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A B S T R A C T

In recent years, unmanned aerial vehicles (UAVs) have gained widespread use in both military and civilian
fields with the advancement of aviation technology and improved communication capabilities. However,
the phenomenon of unauthorized UAV flights, or ‘‘black flying’’, poses a serious threat to the safe flight of
aircraft in airspace and public safety. To effectively interfere with and attack UAV targets, it is crucial to
enhance the detection and identification of ‘‘low, slow and small’’ UAVs. This study focuses on achieving
high-precision and lightweight detection and identification of four-rotor, six-rotor, and fixed-wing UAVs in
low-altitude complex environments. By combining deep learning target detection with superresolution feature
enhancement, a lightweight UAV detection model is designed and field-tested for verification. To address the
challenge of detecting small UAV targets with limited information, the feature fusion network is enhanced
based on the traditional YOLOv4 algorithm to improve the detection ability of small targets via small target
enhancement and candidate box adjustment. The feasibility of the improved network is quantitatively and
qualitatively analyzed. Channel pruning and layer pruning are then applied to the network, significantly
reducing its depth and width and realizing a lightweight network. Finally, reasoning quantification is conducted
on the embedded platform to enable end-side deployment of the target detection algorithm.
. Introduction

In recent years, with the rapid development of aviation technology
nd the upgrading of communication technology, UAV products and
unctions have emerged in endlessness. From aerial photography, ge-
logical surveys, vegetation irrigation, and fire fighting operations to
ombat reconnaissance, UAVs are closer to life, but they also produce
ew threats [1,2].

There are two main categories of low-altitude UAV threats. (1)
assive threats due to communication failures. Because the UAV is out
f control, it may pose a threat to the safety of flying objects in the
earby airspace and people and property on the ground. For example,
n May 2017, due to the interference of nearby drones, the normal
light of many aircraft at Kunming Airport was seriously threatened,
nd the travel of tourists was disturbed. (2) UAV pilots use UAVs to
aliciously invade military bases and secret-related sites, threatening

he security of the country, important targets and the public. For
xample, the White House in the United States, the Japanese Prime
inister’s official residence and other confidential places have been

nvaded by drones, hidden information has been stolen, and national
ecurity has been threatened. Moreover, armed drones are playing an
ncreasingly important role in the battlefield. Therefore, to protect the
ersonal and property safety of citizens, it is necessary to counter UAVs,
nd improving the detection and identification ability of ‘‘low, slow and
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small’’ UAVs is the key to detecting, interfering with and attacking UAV
targets.

Due to the characteristics of low flight altitude, low speed flight
or hovering, and small size, high-precision UAV detection is easily
interfered with by birds, airborne objects, and complex environmen-
tal backgrounds. At present, the main detection methods of UAVs
include radar, photoelectric, radio frequency and acoustic detection
[3,4]. Radar realizes UAV detection by transmitting signals and re-
ceiving echoes. However, at low altitudes, radar receives more clutter,
which is easily interfered with, and there is a blind field of view, which
makes it difficult to detect small targets of UAVs. Rf detection is equally
susceptible to clutter interference, while acoustic detection has a short
detection range and high cost, making it unsuitable for UAV detection.
By obtaining video in real time and observing the contour, size and
other information of UAVs, photoelectric detection can effectively ex-
tract UAV features and has a fast detection speed, which can realize the
detection and identification of close-range UAVs [5].

For small UAV targets, traditional computer vision methods have a
poor ability to extract target features, are not easy to detect, and are
prone to environmental interference, resulting in low target detection
accuracy and poor application effects. The explosive development of
deep learning in recent years has solved many difficulties and pain
points of computer vision. In the field of UAV detection, using deep
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learning methods to let the machine autonomously learn the contour,
texture and other features of the UAV and perform effective feature
extraction can greatly improve the detection accuracy of the UAV. At
a long distance, UAV target imaging is small, the semantic information
is insufficient, the target recognition effect is limited, and there will be
certain misjudgment. Weak image enhancement through image super-
resolution can effectively restore high-resolution detailed information
and improve the accuracy of subsequent detection.

Anti-uav detection is developing toward high accuracy, intelligence
and miniaturization. It is of great significance to study UAV detection
algorithms and weak image enhancement algorithms based on deep
learning for UAV detection and early warning.

