
𝐵𝑠𝑤

(2) +
𝑓3311𝑔𝜀0
(1 + 𝛼𝜀0)

(𝑒−𝑔ℎ2 − 1)𝐵𝑠𝑢
(1)
0

(B.7)

𝑐3𝑝 =
𝑑31𝜀0 (1 − 𝑒−𝑔ℎ2 )𝐵𝑠𝑤

(2) (B.8)
14

𝑔(1 + 𝛼𝜀0)
4𝑓 =
𝑓1113𝑏33𝜀0
(1 + 𝛼𝜀0)2

𝑤(3) −
𝑓1113ℎ21

8(1 + 𝛼𝜀0)
𝑤(3) +

𝑓3311
ℎ1
2

(1 + 𝛼𝜀0)
𝑤(2)

−
𝑓1113

ℎ1
2

(1 + 𝛼𝜀0)
𝑢(2)0 −

𝑓3311
(1 + 𝛼𝜀0)

𝑢(1)0

(B.9)

𝑐4𝑝 =
𝑑31𝑏33𝜀0
(1 + 𝛼𝜀0)2

𝑤(2) −
𝑑31ℎ21

8(1 + 𝛼𝜀0)
𝑤(2) −

ℎ1
2 𝑑31

(1 + 𝛼𝜀0)
𝑢(1)0

(B.10)

𝑐5𝑓 =
2𝑓3113

(1 + 𝛼𝜀0)
𝑤(2) −

𝑓1113
(1 + 𝛼𝜀0)

𝑢(2)0 (B.11)

𝑐5𝑝 = −
𝑑31

(1 + 𝛼𝜀0)
𝑢(1)0 (B.12)

The unknown constants 𝑐𝑛(𝑛 = 1, 2, 3, 4, 5) are determined as

𝑐1 = 𝑐1𝑓 + 𝑐1𝑝 𝑐2 = 𝑐2𝑓 + 𝑐2𝑝 𝑐3 = 𝑐3𝑓 + 𝑐3𝑝
𝑐4 = 𝑐4𝑓 + 𝑐4𝑝 𝑐5 = 𝑐5𝑓 + 𝑐5𝑝

(B.13)

Here, 𝑐𝑖𝑓 and 𝑐𝑖𝑝(𝑖 = 1, 2, 3, 4, 5) are respectively the coefficients associ-
ated with the flexoelectric effects and piezoelectric effects.

Appendix C

The parameters 𝑇𝑛(𝑛 = 1, 2,… , 14) in direct electro-mechanical
governing equations of Eqs. (58)–(59) and boundary conditions of
Eqs. (60)–(65) are given as follows.

𝑇1 =
𝑏𝑓 2

3311𝑔𝜀0ℎ1(ℎ2 +
ℎ1
2 )

(1 + 𝛼𝜀0)
𝐴𝑠7 +

𝑏𝑓 2
3311𝑔𝜀0(ℎ

2
2 + ℎ1ℎ2 +

ℎ21
2 )

(1 + 𝛼𝜀0)
𝐴𝑠8

+ (
𝑏𝑓3311𝑑31𝜀0(ℎ2 + ℎ1)

𝑔(1 + 𝛼𝜀0)
−

𝑏𝑑231𝜀0
𝑔3(1 + 𝛼𝜀0)

)𝐴𝑠9 +
𝑏𝑑231ℎ2𝜀0
𝑔2(1 + 𝛼𝜀0)

+
𝑏𝑑231𝜀0

(1 + 𝛼𝜀0)
[
−ℎ31
24

+
(ℎ2 +

1
2ℎ1)

3

3
]

(C.1)

𝑇2 = −
𝑏𝑓 2

1113ℎ2𝜀0
𝑔2(1 + 𝛼𝜀0)

+
𝑏𝑓 2

1113𝜀0
(1 + 𝛼𝜀0)

[
−ℎ31
24

+
(ℎ2 +

1
2ℎ1)

3

3
]

+
𝑏𝑓 2

1113𝜀0
𝑔3(1 + 𝛼𝜀0)

𝐴𝑠9

(C.2)

3 =
𝑏𝑓 2

1113ℎ2𝜀0(ℎ2 + ℎ1)
2(1 + 𝛼𝜀0)

(C.3)

𝑇4 =
2𝑏𝑓1113𝑓3113𝜀0ℎ2

(1 + 𝛼𝜀0)
−

𝑏𝑓1113𝑓3311𝜀0
𝑔(1 + 𝛼𝜀0)

