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Abstract—In this article, we study the task offloading prob-
lem on mobile edge in vehicular networks. Specifically, we take
computational resource constraints into consideration, and aim
to simultaneously reduce latency and energy consumption. For
this purpose, we establish an offloading model that consists of
local edge computing resources, edge server resources of both
macro and subsidiary base stations, as well as cloud computing
server resources. Each task can be offloaded through one of five
strategies, and is evaluated via a loss function determined by
its latency and energy consumption. Based on this model, our
goal is to solve a mixed-integer non-linear optimization problem
(MINLP) whose objective function is the weighted sum of the
task-specific loss functions. To address this optimization problem,
we split it into two sub-problems, referred to as resource allocation
and offloading strategy. We develop a method based on Block
Coordinate Descent technique combining convex optimization and
Gray Wolf algorithm (BCD-CONGW) that alternatively solves the
two sub-problems, until convergence. The former sub-problem is
convex and can be solved in polynomial time, whereas the latter
is non-convex and hence NP-hard. For the latter, we relax discrete
variables and employ Gray Wolf algorithm with elite strategy to
approximate its optimal point. By numerical evaluations, we show
that our method outperforms existent methods in terms of latency
and energy consumption.

Index Terms—Vehicular networks, mobile edge computing, task
offloading, resource allocation, joint optimization.

I. INTRODUCTION

A. Background and Motivation

THE emergence of the Internet of Vehicles has promoted
vigorous development of in-vehicle services, such as: au-

tonomous driving, interactive applications, and traffic moni-
toring [1]. Meanwhile, the insufficient computing and storage
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resources of existing vehicle equipment could not meet the
demands of the massive amount of data generated by these
services. To address this problem, we need to re-visit the mech-
anism of computing and data communication for the Internet of
Vehicles [2], [3], [4].

Although cloud computing can solve the problem of insuffi-
cient in-vehicle resources, it causes unpredictable latency due
to its long-distance deployment. Moreover, it also inevitably
increases the cost of bandwidth [5]. To compensate the short-
comings of cloud computing, the European Telecommunication
Standard Institute (ETST) proposed mobile edge computing
(MEC) in 2014 [6]. By sinking cloud computing and storage
capabilities to the user side, it offers possibilities to simultane-
ously reduce data transmission latency and equipment energy
consumption [7], [8], [9]. More precisely, a vehicle can op-
tionally offload the computing tasks to some base station, and
then carry out complex computation on the MEC server that is
installed at the base station [10], [11], [12], [13].

B. Related Work

Recently, a large number of research results have been ob-
tained in terms of offloading strategy. For example, a JCTO
problem is proposed to realize simultaneous decision of con-
tent placement, content delivery and UAV trajectory, and a
CBTL algorithm is proposed to solve the JCTO problem of-
fline [14]. [15] proposes a SAGIN edge/cloud computing archi-
tecture that takes into account remote energy and computing
constraints for offloading computationally intensive applica-
tions. Then the authors propose a joint resource allocation and
task scheduling approach and uses a learning-based approach
to optimize offloading strategies. [16] proposes algorithms de-
signed by means of heuristic search, reformulation linearization
technique and semi-definite relaxation. A knowledge-driven
offloading framework for Internet of Vehicle uses the asyn-
chronous advantage actor-critic (A3C) algorithm in [17]. [18]
proposes a low complexity dynamic offloading algorithm using
Lyapunov optimization. However, these strategies didn’t con-
sider energy consumption. In [19], [20], the authors consider
the time dependence between the vehicle mobility and the task.
Specifically, a heuristic algorithm is proposed by combining
the task scheduling between the MEC servers and the RSU
downlink energy consumption. Although the aforementioned
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works properly handles the energy consumption, they do not
address the problem of limited computing resources. In [21],
[22], the authors optimize the latency on the basis of limited com-
puting resources and ignore the energy consumption. Compared
to [21], [22], more comprehensive methods are given in [23],
[24], which balance the task offloading and resource allocation.
Still, the energy consumption problem is not considered as an
optimization target.

Most recent methods that simultaneously cope with latency
and energy consumption are given in [25], [26]. However, the
aforementioned researches mainly focus on how to offload the
computing tasks to the MEC server, ignoring the situation of
the cooperative processing of the MEC server and the cloud
server. The introduction of cloud server can effectively solve the
resource limitation problem of MEC server, thereby improving
the user experience. Therefore, it is necessary to design a proper
offloading scheme of cloud and MEC co-processing tasks to
ensure user experience.

Meanwhile, each vehicle will get different computing tasks
that require diverse computing resources due to different task
sizes. Task offloading requires vehicles to communicate with
MEC servers in the uplink wireless channel, leading to non-
negligible energy consumption. Hence, the offloading strategy
and resource allocation should be jointly optimized, and the two
indicators of latency and energy consumption should be consid-
ered at the same time to obtain better network performance.