The major contributions of this paper are summarized as follows.
(1) We investigate the improvement of the YOLOv4 object detection

algorithm. According to the characteristics of UAV target detection, the
UAV detection accuracy of the YOLOv4 network is improved by adding
large-scale detection layers, improving anchors and enhancing small
targets.

(2) The improved algorithm can provide more semantic informa-
tion, such as contour and texture, and effectively improve the target
detection effect.

(3) The mAP is improved to 86.7%, which realizes high-precision
UAV small target detection.

The remainder of this paper is organized as follows. Section 2
discusses the related work in UAV Target Recognition. Section 3
presents the small UAV target detection algorithm based on the im-
proved YOLOv4. Section 4 proves the YOLOv4 model improvement and
optimization. In Section 5, we analyze the experimental results. Finally,
Section 6 concludes our work.

2. Related work

Uav target detection is a typical moving target detection problem.
Common detection methods include classical moving object detection
based on the optical flow method, frame difference method and back-
ground modeling method [3], traditional object detection methods and
object detection based on deep learning methods.

(1) Classical moving object detection method
Optical flow methods determine the relative motion of 3D objects

by finding the change in imaging pixels in the time domain. The optical
flow method can overcome the jitter of the lens itself and realize the
detection of moving objects. Although the optical flow method has a
good target extraction effect, its algorithm complexity is very large,
which is not suitable for real-time detection, and it is greatly affected
by illumination and sensitive to noise, which is not suitable for UAV
detection.

The frame difference method detects the target by the difference
of two or more frames, which easily causes the target hole, and the
target extraction effect is poor. However, the frame difference method
easily extracts the moving target. Yang Guodong et al. used the frame
difference search method to detect UAVs. The pixel-level features of
the image are integrated into the frame difference method, and the
heuristic search of the selective search algorithm is used to segment the
specific moving target to realize the detection of UAV small targets.

The background modeling method constructs the background
model, differentiates the image from the background image, and ob-
tains the moving target. It is greatly affected by illumination, and
the deviation is large when the camera shakes. The detection effect
is determined by background model modeling. Common modeling
methods include Gaussian modeling and the Vibe algorithm. Wang
Chuanyun et al. used Gaussian mixture background modeling combined
with a compressed sensing domain for UAV target detection. First, the
image is decomposed into blocks, and the Gaussian mixture background
model is used to identify the candidate blocks that may contain the
target in the compressed sensing domain. The background image and
target image are separated by sparse matrix factorization to realize UAV
125
small target detection, which improves the detection performance of
the UAV.

(2) Traditional object detection methods
The traditional UAV target detection method uses the idea of a

sliding window to traverse the whole image, extracts the features of the
corresponding region, and uses the commonly used classifier to detect
and classify the extracted features. In UAV detection, the selected UAV
features and classifiers are very important. For Uavs, common features
mainly include contour features, texture features, edge features, and
other human-defined features. In practical applications, feature fusion
is often used to fuse different features to improve the accuracy of object
detection. Classifiers generally include SVM support vector machine,
naive Bayes estimation and improved classifiers of related algorithms.

In the field of traditional target detection, much research has been
carried out on the problems related to UAV detection. In the face
of complex scenes, Lei L 2018 proposed an aerial target detection
algorithm based on AM5728 with a dynamic complex background. The
Lucas–Kanade (LK) optical flow method was used in the algorithm, and
the median filter was used for the adaptive threshold segmentation
method to predict the UAV under a dynamic complex background,
which could realize the effective detection of UAVs with different scale
changes and cloudy backgrounds. However, there is a problem that the
detected target looks slightly larger than the actual target. . In the same
year, Wang W et al. used multiscale decomposition filtering in space
and multiscale difference processing in time to effectively detect UAV
targets with complex backgrounds and different distances in scenes
with unknown UAV sizes and speeds.