𝐴𝑠9 (C.4)

𝑇5 = −1
2
𝑏𝑔𝑓 2

3311𝜀0(ℎ2 + ℎ1)
(1 + 𝛼𝜀0)

𝐴𝑠9 −
𝑏𝑑231𝜀0ℎ2(ℎ2 + ℎ1)

2(1 + 𝛼𝜀0)

−
𝑏𝑓3311𝜀0𝑑31
𝑔(1 + 𝛼𝜀0)

𝐴𝑠9

(C.5)

6 = (−1
2
𝑏𝑓3311𝑓1113𝜀0(ℎ2 + ℎ1)

𝑔(1 + 𝛼𝜀0)
+

𝑏𝑑31𝑓1113𝜀0
𝑔3(1 + 𝛼𝜀0)

)𝐴𝑠9 −
𝑏𝑑31𝑓1113ℎ2𝜀0
𝑔2(1 + 𝛼𝜀0)

+
𝑏𝑑31𝑓1113𝜀0
(1 + 𝛼𝜀0)

[
−ℎ31
24

+
(ℎ2 +

1
2ℎ1)

3

3
]

(C.6)

7 =
𝑏𝑓1113𝑑31𝜀0ℎ2(ℎ1 + ℎ2)

2(1 + 𝛼𝜀0)
+

𝑏𝑓1113𝑓3311𝜀0ℎ2
(1 + 𝛼𝜀0)

−
𝑏𝑓1113𝑓3311𝜀0
𝑔(1 + 𝛼𝜀0)

𝐴𝑠9

(C.7)

8 = (1
2
𝑏𝑔𝑓 2

3311𝜀0(ℎ2 + ℎ1)
(1 + 𝛼𝜀0)

−
𝑏𝑑31𝑓3311𝜀0
𝑔(1 + 𝛼𝜀0)

)𝐴𝑠9 +
𝑏𝑑231𝜀0ℎ2(ℎ2 + ℎ1)

2(1 + 𝛼𝜀0)

(C.8)

𝑇9 = −
𝑏𝑓 2

1113𝜀0ℎ2(ℎ2 + ℎ1) (C.9)

2(1 + 𝛼𝜀0)
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𝑇

𝑇

𝑇

𝑇

𝐴

𝐴

𝐴

A

r
D

𝐵

𝐵

T
t

𝐶

𝑇10 =
2𝑏𝑓1113𝑓3311𝜀0ℎ2

(1 + 𝛼𝜀0)
−

𝑏𝑓1113𝑓3311𝜀0
𝑔(1 + 𝛼𝜀0)

𝐴𝑠9 (C.10)

11 = −
𝑏𝑓 2

1113𝜀0ℎ2
(1 + 𝛼𝜀0)

(C.11)

12 =
𝑏𝑔𝑓 2

3311𝜀0
(1 + 𝛼𝜀0)

𝐴𝑠9 +
𝑏𝑑231𝜀0ℎ2
(1 + 𝛼𝜀0)

(C.12)

13 =
𝑏𝑓3311𝑓1113𝜀0ℎ2

(1 + 𝛼𝜀0)
−

𝑏𝑑31𝑓1113𝜀0ℎ2(ℎ2 + ℎ1)
2(1 + 𝛼𝜀0)

(C.13)

14 = −
𝑏𝑑31𝑓1113𝜀0ℎ2

(1 + 𝛼𝜀0)
(C.14)

In Eqs. (C.1)–(C.2), (C.4)–(C.8), (C.10) and (C.12), the parameters
𝑠𝑛(𝑛 = 7, 8, 9) are defined as follows

𝑠7 =
2

(𝑒𝑔ℎ2 − 𝑒−𝑔ℎ2 )
𝐴𝑠8 =

(𝑒−𝑔ℎ2 + 𝑒𝑔ℎ2 )
(𝑒−𝑔ℎ2 − 𝑒𝑔ℎ2 )

𝑠9 =
2(−𝑒−𝑔ℎ2 − 𝑒𝑔ℎ2 + 2)

(𝑒−𝑔ℎ2 − 𝑒𝑔ℎ2 )

(C.15)

ppendix D

The deflection and axial displacement solution for the laminated
egion (𝐿1 < 𝑥 < 𝐿2) in Eqs. (66) and (67) are derived as follows.
efine the operator 𝐷 as 𝐷 = 𝑑∕𝑑𝑥, then the mechanical governing

equations in Eqs. (58) and (59) can be written as

(𝑎3𝐷4 + 𝑎6𝐷
6)𝑤 + (𝑎5𝐷5 + 𝑇4𝐷

4 + 𝑎7𝐷
3)𝑢0 = 𝑞 (D.1)