C. Main Contributions

In this article, our main contributions are as follows:
1) We propose to jointly apply cloud server and MEC server

to the task offloading in vehicular networks, with appro-
priate consideration of resource allocation to achieve dual
benefits of cloud computing and MEC. Each task can be
offloaded through one of five strategies, and is evaluated
via a loss function determined by its latency and energy
consumption.

2) Our goal is to solve a MINLP problem whose objective
function is the weighted sum of the task-specific loss func-
tions (herein, the weights are calculated according to the
nature of the tasks). To this end, we propose a new solution
scheme. Specifically, we decompose the original opti-
mization problem into two sub-problems: resource allo-
cation problem and offloading strategy problem. By block
coordinate descent technique, the two sub-problems are
solved alternatively until convergence. Compared to di-
rectly solving the original MINLP with convex relaxation,
the proposed scheme can find more optimal solutions.

3) Among the two sub-problems, the offloading strategy
problem is a binary integer programming, which is NP-
hard. For solving it, we relax discrete variables and pro-
pose an improved Gray Wolf algorithm based on elite
strategy. Through numerical examples, we show that the
improved Gray Wolf algorithm outperforms (i) its original
version, and (ii) the classic/latest algorithms.

The rest of the article is organized as follows. The task-
offloading model on cloud assisted MEC for vehicular networks

Fig. 1. Five offloading strategies in vehicular network.

is introduced in Section II. Section III mainly focuses on the
solution to the aforementioned MINLP problem. Computer
simulation results are presented in Section IV and concluding
remarks are finally made in Section V.

II. PROBLEM FORMULATION

A. System Model

We consider a heterogeneous vehicular network that has mo-
bile edge computing functionality [27]. This network includes a
macro base station (MBS) that is equipped with an edge macro
data center (MDC). In addition, there are several subsidiary base
stations (SBSs) within the MBS, each of which is equipped with
an edge subsidiary data center (SDC). At the same time, there is
also a cloud data center (CDC) that supports the network [28],
[29]. As shown in Fig. 1, three offloading destinations are
designed in the scenario: edge subsidiary data center deployed in
subsidiary base stations, edge macro data center deployed in the
macro base station and the cloud data center. For vehicle i, it can
access macro base station or subsidiary base stations. There are
four offloading schemes that directly reach the three offloading
destinations: offloading directly to edge subsidiary / macro data
center or to the cloud data center through the subsidiary / macro
base stations. But considering that some tasks may need to be
computed in the edge macro data center and the vehicles that are
generating tasks are not within the communication range of the
macro base station. We add an offloading scheme that is relayed
by the subsidiary base stations and offloaded to the edge macro
data center, namely the five schemes shown in the Fig. 1.

Within the coverage of the MBS, we let the number of vehicles
beN , and index them by i ∈ {1, 2, . . . , N}. The network band-
width is divided into several sub-channels, and the bandwidth
of each sub-channel is B. Vehicles are associated with the base
station through OFDMA, and each vehicle occupies a channel.
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Assuming that every vehicle generates a computing task to be
executed, which is defined as si = (Hi, Zi, T

MAX
i ). Here, Hi

represents the data size of the task, Zi represents the number of
CPU cycles required to complete the task, andTMAX

i represents
the maximum latency that the task can tolerate [30]. Note that, we
assume all computing tasks in the network are indivisible and the
vehicle will not drive out of the coverage of the current server, so
the case of task offload interruption is not discussed.Therefore,
the base station handover will not be discussed.

The problem addressed in this article is the joint optimization
of latency and energy consumption. Intuitively, when the net-
work is optimized to a certain level, the optimization of latency
and energy consumption oppose each other. More precisely, the
pursuit of low energy consumption will result in high latency,
and vice versa. In view of this fact, we design a loss function ϕi
as follows:

ϕi = λiTi + (1 − λi)Ei (1)

where, Ti and Ei respectively represent the latency and energy
consumption of task i. λi ∈ [0, 1] is a weight that balances
latency and energy consumption. Compared to the traditional
fixed weight, λi is adaptive and dynamically varies according
to the task itself. It becomes larger if Zi increases and TMAX

i

decreases for the task. Detailed definition and normalization are
given in (2) and (3), where ξ ∈ (0, 1) is a factor affecting λi. The
more sensitive tasks are to latency, the smaller the value of ξ.

λ∗
i = ξ

Zi∑N
j=1 Zj

+ (1 − ξ)

∑N
j=1 T

MAX
j

TMAX
i

(2)

λi =
λ∗
i −min

i
{λ∗
i}

max
i

{λ∗
i} −min

i
{λ∗
i}

(3)

For each vehicle i, there are two modes to choose from: local
computation and offloading. In this article, we use ai ∈ {0, 1}
to indicate the mode selection. Specifically, ai = 0 means local
computation; otherwise, offloading.

B. Local Computation of Task

When vehicle i selects local computation mode, its task
latency consists in the processing latency expressed by (4),
where fi is the processor frequency assigned to the task. In
the meantime, the energy consumption is expressed by (5).
where κ is a factor determined by the processor structure. In
this article, we choose κ = 10−27. Given (4) and (5), the loss
function associated with local computation mode reads as (6).