In selecting UAV features and classifiers, HOG features and SVM
classifiers are commonly utilized. In 2019, Abu-Jamous M et al. em-
ployed a histogram of oriented gradients to extract UAV features and
applied a support vector machine (SVM) to distinguish specific fea-
tures of UAVs for detection and classification. The team combined
image feature pyramids, non-local maximum suppression, geometric
and illumination transformation of datasets, and other strategies to
enhance UAV detection accuracy and achieved impressive results. [6].
On this basis, Xie X et al. proposed a detection and recognition algo-
rithm based on block diagonal features in 2021. By reading the HOG
features of the UAV and then using low-rank recovery technology for
block diagonalization of the HOG features, the low-rank features of
the UAV were constructed by introducing the block-diagonal sparse
regularization term to increase the discrimination of the HOG features
of the UAV. Then, SVM is used for classification to improve the ac-
curacy of UAV identification [6,7]. In the realm of UAV detection,
Xie J et al. proposed a novel spatiotemporal feature fusion method
based on a data-driven SVM in 2021 to address the issue of low-
contrast scenes in UAV detection. The method utilizes spatiotemporal
contour features to describe the discontinuity of each pixel in the spatial
and temporal domains, which are derived via the Black-hat filter and
Ghostfree dark-focusing frame difference. The SVM classifier is trained
using supervised spatiotemporal contours to automatically learn the
spatiotemporal feature fusion mechanism, yielding excellent results in
the detection of small, low-contrast UAVs. [8].

(3) Object detection method based on deep learning
Traditional target detection methods have difficulty extracting fea-

tures when the scene is complex, and with the increase in extracted
features, the calculation amount also increases greatly, which puts
forward higher requirements for the real-time detection of UAVs. Since
AlexNet was proposed in 2012, deep learning has been widely used in
feature extraction and target classification [9]. A convolutional neural
network (CNN) was used to replace manual extraction of features, and
with the expansion and extension of the network, low-level contour,
texture and other semantic information could be fully extracted [10,
11]. The CNN network can effectively improve the detection accuracy
of UAVs by replacing manual design and selecting UAV features.

The search algorithm was used to replace the traditional method of
using a sliding window to extract regional features, and the detection
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Fig. 1. Structure diagram of YOLOv4.
accuracy reached twice that of the traditional detection algorithm. In
2015, a simplified SPP-Net network [12] was introduced, softmax was
used to replace SVM for target classification and localization, and Fast
R-CNN [13] was proposed, which greatly improved the speed of target
detection [12,13]. In 2016, on the basis of the original Fast R-CNN,
the RPN network was used to generate candidate regions instead of
the original region search algorithm, and Faster R-CNN was proposed
to realize the CNN network implementation of the whole process of
object detection, which further improved the detection speed [8,13].
According to the different target objects, Faster R-CNN also has many
improvements and variations. In small target detection, Liu Jiahao et al.
introduced the top-downtop feature pyramid fusion structure. Through
the fusion of three different scale feature maps, the low-level detailed
information and high-level semantic information were highly fused,
the UAV features were enhanced, and the accuracy of small target
detection was improved [14]. Cao et al. using the idea of two-stage
detection, used bilinear interpolation to improve ROI pooling to solve
the localization bias problem and used multiscale convolution feature
fusion to improve the recognition effect [15,16].

The two-stage algorithm represented by the Faster R-CNN algorithm
has greatly improved the detection accuracy, but the detection rate is
still insufficient and cannot meet the requirements of real-time engi-
neering. In 2015, Redmon et al. proposed the YOLO algorithm, which
uses whole-process convolution for object discrimination and candidate
box prediction [17]. After several years of development, the YOLO
series has been widely used in various object detection problems by
changing the network architecture, adding multiscale fusion, changing
the activation function, optimizing the loss function and other aspects
of improvement. Hu et al. used the last four scales of the YOLOv3
feature mAP instead of the original three scale feature map to predict
the bounding box of the object, which could obtain more texture and
contour information to detect small UAV objects. In the same UAV test
sample, the MAP was improved by approximately 4.16% [18].

In 2019, Craye C utilized the U-Net architecture to identify small
target flying object areas in large scenes and determined the target cat-
egory in the area through the ResNet network, enabling identification
of UAVs and birds. In addition to employing classical target detection
networks, this approach offers an innovative solution to detecting small
targets [14,19]. In 2020, Sun H et al. proposed the TIB-Net UAV
lightweight detection network, which enhances the feature extraction
ability of UAVs through the cyclic path structure and integrates the
cyclic path into the EXTD detector. At the same time, the spatial atten-
tion module is integrated into the network backbone, which can filter
the background noise and achieve good results [20]. In 2021, Ding L
et al. deleted the low-resolution layer of the SSD network and enhanced
the high-resolution network layer for the lack of texture and shape

features of the infrared UAV. The adaptive pipeline filter (APF) based

126
on temporal correlation and motion information was used to correct the
results, which achieved higher accuracy and better robustness [21].