(𝑎2𝐷3 + 𝑇10𝐷
4 + 𝑎8𝐷

5)𝑤 + (𝑎4𝐷4 + 𝑎1𝐷
2)𝑢0 = 0 (D.2)

According to the Eqs. (D.1) and (D.2), the following equation with only
deflection parameter is derived as

(𝑚1𝐷
4 + 𝑚2𝐷

3 + 𝑚3𝐷
2 + 𝑚4𝐷 + 𝑚5)𝐷6𝑤 = 0 (D.3)

The solution 𝑤(𝑥) of Eq. (D.3) is written as

𝑤 = 𝑤𝑠1 +𝑤𝑠2 (D.4)

The deflection 𝑤𝑠1 satisfies the following equation

𝐷6𝑤𝑠1 = 0 (D.5)

Based on the reduction method, the deflection 𝑤𝑠1 is derived as

𝑤𝑠1 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3 + 𝑐4𝑥
4 + 𝑐5𝑥

5 (D.6)

where 𝑐𝑛(𝑛 = 1, 2, 3, 4, 5) are the constants to be determined. The
deflection 𝑤𝑠2 satisfies the following equation

(𝑚1𝐷
4 + 𝑚2𝐷

3 + 𝑚3𝐷
2 + 𝑚4𝐷 + 𝑚5)𝑤𝑠2 = 0 (D.7)

Let 𝑤𝑠2 = 𝑒𝑟𝑥, then the Eq. (D.7) becomes

𝑚1𝑟
4 + 𝑚2𝑟

3 + 𝑚3𝑟
2 + 𝑚4𝑟 + 𝑚5 = 0 (D.8)

The parameters 𝑚𝑖(𝑖 = 1, 2, 3, 4, 5) are already given in the Eq. (69). To
solve the Eq. (D.8) conveniently, let 𝑟 = − 𝑚2

4𝑚1
+ 𝑦, then Eq. (D.8) is

written as

𝑦4 + 𝑃𝑦2 +𝑄𝑦 + 𝑅 = 0 (D.9)

The parameters 𝑃 , 𝑄 and 𝑅 are also given in the Eq. (69). Define
𝑦 = 𝐴1 +𝐴2 +𝐴3, we obtain the cubic equation about the parameter 𝐴2

as follows

𝐴6 + 1
2
𝑃𝐴4 + 1

16
(𝑃 2 − 4𝑅)𝐴2 − 1

64
𝑄2 = 0 (D.10)

Let 𝐴2 = − 1
6𝑃 + 𝐵, we derive the cubic equation about the parameter

without quadratic term as follows

3 − 𝑃 2 + 12𝑅𝐵 + 72𝑃𝑅 − 27𝑄2 − 2𝑃 3
= 0 (D.11)
15

48 1728
o solve the Eq. (D.11) conveniently, let 𝐵 = 𝐶1 + 𝐶2, then we obtain
he quadratic equation about the parameter 𝐶3 as follows

6 + 72𝑃𝑅 − 27𝑄2 − 2𝑃 3

1728
𝐶3 + (𝑃

2 + 12𝑅
144

)3 = 0 (D.12)

Based on the Eq. (D.12), we obtain the following equation

𝐴2 = −𝑃
6
+ 3
√

𝑚7 +
√

𝑚8 +
3
√

𝑚7 −
√

𝑚8 (𝑖𝑓 𝑚8 ≥ 0)

𝑜𝑟

𝐴2 = −𝑃
6
+ ( 1

6

√

𝑃 2 + 12𝑅)𝑐𝑜𝑠( 1
3
𝑎𝑟𝑐𝑠𝑖𝑛(

√

(1 − 𝑚7 −
𝑚8
𝑚7

)))

(𝑖𝑓 𝑚8 < 0)

(D.13)

The parameters 𝑚𝑖(𝑖 = 7, 8) are given in the Eq. (69). Considering the
relation 𝑟 = − 𝑚2

4𝑚1
+ 𝑦 and 𝑦 = 𝐴1 + 𝐴2 + 𝐴3, after some transformation

and simplification, we obtain the following equations

𝑟1 = −
𝑚2
4𝑚1

+
√

𝑚6 +

√

−𝑚6 −
𝑃
2
+ 2

√

𝑚2
6 +

1
2
𝑃𝑚6 +

1
16

(𝑃 2 − 4𝑅)