T local
i

=
Zi
fi

(4)

Elocali = κf 2
i Zi (5)

ϕlocali

(
T local

i
, Elocali

)
= λiT

local
i

+ (1 − λi)E
local
i (6)

C. Offloading of Task

When vehicle i selects offloading mode, its connection is
denoted by bi ∈ {0, 1}. Here, bi = 0 indicates that the vehicle
is connected to an SBS; otherwise, the vehicle is connected to

the MBS. According to Shannon’s theorem, the transmission
capacities of SBS and MBS are:

Rsi = Blog2

(
1 +

Gsip
s

σ2

)
(7)

Rmi = Blog2

(
1 +

Gmi p
m

σ2

)
(8)

where B is the channel bandwidth, ps and pm represent the
transmit power of SBS and MBS, σ2 means the noise power,Gsi
and Gmi respectively represent the channel gain between the
base station and vehicle i. In what follows, we elaborate five
offloading strategies.

Note that it is unnecessary to offload tasks to a SBS when
vehicles are connected to a MBS, as (i) it incurs greater latency,
and (ii) the computing resource of the SBS is limited.

1) Vehicle Connected to SBS and Task Computed on SDC:
When the task is computed on SDC, the latency can be divided
into two parts: the latency of task transmission and processing.1

Analogously, the energy consumption can be also divided into
the fractions of task transmission and processing. As the edge
side is powered by cables, this article does not consider the
task-processing energy consumption of it [32]. Given the above
discussion, the resulting T sbs,si , Esbs,si and ϕsbs,si are:

T sbs,si =
Hi

Rsi
+
Zi
fi

(9)

Esbs,si = ps
Hi

Rsi
(10)

ϕsbs,si

(
T sbs,si , Esbs,si

)
= λiT

sbs,s
i + (1 − λi)E

sbs,s
i (11)

2) Vehicle Connected to SBS and Task Computed on MDC:
In this strategy, the vehicle is connected to SBS, but the task is
offloaded to MDC for computation. Correspondingly, a transfer
latency Tsm is incurred, and the resulting T sbs,mi , Esbs,mi and
ϕsbs,mi are:

T sbs,mi =
Hi

Rsi
+
Zi
fi

+ Tsm (12)

Esbs,mi = ps
Hi

Rsi
(13)

ϕsbs,mi

(
T sbs,mi , Esbs,mi

)
= λiT

sbs,m
i + (1 − λi)E

sbs,m
i

(14)

3) Vehicle Connected to SBS and Task Computed on CDC:
Similarly to the previous strategy, the transfer to CDC introduces
some latency Tsc. Given this transfer latency, the resulting
T sbs,ci , Esbs,ci and ϕsbs,ci are:

T sbs,ci =
Hi

Rsi
+
Zi
fi

+ Tsc (15)

Esbs,ci = ps
Hi

Rsi
(16)

ϕsbs,ci

(
T sbs,ci , Esbs,ci

)
= λiT

sbs,c
i + (1 − λi)E

sbs,c
i (17)

1By [31], downloading latency is negligible relative to the offloading latency;
hence, it is not considered.
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4) Vehicle Connected to MBS and Task Computed on MDC:
In this strategy, the vehicle is connected to the MBS, and the
task is offloaded to MDC for computation. Herein, the resulting
Tmbs,mi , Embs,mi and ϕmbs,mi are:

Tmbs,mi =
Hi

Rmi
+
Zi
fi

(18)

Embs,mi = pm
Hi

Rmi
(19)

ϕmbs,mi

(
Tmbs,mi , Embs,mi

)
= λiT

mbs,m
i + (1 − λi)E

mbs,m
i

(20)

5) Vehicle Connected to MBS and Task Computed on CDC:
For this final strategy, the vehicle is connected to the MBS, but
the task is computed on CDC. We denote the transfer latency by
Tmc and obtain that:

Tmbs,ci =
Hi

Rmi
+
Zi
fi

+ Tmc (21)

Embs,ci = pm
Hi

Rmi
(22)

ϕmbs,ci

(
Tmbs,ci , Embs,ci

)
= λiT

mbs,c
i + (1 − λi)E

mbs,c
i

(23)

D. Main Problem

We denote the available computing resources byF = (Fsmax,
Fmmax, Fcmax), where Fsmax, Fmmax, Fcmax represent the
maximum computing resource at SDC, MDC and CDC. In
addition, we use εi = (εsi , ε

m
i , ε

c
i ) to indicate offloading strate-

gies of the task. Specifically, εsi , ε
m
i , εci are binary variables,

meaning whether the task is computed at SDC, MDS or CDC
(1 is positive and 0 otherwise). Note that, as the task is assumed
to be indivisible, its computation can be done in only one place,
which leads to the following constraint:

εsi + εmi + εci = 1 (24)

Combined with the previous content, the loss function of the
vehicle can now be obtained:

ϕi

(
ϕlocali , ϕmbs,mi , ϕmbs,ci , ϕsbs,si , ϕsbs,mi , ϕsbs,ci , ai, bi, εi

)

= (1 − ai)ϕ
local
i + aibi

(
εmi ϕ

mbs,m
i + εciϕ

mbs,c
i

)

+ ai (1 − bi)
(
εsiϕ

sbs,s
i + εmi ϕ

sbs,m
i + εciϕ

sbs,c
i

)
(25)

By definitions of ϕlocali , ϕmbs,mi , ϕmbs,ci , ϕsbs,si , ϕsbs,mi , ϕsbs,ci

and constraint (24), we equivalently re-organize (25) as follows:

ϕi (Hi, Zi, fi, ai, bi, ε
s
i , ε

m
i , ε

c
i )

= (1 − ai)

(
λi
Zi
fi

+ (1 − λi)κf
2
i Zi

)

+ ai (1 − bi) λi

((
Hi

Rsi
+
Zi
fi

)
+ εmi Tsm + εciTsc

)

+ ai (1 − bi) (1 − λi) p
sHi

Rsi

+ aibiλi

(
(εmi + εci )

(
Hi

Rmi
+
Zi
fi

)
+ εciTmc

)

+ aibi (1 − λi) (ε
m
i + εci ) p

m Hi

Rmi
(26)

Based on (26), we assume the knowledge of Hi, Zi and formu-
late the optimization problem:

min
fi,ai,bi,εsi ,ε

m
i ,ε

c
i

1
N

N∑
i=1

ϕi (fi, ai, bi, ε
s
i , ε

m
i , ε

c
i ) (27)

s.t. : ai ∈ {0, 1} , ∀i ∈ N (27a)

bi ∈ {0, 1} , ∀i ∈ N (27b)

εsi ∈ {0, 1} , ∀i ∈ N (27c)

εmi ∈ {0, 1} , ∀i ∈ N (27d)

εci ∈ {0, 1} , ∀i ∈ N (27e)

N∑
i=1

εsifi ≤ Fs,max (27f)

N∑
i=1

εmi fi≤Fm,max (27g)

N∑
i=1

εcifi ≤ Fc,max (27h)

equation (24), ∀i ∈ N (27i)

Among the constraints: (27a) enforces that each task can be
computed either locally or via offloading; (27b) represents the
vehicle connection status; (27c)–(27e) indicate the offloading
strategy; (27f)–(27h) are resource constraints.2 As can be seen,
(27) is a typical MINLP problem.

For simplicity of expression, we use vector a = (a1, a2,
. . . , aN ) to represent all offloading modes, and vector b =
(b1, b2, . . . , bN ) to represent all base station selections. In terms
of offloading strategies, vectors εs, εm, and εc are used to indi-
cate whether the tasks should be offloaded to the corresponding
data centers for computation. With these notations, the task
offloading decision variables can be collected as a single vector
γ = (a,b, ε). Moreover, we use vector f = (f1, f2, . . . , fN ) to
represent the computing resources. By defining function (28),
the problem (27) is compactly written as P1.

ψ (f ,γ) = ψ (f ,a,b, ε)

=
1
N

N∑
i=1

ϕi (fi, ai, bi, ε
s
i , ε

m
i , ε

c
i ) (28)

[P1] min
f ,γ

ψ (f ,γ) (29)

s.t. : (27a) ∼ (27i)

2The allocation of computing resources is generally measured by CPU fre-
quency, which can be achieved through virtual machine technology. Noticeably,
it is allowed to allocate different virtual machines to different vehicles, facilitat-
ing independent computation.
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Fig. 2. Algorithm structure.

III. SCHEME DESIGN

P1 is a MINLP problem. To address it, we develop an iter-
ative optimization scheme based on block coordinate descent
technique that combines convex optimization and Gray Wolf
algorithm (BCD-CONGW). More precisely, we first split P1
into two sub-problems, as shown in Fig. 2. Among them, one
optimizes the allocation of computing resources, assuming that
offloading strategy is known; the other optimizes the offloading
strategy, under the assumption that the computing resource
allocation is known. These two problems are alternatively solved
in each iteration, until convergence. In other words, when the
improvement rate of the last two iterations is less than a pre-
set threshold τ , the iteration is terminated, and the computing
resource allocation and offloading strategies are finalized.