Although the UAV detection effect based on the deep learning
method is good, the current UAV dataset is small, and the UAV tar-
get is small, which will cause the loss of detection accuracy to a
certain extent. Image processing methods such as image superresolu-
tion reconstruction technology can be used to improve the detection
accuracy.

3. Small UAV target detection algorithm based on improved
YOLOv4

The YOLOv4 algorithm was proposed in 2020, and it performs well
in the field of regular object detection. Taking the COCO dataset as an
example, its AP is increased to 43.5%. Therefore, based on the YOLOv4
algorithm, combined with the characteristics of UAV small targets, this
paper improves the algorithm to achieve effective UAV detection.

3.1. YOLOv4 object detection algorithm

Compared with YOLOv3, YOLOv4 is optimized in the backbone
network, multiscale fusion, activation function, loss function, etc. The
structure diagram of YOLOv4 is shown in Fig. 1.

3.2. Method process

(1) Backbone network: Based on DarkNet53 and referring to the
idea of skip connection of the cross-stage local network (CSPNet), the
Backbone network of CSPDarkNet53 is constructed. In Fig. 2, a parallel
network is added to the original residual block for splicing and fusion,
and skip connections are performed inside and outside the residual
block, which enhances the feature extraction ability of the network and
accelerates the training optimization of the network.

(2) Multiscale feature fusion: The SPP structure is used after the
backbone network of CSPDarkNet53, and the SPP structure diagram is
shown in Fig. 3.

Max pooling at four scales is used for feature processing to improve
the receptive field size, and the context features are separated under
the premise of ensuring the speed of the network. After SPP, the
PANet network is used to achieve feature map fusion of different scales
and sizes. Through repeated feature extraction, the feature extraction
ability of the YOLO network for different sizes of objects is effectively
enhanced. PANet is a top-down extraction after bottom-up feature
extraction from FPN.

Max pooling at four scales is used for feature processing to improve
the receptive field size, and the context features are separated under

the premise of ensuring the speed of the network. After SPP, the
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Fig. 2. CSP structure diagram.
Fig. 3. SPP network structure.

ANet network is used to achieve feature map fusion of different scales
nd sizes. Through repeated feature extraction, the feature extraction
bility of the YOLO network for different sizes of objects is effectively
nhanced. PANet is a top-down extraction after bottom-up feature
xtraction from FPN, and its schematic diagram is shown in Fig. 4.

(3) Loss function: The loss function continues the composition of the
OLOv3 loss function but introduces CIoU instead of IoU in the position

oss function. On the basis of considering the intersection and union
atio, the overlap area of the two boxes, the ratio of width to height,
he distance of the center position and other factors are considered, so
he CIoU expression is given by Formula (1):

=
𝜌2(𝑏, 𝑏𝑔𝑡)

+ 𝛼𝜐 (1)
𝐶𝐼𝑜𝑈 𝑐2
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where c is the diagonal length of the intersection of the two boxes, and
the expressions for v and 𝛼 are as follows.

𝑣 = 4
𝜋
(arctan 𝑤𝑔 𝑡

ℎ𝑔𝑡 − arctan 𝑤
ℎ
)2 (2)

𝛼 = 𝑣
(1 − 𝐼𝑜𝑈 ) + 𝑣

(3)

Therefore, the expression for the position loss function is:

𝜆𝑐𝑜𝑜𝑟𝑑
𝑆2
∑

𝑖=0

𝐵
∑

𝑗=0
𝐼𝑜𝑏𝑗𝑖𝑗 [(1 − 𝐼𝑜𝑈 ) + 𝑑2

𝑐2
+ 𝛼𝑣] (4)

(4) Activation function: The Mish live function is introduced on the
basis of LReLU, and the calculation expression is given by Eq. (5).

𝑀𝑖𝑠ℎ(𝑥) = 𝑥 × tanh(ln(1 + 𝑒𝑥)) (5)

On the one hand, the Mish function is used to avoid gradient
saturation, and on the other hand, it can solve the problem that ReLu
does not activate negative numbers at all. Its schematic diagram is
shown in Fig. 5.