𝑟2 = −
𝑚2
4𝑚1

+
√

𝑚6 −

√

−𝑚6 −
𝑃
2
+ 2

√

𝑚2
6 +

1
2
𝑃𝑚6 +

1
16

(𝑃 2 − 4𝑅)

𝑟3 = −
𝑚2
4𝑚1

−
√

𝑚6 +

√

−𝑚6 −
𝑃
2
− 2

√

𝑚2
6 +

1
2
𝑃𝑚6 +

1
16

(𝑃 2 − 4𝑅)

𝑟4 = −
𝑚2
4𝑚1

−
√

𝑚6 −

√

−𝑚6 −
𝑃
2
− 2

√

𝑚2
6 +

1
2
𝑃𝑚6 +

1
16

(𝑃 2 − 4𝑅)

(𝑖𝑓 𝑚8 ≥ 0)

(D.14)

Therefore, according to the Eqs. (D.7), (D.8) and (D.14), the deflection
𝑤𝑠2 is written as

𝑤𝑠2 = 𝑐6𝑒
𝑟1𝑥 + 𝑐7𝑒

𝑟2𝑥 + 𝑐8𝑒
𝑟3𝑥 + 𝑐9𝑒

𝑟4𝑥 (D.15)

where 𝑐𝑛(𝑛 = 6, 7, 8, 9) are constants to be determined.
Based on the Eqs. (D.4), (D.6) and (D.15), the deflection 𝑤(𝑥) is

written as

𝑤(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3 + 𝑐4𝑥
4 + 𝑐5𝑥

5 + 𝑐6𝑒
𝑟1𝑥 + 𝑐7𝑒

𝑟2𝑥

+ 𝑐8𝑒
𝑟3𝑥 + 𝑐9𝑒

𝑟4𝑥
(D.16)

Then, inserting Eq. (D.16) into Eq. (D.1), using the similar method, we
can derive the axial displacement 𝑢0 as

𝑢0 = 𝑐10 + 𝑐11𝑥 + 𝑐12𝑥
2 + 𝑐14𝑒

𝑟5𝑥 + 𝑐15𝑒
𝑟6𝑥 −

5𝑎3𝑐5
𝑎7

𝑥4 + (
𝑞 − 24𝑎3𝑐4

6𝑎7

−
20𝑇6𝑎3𝑐5

𝑎27
)𝑥3 +

(−𝑎3𝑟41 − 𝑎6𝑟61)

(−𝑎8𝑟51 + 𝑇4𝑟41 + 𝑎7𝑟31)
𝑐6𝑒

𝑟1𝑥

+
(−𝑎3𝑟42 − 𝑎6𝑟62)

(−𝑎8𝑟52 + 𝑇4𝑟42 + 𝑎7𝑟32)
𝑐7𝑒

𝑟2𝑥 +
(−𝑎3𝑟43 − 𝑎6𝑟63)

(−𝑎8𝑟53 + 𝑇4𝑟43 + 𝑎7𝑟33)
𝑐8𝑒

𝑟3𝑥

+
(−𝑎3𝑟44 − 𝑎6𝑟64)

(−𝑎8𝑟54 + 𝑇4𝑟44 + 𝑎7𝑟34)
𝑐9𝑒

𝑟4𝑥

(D.17)

with

𝑟5 =
−𝑇4 +

√

𝑇 2
4 − 4𝑎5𝑎7

2𝑎5
𝑟6 =

−𝑇4 −
√

𝑇 2
4 − 4𝑎5𝑎7

2𝑎5
(D.18)

According to the Eqs. (D.1), (D.2), (D.16) and (D.17), the relations
among the undetermined constants 𝑐𝑛(𝑛 = 1, 2, 3,… , 15) are confirmed,
thus the deflection and axial displacement solution for the mechanical
governing equations in Eqs. (58) and (59) are determined and shown
in Eqs. (66) and (67), respectively.
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Appendix E

The unknown constants 𝑏𝑛(𝑛 = 1, 2, 3, 4, 5) in the Eqs. (83) and (84)
re determined as follows

1𝑓 = (
2𝑓3113

𝛼
−

𝑓3311
𝛼(1 + 𝛼𝜀0)

)𝑤(2) −
𝑓1113(ℎ1 + ℎ2)
2𝛼(1 + 𝛼𝜀0)

𝑤(3)