A. Resource Allocation

At the beginning, our model arbitrarily initializes the offload-
ing strategy, and first copes with the resource allocation problem.
Without loss of generality, let us denote the known offloading
strategy of any iteration r byγ(r) = {a(r),b(r), ε(r)} and plug it
into (29), yielding the mathematical form of resource allocation
problem P2 as follows:

[P2] min
f
ψ
(
f ,γ(r)

)
(30)

s.t. :

N∑
i=1

εs
(r)

i fi ≤ Fs,max (30a)

N∑
i=1

εm
(r)

i fi ≤ Fm,max (30b)

N∑
i=1

εc
(r)

i fi ≤ Fc,max (30c)

Proposition 1: P2 is a convex problem.
Proof: According to optimization theory, when the Hessian

matrix of a function is positive definite, the function is convex.
By differentiating (30), we get

∂ψ(f ,γ(r))

∂fi

=
1
N

{
2
(
1−a(r)i

)
(1−λi)κfiZi−

(
1−a(r)i b

(r)
i εs

(r)

i

)
λiZif

−2
i

}
(31)

Then, the following Hessian matrix is obtained:

HN×N =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2ψ(f ,γ(r))
∂f 2

1

∂2ψ(f ,γ(r))
∂f1∂f2

· · · ∂2ψ(f ,γ(r))
∂f1∂fN

∂2ψ(f ,γ(r))
∂f2∂f1

∂2ψ(f ,γ(r))
∂f 2

2
· · · ∂2ψ(f ,γ(r))

∂f2∂fN
...

...
. . .

...
∂2ψ(f ,γ(r))
∂fN∂f1

∂2ψ(f ,γ(r))
∂fN∂f2

· · · ∂2ψ(f ,γ(r))
∂f 2

N

⎞
⎟⎟⎟⎟⎟⎟⎠
(32)

Since fi > 0, ∀i ∈ N , there is

∂2ψ(f ,γ(r))

∂f 2
i

> 0,
∂2ψ(f ,γ(r))

∂fi∂fj
= 0, ∀j �= i (33)

which implies that matrix HN×N is positive definite [33], and
hence ψ(f ,γ(r)) is a convex function. Meanwhile, as the con-
straints in P2 are linear, we have that P2 is a convex optimization
problem, and it can be efficiently solved. �

B. Task Offloading Strategy

By solving the resource allocation problem in iteration r,
we obtain an optimal f (r+1). Using this optimal value, the
non-convex offloading strategy problem of the same iteration
is formulated as follows:

[P3] min
γ
ψ
(
f (r+1),γ

)
(34)

s.t. :

N∑
i=1

εsif
(r+1)
i ≤ Fs,max (34a)

N∑
i=1

εmi f
(r+1)
i ≤ Fm,max (34b)

N∑
i=1

εcif
(r+1)
i ≤ Fc,max

(27a) ∼ (27e), (27i) (34c)
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Then, we relax the discrete variables and convert P3 into P4:

[P4] min
a,b,ε

ψ
(
f (r+1),a,b, ε

)
(35)

s.t. : 0 ≤ ai ≤ 1, ∀i ∈ N (35a)

0 ≤ bi ≤ 1, ∀i ∈ N (35b)

0 ≤ εsi ≤ 1, ∀i ∈ N (35c)

0 ≤ εmi ≤ 1, ∀i ∈ N (35d)

0 ≤ εci ≤ 1, ∀i ∈ N (35e)

N∑
i=1

εsif
(r+1)
i ≤ Fs,max (35f)

N∑
i=1

εmi f
(r+1)
i ≤Fm,max (35g)

N∑
i=1

εcif
(r+1)
i ≤ Fc,max

(27i) (35h)

P4 minimizes a non-convex objective function subject to
linear constraints. Currently, there exists a large number of
intelligent algorithms to solve this problem. Through compar-
ative research, we adopt an offloading-strategy-making scheme
based on the Gray Wolf algorithm [34]. As the name sug-
gests, Gray Wolf algorithm originates from the hierarchy and
hunting behaviour of wolves. Under normal circumstances, the
algorithm aims at continuous optimization problems, and there
are few applications involving 0-1 programming problems. In
this article, the discrete variables are relaxed and brought into
the Gray Wolf algorithm model for solution. Considering that
standard Gray Wolf algorithm has certain limitations and in this
article proposes an improved variant of it based on elite strategy,
which can effectively reduce the number of iterations and avoid
falling into the local optimal solution to a certain extents easy
to fall into the local optimal solution. The algorithmic steps are
listed in Algorithm 1, and the details are provided in Appendix A
and B.

C. Joint Resource Allocation and Task Offloading Strategy

In summary, the optimal resource allocation and offloading
strategy can be obtained by alternatively fixing one variable and
optimizing another variable. Specifically, the MINLP problem
P1 is divided into two sub-problems, namely the resource allo-
cation problem P2 and the offloading strategy problem P3. We
have mathematically proved that P2 is a convex optimization
problem, and have also converted P3 into a relaxed problem
P4. According to [35], this kind of problem will eventually
converge in the Block Coordinate Descent (BCD) technique.
To this end, this section gives an iterative optimization scheme
based on block coordinate descent technique that combines
convex optimization and Gray Wolf algorithm (BCD-CONGW),
for solving problem P1. The details are provided in Algorithm 2.