4. YOLOv4 model improvement and optimization

For the same class of UAVs, the UAV target imaging is large at
close range, while at long range, the imaging meets the criteria of small
targets. Fig. 6 by counting the object size distribution in UAV data in
common scenarios. There is a large difference in the size of the far-near
target, but the size is mostly concentrated within 100 × 100. Although
YOLOv4 has an AP of 43.5% on the COCO dataset and the network has
Fig. 4. Schematic diagram of the PANet.
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Table 1
Comparison of output sizes of multiscale feature maps.

algorithm Scale1 Scale2 Scale3 Scale4

YOLOv4 13 13 × 255 × 26 26 × 255 × 52 × 52 × 255
Improved YOLOv4 13 × 13 × 18 26 * 26 * 18 52 × 52 by 18 104 × 104 × 18
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Fig. 5. Schematic diagram of the Mish activation function.

Fig. 6. Object size distribution diagram.

been optimized for small object detection, there are still some problems
in ‘‘low, slow and small’’ UAV small object detection:

(1) The feature map of the deep network is used for classification
and prediction, which contains few small object features, and the
accuracy of small object detection is limited.

(2) The feature extraction layers are deep, and the UAV target
features are few, so the UAV features are easily lost in the feature
extraction process.

(3) The anchor used in the algorithm has weak generalization ability
for small targets.

In response to the above problems, the YOLO model is improved
from the aspects of network structure, small target enhancement and
candidate box adjustment to improve the accuracy of UAV small target
detection [22].
 U
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4.1. Improved YOLOv4 network structure

In Fig. 7, the YOLOv4 network uses CSPDarknet53 feature extrac-
tion, which is down sampling 32 times after 5 times. SPP and PAN are
used to increase the receptive field, and the image feature pyramid
is constructed between the feature maps. This improved algorithm
focuses on enhancing the feature fusion of YOLOv4 by upsampling
the shallow feature map and concatenating it with the shallower UAV
feature image. This process increases the output size of the 104 × 104
small object detection scale, resulting in a four-scale detection output
from the detection module. The shallow feature maps contain valuable
low-level information such as target shape and texture, while the
deep feature maps contain rich high-level semantic information. The
improved branch effectively utilizes both low-level and high-level se-
mantic information from the backbone, while simultaneously realizing
small object scale detection through a new detection layer.

In the head part, the final prediction is carried out through 3 × 3
convolutional layers and 1 × 1 convolutional layers, and the dimension
of the output vector is 3 × (k+5) at each scale, where k is the output
ategory, and there is only one category of UAV in this paper, so k is 1.
ach position in the final output feature map is associated with three
ifferent anchor boxes, and 5 represents the localization prediction and
lassification prediction of the prediction box. The size of the input
mage is 416 × 416 (see Table 1).

By adding a large-scale detection layer for feature enhancement for
mall target detection, the performance of UAV target detection in far
nd near ranges is effectively balanced.

.2. Candidate tuning

YOLOv4 uses K-means to cluster the true box sizes to obtain nine
nchor boxes, and three anchor boxes are assigned to each scale. A
igher value of K will improve the quality of the obtained preset anchor
oxes for various objects and help the model converge during training.
n the improved YOLOv4 algorithm, there are four scales of feature
aps. To balance the performance of UAV target detection at near

nd far distances, three anchor boxes are still allocated to each scale
eature map, and a total of 12 anchor boxes are set. However, K-
eans initializes different cluster centers and generates anchor boxes of
ifferent sizes, which will have different effects on the detection results.
herefore, taking UAVs as samples, the K-means++ algorithm is used
o cluster the size of the labeling box.

The K-means++ algorithm mainly modifies the selection process for
nitial clustering centers. In this method, a real box in the training set
based on width and height) is randomly chosen as the first cluster
enter. The algorithm then calculates the Euclidean distances between
he first cluster center and other real boxes in the training set. The box
ith a larger distance is more likely to be selected as the next cluster

enter, and this process continues until k-1 cluster centers are selected.
he final clustering results are presented in Table 2. By making the
nchor box of clustering more focused on small targets, K-means++
roduces clustering results that are more consistent with real labels.