+ 𝑉
𝛼ℎ2

−
𝑓1113
𝛼

𝑢(2)0

(E.1)

𝑏1𝑝 = −
𝑑31(ℎ1 + ℎ2)
2𝛼(1 + 𝛼𝜀0)

𝑤(2) −
𝑑31
𝛼

𝑢(1)0 (E.2)

𝑏2𝑓 =
𝑓1113𝜀0

𝑔(1 + 𝛼𝜀0)
(1 − 𝑒𝑔ℎ2 )𝐴𝑠𝑤

(3) +
ℎ1
2 𝑓3311𝑔𝜀0
(1 + 𝛼𝜀0)

𝑒𝑔ℎ2𝐴𝑠𝑤
(2)

−
(ℎ2 +

ℎ1
2 )𝑓3311𝑔𝜀0

(1 + 𝛼𝜀0)
𝐴𝑠𝑤

(2) +
𝑓3311𝑔𝜀0
(1 + 𝛼𝜀0)

(𝑒𝑔ℎ2 − 1)𝐴𝑠𝑢
(1)
0

(E.3)

𝑏2𝑝 =
𝑑31𝜀0

𝑔(1 + 𝛼𝜀0)
(1 − 𝑒𝑔ℎ2 )𝐴𝑠𝑤

(2) (E.4)

𝑏3𝑓 =
𝑓1113𝜀0

𝑔(1 + 𝛼𝜀0)
(1 − 𝑒−𝑔ℎ2 )𝐵𝑠𝑤

(3) +
ℎ1
2 𝑓3311𝑔𝜀0
(1 + 𝛼𝜀0)

𝑒−𝑔ℎ2𝐵𝑠𝑤
(2)

−
(ℎ2 +

ℎ1
2 )𝑓3311𝑔𝜀0

(1 + 𝛼𝜀0)
𝐵𝑠𝑤

(2) +
𝑓3311𝑔𝜀0
(1 + 𝛼𝜀0)

(𝑒−𝑔ℎ2 − 1)𝐵𝑠𝑢
(1)
0

(E.5)

𝑏3𝑝 =
𝑑31𝜀0

𝑔(1 + 𝛼𝜀0)
(1 − 𝑒−𝑔ℎ2 )𝐵𝑠𝑤

(2) (E.6)

𝑏4𝑓 = (
𝑓1113𝑏33𝜀0
(1 + 𝛼𝜀0)2

+
𝑓1113ℎ1(2ℎ2 + ℎ1)

8(1 + 𝛼𝜀0)
)𝑤(3) −

𝑓3311
(1 + 𝛼𝜀0)

𝑢(1)0 −
𝑉 ℎ1
2ℎ2

(E.7)

𝑏4𝑝 = (
𝑑31𝑏33𝜀0
(1 + 𝛼𝜀0)2

+
𝑑31ℎ1(2ℎ2 + ℎ1)

8(1 + 𝛼𝜀0)
)𝑤(2) (E.8)

𝑏5𝑓 =
𝑓3311

(1 + 𝛼𝜀0)
𝑤(2) +

𝑓1113(ℎ2 + ℎ1)
2(1 + 𝛼𝜀0)

𝑤(3) − 𝑉
ℎ2

(E.9)

𝑏5𝑝 =
𝑑31(ℎ2 + ℎ1)
2(1 + 𝛼𝜀0)

𝑤(2) (E.10)

The unknown constants 𝑏𝑛(𝑛 = 1, 2, 3, 4, 5) are determined as

𝑏1 = 𝑏1𝑓 + 𝑏1𝑝 𝑏2 = 𝑏2𝑓 + 𝑏2𝑝 𝑏3 = 𝑏3𝑓 + 𝑏3𝑝
𝑏4 = 𝑏4𝑓 + 𝑏4𝑝 𝑏5 = 𝑏5𝑓 + 𝑏5𝑝

(E.11)

Here, 𝑏𝑖𝑓 and 𝑏𝑖𝑝(𝑖 = 1, 2, 3, 4, 5) are the coefficients associated with the
flexoelectric effects and piezoelectric effects, respectively .