Algorithm 1: Grey Wolf Algorithm with Elite Strategy.
Input: Number of wolves M , number of iterations K.
Output: Offloading strategy γ
1: Initialization: Randomly generate an initial wolf pack

of size M , and relax decision variables;
2: Compute the fitness value ( (35)) of each gray wolf in

the initial wolf pack, and determine the division levels
α, β, δ, ω;

3: for k = 1:K do
4: Surround, hunt, and attack prey (i.e., equations

(36)–(41) in Appendix A).
5: Compute the fitness value of all gray wolves.
6: According to the fitness value, the wolves are

re-divided into four levels.
7: Inferior wolves in the pack learn from elite wolves

and update their positions (i.e., equations (42)-(43)
in Appendix B).

8: k = k + 1.
9: end for

Algorithm 2: BCD-CONGW Scheme.
Input: Number of vehicles N , number of wolves M ,
number of iterations K, threshold τ .

Output: Resource allocation f *, offloading strategy γ*.
1: Initialization: Initialize offloading strategy γ(0), and

set the iteration number r = 0.
2: while τ < ε do
3: Substitute γ(r) into P2, and obtain the optimal

solution f (r+1) through convex optimization
algorithm.

4: Substitute f (r+1) into P4, and solve the problem by
Algorithm 1 to obtain offloading strategy γ(r+1).

5: r = r + 1.
6: Compute the growth rate ε.
7: end while

IV. NUMERICAL EXAMPLES

In order to evaluate the proposed algorithm, we carry out
simulations using MATLAB. Specifically, we used the distri-
bution of 5G base stations near Shanghai Disneyland in China,
as shown in Fig. 3. There is one MBS covers the whole area,
four SBS’s distributed on a 1500-meter road. The communi-
cation ranges of MBS and SBS are 1.4 km and 0.5 km. The
bandwidth of each channel is B=5MHz [36]. MBS transmit
power pm = 46 dBm, SBS transmit power ps = 30 dBm,
Gaussian white noise σ2 = −147 dBm, interference between
MBS and SBS I = 100σ2, channel attenuation model ui =
127 + 30 log(di) (di is the distance between the base station and
vehicle i), channel gain between the base station and vehicle i
is Gi = 10−ui/10.

Moreover, the computation frequency on each vehicle is
0.5 GHz. Based on existing research [37], [38], the computing
resources of SDC, MDC, and CDC are Fsmax = 20 GHz,
Fmmax = 100 GHz, and Fcmax = 300 GHz. The latencies
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Fig. 3. BSs deployment near Shanghai Disneyland in China.

TABLE I
SIMULATION PARAMETERS

for transferring tasks between data centers are Tsm = 2 ms,
Tsc = 5 ms, and Tmc = 1.5 ms. The number of iterations for
Gray Wolf algorithm is 30, and the number of gray wolves is 30.
The threshold of BCD-CONGW scheme is τ = 0.01.

We compare BCD-CONGW with three schemes mentioned
below. Note that the maximum number for iterations of the three
schemes is 150, and the number of individuals is 30.

1) BCD-CONBOA: The algorithm structure is the same as
BCD-CONGW, but use butterfly of algorithm (BOA) to
optimize problem P4 [39].

2) BCD-CONPSO: The algorithm structure is the same
as BCD-CONGW, but use Particle Swarm optimization
(PSO) to optimize problem P4 [40].

3) BCD-CONSSA: The algorithm structure is the same as
BCD-CONGW, but use Squirell Search Algorithm (SSA)
to optimize problem P4 [41].

A. Analysis of CPU Cycles Required by the Tasks

In what follows, we randomly distribute 150 vehicles, each of
which generates a task. The data size per task fulfils a uniform
distribution between 0.7 MB and 0.8 MB. The maximum toler-
able latency for each individual task is 0.7 s. Besides, the CPU
transfer required for completion of the task is between 2000
megacycles and 3000 megacycles.

Fig. 4. Relationship between required CPU cycles and average cost.

Fig. 5. Relationship between required CPU cycles and average latency.

After 50 simulations, average results are obtained. In Fig. 4,
the relationship between the task cost and the number of required
CPU cycles is analyzed. As the number of required CPU cycles
increases, the cost rises up. By observation, BCD-CONSOA
scheme has the worst performance. In addition, the proposed
BCD-CONGW scheme is better than the BCD-CONSSA, BCD-
CONBOA and BCD-CONPSO schemes, reducing the cost by
25.4%, 20.8%, 17.2%, under 2500 megacycles, respectively.

With respect to the latency, we show results in Fig. 5. Therein,
the larger the task size, the greater the latency. As can be seen,
the latency of three offloading schemes is smaller than that of the
BCD-CONSSA, and the gap widens as the number of required
CPU cycles increases. Moreover, for all CPU cycles in Fig. 5,
BCD-CONGW scheme outperforms the others.

In terms of energy consumption (as shown in Fig. 6), the per-
formance of four offloading schemes remains stable against the
required CPU cycles. Furthermore, the proposed BCD-CONGW
scheme generates the lowest energy consumption among all
offloading schemes.