Small target augmentation.
(1) Small target Data Augmentation
Although YOLOv4 utilizes mosaic data augmentation, the random

caling of UAV targets can result in significant loss of target information
nd limited effectiveness. To address the challenges of small target
atasets, this study implements traditional data augmentation tech-
iques such as rotation, scaling, and cropping. Additionally, multiple
AVs can be copied into a single image to increase the number of
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Fig. 7. Comparison diagram of network structure improvement.
Table 2
Anchor box clustering results under the same training set.

Algorithm First layer Second layer Third layer Fourth layer

YOLOv4
(282,242)
(203,160)
(110,95)

(73,58)
(38,32)
(21,16)

(15,24)
(11,15)
(8,11)

Improved
YOLOv4
(K-means)

(331,301)
(292,238)
(252,186)

(227,250)
(195,159)
(144,118)

(99,86)
(74,57)
(40,36)

(20,24)
(12,17)
(8,11)

Improved
YOLOv4
(k-means ++)

(295,274)
(261,196)
(196,163)

(143,120)
(103,87)
(80,62)

(55,46)
(40,30)
(28,42)

(20,24)
(12,17)
(8,11)
targets, as shown in Fig. 8. This approach increases the number of
matching anchor boxes and drives the model to place greater emphasis
on small UAVs. As a result, the contribution of small UAVs to the loss
function calculation is increased.

(2) Small target image enhancement
At a long distance, after optical magnification, the target still be-

longs to the range of small targets, the feature degradation is serious,
the contour and texture features are not obvious, and the features of
the target extracted by putting into the network are still very limited.
Therefore, in this paper, the MFSRCNN method in Chapter 2 is used to
reconstruct the low-resolution samples, generate high-resolution clear
images, and restore the contour and texture features of the UAV to a
certain extent. The clear pictures were extended to the training dataset
129
to enhance the ability of the network to learn UAV features to improve
the accuracy of UAV target detection.

5. Experimental results and analysis of algorithm improvement

The experimental environment in this section is the Windows 10
operating system, the hardware is an i7-7700 processor, and the GPU
model is NVIDIA GeForce GTX 1080 Ti.

5.1. Training process

(1) Experiment to obtain the dataset.
Camera data: Sensor: 1/2.8 inch CMOS;
Focal length: 8.1 mm–310 mm (F1.8-F5.6).
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Fig. 8. UAV data augmentation.
Fig. 9. Schematic diagram of the dataset.
The size of the acquired image is 1920 × 1080. (2) Download the
UAV dataset from the Internet.

The UAV dataset includes the Drone Dataset (UAV) dataset and the
Drone-data-2021 dataset. The dataset is shown in Fig. 9.

The initial UAV dataset contains 17,590 images, including the image
features of various typical types of UAVs, such as quadrotor, six-rotor,
and fixed-wing UAVs, under close- and long-distance test conditions.
After small target data enhancement, 20,000 UAV data points are
finally obtained to form the experimental dataset. We selected 80% of
the data as the training set and the rest as the test set.

(2) Image annotation
The LabelImg tool was used to manually label the data, the UAV

target was labeled as airplane, and the picture frame was saved as xml.
The xml file holds the category and bounding box information of the
annotated Uavs.

5.2. Training on data

(1) Hyperparameter settings
The size of the input image is uniformly transformed to 416 × 416.

Because of the limited GPU memory, the batch size is set to 8, the
learning rate is set to 0.002324, and the learning rate decays to a
certain extent as the training epoch becomes larger.

Adam optimization strategy.
(2) Transfer learning
130
In the control experiment, the YOLOv4 network adopts the Fine-
Tune method. First, the COCO dataset data are trained to obtain the
YOLOv4 model corresponding to the large dataset, and then the UAV
training set is trained to obtain the final model. Through transfer
learning, training from 0 is avoided, and the training time is reduced.

After training, both models achieve good fitting effects after more
epochs, and the loss value decreases smoothly in the process of repeated
training. The loss function value has an obvious decrease because the
learning rate has an exponential decay, so the network learns more UAV
information from the dataset and has a better convergence effect.

5.3. Analysis of experimental results

The model obtained by the algorithm before and after improvement
was tested, the IoU threshold was set to 0.5, the precision rate, recall
rate and F1 value were calculated, and Table 3 was obtained.