Appendix F

The deflection and axial displacement solution for the laminated
region (𝐿1 < 𝑥 < 𝐿2) in Eqs. (66) and (67) are derived as follows.
Define the operator 𝐷 as 𝐷 = 𝑑∕𝑑𝑥, then the mechanical governing
equations in Eqs. (58) and (59) can be written as

𝑇𝑖1 = 𝑇1 −
2𝑏𝑓 2

3113ℎ2
𝛼

+
𝑏𝑓3113𝑓3311ℎ2
𝛼(1 + 𝛼𝜀0)

+
𝑏𝑑31𝑓3113ℎ2(ℎ1 + ℎ2)

𝛼

−
𝑏𝑑231(ℎ1 + ℎ2)2ℎ2

4𝛼(1 + 𝛼𝜀0)
−

𝑏𝑑31𝑓3311𝜀0ℎ2(ℎ1 + ℎ2)
2(1 + 𝛼𝜀0)

(F.1)

𝑖2 = 𝑇2 +
𝑏𝑓 2

1113ℎ2(ℎ1 + ℎ2)2

4𝛼(1 + 𝛼𝜀0)
(F.2)

𝑖3 =
𝑏𝑓 2

1113ℎ2(ℎ2 + ℎ1)
2𝛼

(F.3)

𝑖4 =
𝑏𝑓1113𝑓3311ℎ2(1 + 2𝛼𝜀0)

𝛼(1 + 𝛼𝜀0)
−

𝑏𝑓1113𝑓3311𝜀0
𝑔(1 + 𝛼𝜀0)

𝐴𝑠9 (F.4)

𝑇𝑖5 = −1
2
𝑏𝑔𝑓 2

3311𝜀0(ℎ2 + ℎ1)
(1 + 𝛼𝜀0)

𝐴𝑠9 +
𝑏𝑓3113𝑑31ℎ2

𝛼

−
𝑏𝑑231ℎ2(ℎ2 + ℎ1)

−
𝑏𝑓3311𝜀0𝑑31𝐴𝑠9

(F.5)
16

2𝛼 𝑔(1 + 𝛼𝜀0)
𝑇𝑖6 = (−1
2
𝑏𝑓3311𝑓1113𝜀0(ℎ2 + ℎ1)

𝑔(1 + 𝛼𝜀0)
+

𝑏𝑑31𝑓1113𝜀0
𝑔3(1 + 𝛼𝜀0)

)𝐴𝑠9

−
𝑏𝑑31𝑓1113ℎ2𝜀0
𝑔2(1 + 𝛼𝜀0)

+
𝑏𝑑31𝑓1113𝜀0
(1 + 𝛼𝜀0)

[
−ℎ31
24

+
(ℎ2 +

1
2ℎ1)

3

3
]

(F.6)

𝑇𝑖7 = 𝑇7 (F.7)

𝑇𝑖8 = 𝑇8 +
2𝑏𝑑31𝑓3311𝜀0ℎ2

(1 + 𝛼𝜀0)
−

2𝑏𝑑31𝑓3113ℎ2
𝛼

+
𝑏𝑑31𝑓3311ℎ2
𝛼(1 + 𝛼𝜀0)

+
𝑏𝑑231ℎ2(ℎ1 + ℎ2)
2𝛼(1 + 𝛼𝜀0)

(F.8)

𝑖9 = −
𝑏𝑓1113𝑑31ℎ2(ℎ2 + ℎ1)

2𝛼
(F.9)

𝑖10 =
2𝑏𝑓1113𝑓3113ℎ2

𝛼
−

𝑏𝑓3311𝑓1113ℎ2
𝛼(1 + 𝛼𝜀0)

−
𝑏𝑓1113𝑓3311𝜀0
𝑔(1 + 𝛼𝜀0)

𝐴𝑠9 (F.10)

𝑖11 = −
𝑏𝑓 2

1113ℎ2
𝛼

(F.11)

𝑇𝑖12 =
𝑏𝑔𝑓 2

3311𝜀0
(1 + 𝛼𝜀0)

𝐴𝑠9 +
𝑏𝑑231ℎ2

𝛼
(F.12)

𝑇𝑖13 = −
𝑏𝑓3311𝑓1113𝜀0ℎ2

(1 + 𝛼𝜀0)
−

𝑏𝑑31𝑓1113𝜀0ℎ2(ℎ2 + ℎ1)
2(1 + 𝛼𝜀0)

+
2𝑏𝑓3113𝑓1113ℎ2

𝛼
−

𝑏𝑓3311𝑓1113ℎ2
𝛼(1 + 𝛼𝜀0)

−
𝑏𝑓1113𝑑31ℎ2(ℎ2 + ℎ1)

2𝛼(1 + 𝛼𝜀0)

(F.13)

𝑖14 = −
𝑏𝑑31𝑓1113ℎ2

𝛼
(F.14)
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