As the number of CPU cycles required by tasks increases,
task offloading decision is more inclined to performing tasks
on data center with richer computing resources. As can be seen
from the simulation results, the average cost and delay of tasks
increase and the energy consumption remains unchanged, BCD-
CONGW scheme has the best effect all the time. This is because
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Fig. 6. Relationship between required CPU cycles and average energy con-
sumption.

Fig. 7. Relationship between task data size and average cost.

by adding the elite strategy, the iterative times of the Grey Wolf
algorithm are optimized and it is less likely to fall into the local
optimal. Although the cost and delay increase with the number
of CPU cycles required by tasks, the BCD-CONGW scheme can
still obtain better solutions than other algorithms.

B. Analysis of Data Size Per Task

Now, we assume that the number of CPU cycles required to
complete a task is uniformly distributed between 700 megacy-
cles and 800 megacycles. In addition, the amount of data per task
is 0.5 MB and 1.5 MB. After 50 simulations, average results are
obtained.

In Fig. 7, the impact of data size on cost is analyzed. As
the amount of data increases, the cost of offloading schemes
gradually increases. Notably, the proposed BCD-CONGW
scheme has a better optimization effect than its counterparts.

In Figs. 8 and 9, it can be seen that our BCD-CONGW scheme
has a good optimization effect in terms of latency and energy
consumption.

As the amount of task data increases, the transmission delay
and energy consumption of task data increase. The offload-
ing decision is more inclined to transferring the task to the
nearest data center, and the cost increase is inevitable. As can

Fig. 8. Relationship between task data size and average latency.

Fig. 9. Relationship between task data size and average energy consumption.

be seen from the figure, BCD-CONGW scheme has always
been superior to other algorithms in terms of latency, energy
consumption and cost. With the increase of task data amount,
the advantages of BCD-CONGW scheme continue to expand in
terms of energy consumption and cost, because BCD-CONGW
scheme has higher efficiency and faster convergence speed. It
can better mitigate the rise in costs and energy consumption.

C. Analysis of the Number of Tasks

In the following text, the amount of data per task is between
1 MB. Meanwhile, the number of vehicles is between 50 and
90. After 50 simulations, average results are obtained.

From Figs. 10–12, we demonstrate performance with respect
to the number of tasks. As the number of tasks increases,
the cost, latency, and energy consumption gradually increase.
Obviously, the proposed BCD-CONGW scheme outperforms
the other schemes. Indeed, when the number of tasks increases,
BCD-CONGW scheme can (i) effectively allocate computing
resources, (ii) regulate task offloading, and (iii) reduce the
average cost, latency, and energy consumption. Intuitively, this
is because the Gray Wolf algorithm based on elite strategy has
faster convergence speed, which enables BCD-CONGW scheme
to obtain better solutions in computing resource allocation and
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Fig. 10. Relationship between the number of tasks and average cost.

Fig. 11. Relationship between the number of tasks and average latency.

Fig. 12. Relationship between the number of tasks and average energy con-
sumption.

offloading strategy within a limited number of cycles, thus
reducing the cost, delay and energy consumption.

D. Further Evaluation

First, we validate the employment of our block coordinate
descent scheme. For this purpose, we relax the discrete variables
and directly solve the relaxed optimization problem by our
improved GWO based on elite strategy. From Figs. 13 and 14,

Fig. 13. Relationship between required CPU cycles and average latency.

Fig. 14. Relationship between task data size and average energy consumption.

Fig. 15. Relationship between the number of tasks and average cost.

it can be seen that BCD-CONGW scheme is much better than
direct application of our improved GWO in terms of latency.

Next, we aim to demonstrate that the improved GWO based
on elite strategy outperforms the original GWO [42]. To this
end, we replace the improved GWO in BCD-CONGW scheme
by the original GWO, and refer to it as the BCD-CONOGW
scheme. From the simulation results in Fig. 15, it can be seen
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Fig. 16. Relationship between required CPU cycles and average cost.

Fig. 17. Relationship between required CPU cycles and average energy con-
sumption.

Fig. 18. Relationship between the number of tasks and average cost.

that BCD-CONGW scheme has obvious advantages over BCD-
CONOGW scheme, with a performance gap rising as the number
of vehicles increases. This is because the elite strategy enables
the dominant individuals in each iteration to be retained, thus
improving the convergence accuracy and solution efficiency of
the original GWO.

Fig. 19. Relationship between the number of tasks and average energy con-
sumption.

Finally, we take a latest algorithm, iNSGA2 [43], to compare
against our improved GWO based on elite strategy. In detail,
we replace the improved GWO in BCD-CONGW scheme by
iNSGA2, and refer to it as the BCD-CONiNSGA2 scheme.
From Figs. 16–19, it can be seen that BCD-CONGW has a great
advantage in terms of cost and energy consumption. Indeed, for
our GWO based on elite strategy, both the search range and
the convergence accuracy have been significantly improved. At
the same time, it is less prone to falling into the local optimal
solution.

V. CONCLUSION

In this article, an MEC system for the Internet of Vehi-
cles has been constructed. In this system, we have proposed
a BCD-CONGW offloading scheme. The scheme has strong
optimization capabilities in terms of cost, latency and energy
consumption, and can effectively deal with large task data and
high complexity computing tasks by alternatively solving two
optimization problems.