After the algorithm is improved, the accuracy and recall rate of UAV
detection are improved to a certain extent. Results demonstrate that
the improved model enhances detection accuracy and reduces the false
detection of UAV targets. The improved model achieves an increase of
5.8% in F1 value, indicating a better detection performance compared
to the original model.

The closer the PR curve is to the coordinate (1,1), the better the
detection performance of the algorithm is. Fig. 10 illustrates that the
improved algorithm yields an improved precision–recall (PR) curve
for UAV targets compared to the PR curve generated by the original
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Fig. 10. Comparison of PR curves of different algorithms.
Table 3
Comparison of the algorithm before and after improvement.

Algorithm Accuracy/% Recall/% F1 value/%

YOLOv4 algorithm 85.7 81.4 83.5
Improved YOLOv4 algorithm 91.2 87.5 89.3

Table 4
Comparison of model checking.

Algorithm Faster R-CNN SSD YOLOv3 YOLOv4 Improve YOLOv4

mAP (%) 74.5 76.1 76.5 79.6 86.7
FPS 21.7 28.93 43.57 53.11 49.26

YOLOv4 algorithm. The PR curve of the improved algorithm entirely
covers the curve of the original YOLOv4, suggesting that the improved
algorithm exhibits stronger detection capabilities for UAVs.

Table 4 is obtained by reasoning on the UAV test data and setting
the IoU threshold to 0.5.

The mAP of the original YOLOv4 model is 79.6%, which is higher
than that of YOLOv3, SSD and other algorithms. Due to the character-
istics of multiscale fusion, it has certain advantages in the recognition
of UAV small targets.

The improved model achieves an mAP of 86.7%, representing an
overall improvement of 7.1%. Furthermore, the improved algorithm
significantly enhances the recognition effect of long-distance UAV small
targets. On the NVIDIA GeForce GTX 1080 Ti platform, the original
YOLOv4 model delivers an FPS of 53, while the improved algorithm’s
FPS is 49, indicating slightly slower detection speed. However, this
minor speed sacrifice results in improved detection accuracy. Experi-
mental results demonstrate that the improved YOLOv4 algorithm out-
performs YOLOv3, SSD, and other algorithms in terms of mAP and
FPS. The algorithm strikes a balance between FPS and mAP, exhibiting
stronger detection capabilities for UAV small targets.

5.4. Comparative analysis of experiments

The feature map used for prediction in the YOLOv4 network only
contains three scales. Due to the lack of rich semantic information
such as details and contours of small objects during feature fusion,
false detection occurs, and some UAV targets may be missed during
detection. However, in the improved YOLOv4 algorithm, the new high-
resolution feature map (receptive field 4 × 4) is used to introduce the
scale prediction of UAV small targets, increase the detailed information
of small targets, and increase the feature information of UAV detec-
tion. Therefore, the improved method can reduce missed detections
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with fewer false detections, the position of the bounding box is more
accurate, and the size is closer to the actual size of the UAV.

6. Conclusions

Our work addresses the limitations of the YOLOv4 network for small
UAV target detection by enhancing the accuracy of the network through
the addition of large-scale detection layers, anchor improvements, and
enhanced small target images. Experimental validation shows an over-
all increase of 7.1% in mean average precision (mAP) to 86.7%, with
improved precision and recall rates. The improved algorithm is capable
of providing more semantic information and focuses on contour and
texture details to enhance object detection effectiveness.

7. Future work

While the photonic system has successfully passed the joint debug-
ging test and acceptance, there are still areas for improvement in the
system. These include

(a) The current unmanned aerial vehicle (UAV) detection system
needs further improvement in terms of scale and background contrast.
To increase the accuracy of detecting small targets, especially in non-
sky backgrounds that may be affected by interference from buildings
or mountains, a three-dimensional scan using a laser radar can be
employed to provide distance information.

(b) The current tracking algorithm in the system is achieved through
a tracking board, which leaves room for further research in UAV
tracking algorithms to achieve more stable and sustainable tracking.

(c) By utilizing the parameters of the camera, information about
the detected UAV, and the background scene, reinforcement learning
can be employed to enhance the system’s environmental awareness and
intelligent response, ultimately improving automation and reducing the
need for human intervention.
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