Simulation results show that, with the increase of the number
of CPU cycles, task data size and the number of vehicles, the pro-
posed scheme can effectively allocate the computing resources
and adjust offloading strategy of tasks, thus, the average cost,
latency and energy consumption of the system are reduced.

APPENDIX A
GRAY WOLF ALGORITHM

Main steps of Gray Wolf algorithm are shown below.
a) Surround

x (k + 1) = xp(k)− p · d (36)

d = |q · xp(k)− x(k)| (37)

Here, k is the iteration index in this algorithm and “·” means
entry-wise multiplication. x(k) is the position of an arbitrary
gray wolf; xp(k) is the position of the prey; d is the distance
between the wolf and the prey. p = 2�r1 − �1 and q = 2r2,
with r1 and r2 being two random vectors whose entries all reside
in [0,1]. Convergence factor � is a key parameter to balance the
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search and development capabilities of the algorithm. Its value
decreases linearly from 2 to 0 as k increases. The calculation
formula is (41).

b) Hunt

x (k + 1) =
x1 + x2 + x3

3
(38)

⎧⎨
⎩
x1 = xα(k)− p1 · dα
x2 = xβ(k)− p2 · dβ
x3 = xδ(k)− p3 · dδ

(39)

⎧⎨
⎩
dα = |q1 · xα(k)− x(k)|
dβ = |q2 · xβ(k)− x(k)|
dδ = |q3 · xδ(k)− x(k)|

(40)

The wolves are divided into four levels according to their fitness
values. The top three levels are α, β, δ, each containing one
wolf. All remaining wolves belong to the fourth level ω. Here,
the positions of wolves in α, β, δ levels are represented by
xα,xβ ,xδ . Meanwhile, dα, dβ , dδ are the distances between
an arbitrary wolf and the top-three wolves. We use (38)–(40) to
update the positions of all gray wolves. Therein, p1, p2, p3 and
q1, q2, q3 are the same as aforementioned.

c) Attack: In (41), K represents the maximum number of
iterations. When � decreases from 2 to 0, the entries in p also
change within the same interval, indicating the transit from
global search to local search.

� = 2 − 2k/K (41)

APPENDIX B
IMPROVED GRAY WOLF ALGORITHM BASED ON

ELITE STRATEGY

In order to avoid local optimal solution and premature con-
vergence as much as possible, this article proposes an improved
Gray Wolf algorithm based on the elite strategy. This method
divides wolves into elite wolf and inferior wolf groups according
to the fitness value. Wolves in the inferior group need to learn
from their counterparts in the elite group.

Assume that the gray wolves are collected by G = {x1,
x2, . . . ,xm}. First, let us calculate the average fitness value of
G as Avg. Then, construct Ginf = {x|f(x) > Avg,x ∈ G} as
the inferior group and Gelite = {x|f(x) ≤ Avg,x ∈ G} as the
elite group. Each gray wolf in Ginf should learn from a random
elite wolf xelite in Gelite. The probability of elite-wolf selection
is given in (42). Moreover, the inferior gray wolf learns from the
elite wolf through (43), and becomes a new wolf xnew. Here,
xmax, xmin are the upper and lower bounds of the optimization
spaces, and F ∈ (0, 2) is a variation factor.

P (xelite) =
Avg − f (xelite)∑

x∈Gelite

(Avg − f (x))
(42)

xnew = xelite + F (xmax − xmin) (43)

In the algorithm, let the total number of gray wolf individuals
beM , the individual dimension be n. Suppose: t0 is the time for
setting the initial parameters, t1 is the time for initializing each

dimension of gray wolf individuals, f(n) is the time for calcu-
lating the individual fitness value per gray wolf individual [44],
[45], and t2 is the time for the positions of wolves in α, β, δ
levels. Then the time complexity of the preparation phase is:

T1 = O (t0 +M · (n · t1 + f(n)) + t2) = O(n+ f(n))
(44)

After entering the iteration, the max number of iterations is K.
Suppose that the time for calculating coefficient vectors p and q
is t3. The time for calculating average fitness is t4, and the time
for comparing individual fitness values is t5. If l represents the
number of individuals whose fitness values are greater than the
average fitness size Avg, t6 is the time for calculating the distance
between each individual in the population and theα, β, δ wolves
by formula (40), t7 is the time of position update by formula (39),
t8 is the time of average position calculation by formula (38), t9
is the time to process the boundary of each dimension of gray
wolf individuals, t10 is the time to update the wolf positions of
α, β, δ, then the time complexity of the iteration phase is:

T2 = O (Mt3 + t4 + t5 + l (3 (t6 + t7) + t8 + nt9 + f(n)

+t10)) = O(n+ f(n)) (45)

To sum up, the total time complexity of the improved GWO
algorithm is:

T = T1 +KT2 = O(n+ f(n)) (46)
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