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Abstract: This paper presents a multi-grating-based cross-dispersed spatial heterodyne spec-
trometer (MGCDSHS). The principle of generation of two-dimensional interferograms for two
cases, where the light beam is diffracted by one sub-grating or two sub-gratings, is given and
equations for the interferogram parameters in these two cases are derived. An instrument design
with numerical simulations is presented that demonstrates the spectrometer’s ability to simulta-
neously record separate interferograms corresponding to different spectral features with high
resolution over a broad spectral range. The design solves the mutual interference problem caused
by overlapping of the interferograms, and also provides the high spectral resolution and broad
spectral measurement range that cannot be achieved using conventional SHSs. Additionally, by
introducing cylindrical lens groups, the MGCDSHS solves the throughput loss and light intensity
reduction problems caused by direct use of multi-gratings. The MGCDSHS is compact, highly
stable, and high-throughput. These advantages make the MGCDSHS suitable for high-sensitivity,
high-resolution, and broadband spectral measurements.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

As a new type of static spatial modulation spectrometer, the spatial heterodyne spectrometer
(SHS) integrates the characteristics of a diffraction grating with those of a Fourier transform
interferometer [1–3]. The SHS can heterodyne interference fringes with a frequency corresponding
to the Littrow angle of the diffraction grating [2]. This spectrometer is used widely in the
measurement of quantities that include chemical compounds [4–6], minerals [7–9], and emissions
from astrophysical targets [10–12]. The Nyquist sampling theorem indicates that there is an
inverse relationship between the requirements for the spectral range and the spectral resolution in
the SHS [13]. Additionally, as a Fourier transform-type interferometer, the SHS is able to measure
interferograms generated by multiplexing of the interference fringes of all spectral features
[14,15]. The two characteristics described above cause two problems in practical applications of
the SHS.

First, the mutual restraint between the spectral range and the spectral resolution limits further
improvements in the spectral performance. The tunable SHS is able to record high resolution and
broadband spectral information by performing multiple measurements of different spectral ranges
through use of moving parts [16–18], but this leads to insufficient instrument stability and thus it
cannot obtain all the spectral information required in a single measurement. Replacement of the
conventional gratings in the spectrometer with multi-gratings consisting of multiple sub-gratings
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with different groove densities in the SHS can break through the above limitation and allow
broadband, high-resolution spectra to be acquired in a single-shot measurement [19–21]. On each
sub-grating, only light with a spectral feature that lies within the spectral range of the sub-grating
can be diffracted to generate useful interference fringes and transformed into a corresponding
spectrum; the remaining light cannot form useful interference fringes. Because the polychromatic
incident light beam irradiates the multi-gratings directly, the intensity of the light that does not
irradiate the corresponding sub-grating is wasted. This waste results in a loss of throughput
and ultimately in a reduction in the intensity of the interference fringes, which will then be
exacerbated when there are additional sub-gratings contained in a multi-grating.

The second problem is that, as a result of the overlapping of the interferograms caused by the
multiplexing characteristic of the SHS, the signal-to-noise ratio will decrease as the number of
spectral features in the spectrum increases [22,23]. The most serious problem caused by the
overlapping problem is that all spectral features in the measurement range cannot be measured if
there is a spectral feature with oversaturated high-intensity light. To overcome this overlapping
problem, Sheinis et al. used the combination of a cross-dispersing prism with echelle gratings
of high orders [24] to separate the interferograms from 17 different wavebands, while Egan et
al. paired an Amici prism spectrometer in series with an SHS [25] to achieve cross-dispersion.
However, the dispersion ability of the prism is not as good as that of a grating. A long optical
path or multiple refractions would be required to achieve a good dispersion effect when using
a prism, which would then lead to an instrument with excessive volume or weakening of the
intensity of the incident light. To achieve a better cross-dispersion effect, we previously proposed
the cross-dispersed SHS (CDSHS) with one-dimensional interferograms [26]. The CDSHS
can use different rows on the detector to record interferograms with different spectral features
by introducing a longitudinal diffraction grating. Although the CDSHS offers advantages in
terms of cross-dispersion, there is still considerable room for improvement in the broadband
high-resolution measurements mentioned above. In addition, the model of the SHS used in the
CDSHS was based on the basic grating equation and can only measure a one-sided waveband of
the Littrow wavelength because of the ambiguity related to wavelengths that are symmetrical to
the Littrow wavelength [2]; this means that this model is not suitable for measurements performed
using multi-gratings.

In this paper, a multi-grating-based CDSHS (MGCDSHS) is described. The principle and
the mathematical model of the MGCDSHS are derived and a numerical simulation treatment
with a theoretical design is presented. The spectrometer design replaces the conventional grating
used in the SHS with the multi-grating to realize both a broad spectral range and high spectral
resolution simultaneously. The combination of the cylindrical lens group with the reflection
grating can reduce the size of the light beam in the longitudinal plane and distribute light beams
with different spectral features to corresponding sub-gratings with corresponding spectral ranges,
and this allows both the loss of throughput and the intensity reduction of the fringes to be avoided.
The designed spectrometer can distribute the two-dimensional interferograms corresponding
to different spectral features recorded by different position on a detector with no interference,
which overcomes the disadvantage of the overlapping problem and ensures that other spectral
features can still be measured under the condition of the oversaturated high-intensity light at a
specific spectral feature. Rolling one multi-grating around its central normal expands the effective
spectral range for each sub-grating and makes the model suitable for the multi-grating, and
introduction of the conical diffraction equation can enable a more accurate mathematical model
of the two-dimensional interferogram generated by the MGCDSHS to be built. A numerical
simulation over a wavelength range from 530 nm to 645 nm is presented. The component design
process and the data used in the simulation process are given in detail, and the simulation results
are presented in the form of a beam distribution schematic, the interferograms on the detector,
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and the corresponding detailed spectrum. Finally, conclusions drawn from the work in this article
are given.

2. Principle

2.1. Light beam diffracted by one sub-grating

Figure 1(a) illustrates the optical layout of the MGCDSHS, which integrates a cylindrical lens
group with a reflection grating, a multi-grating-based SHS (MGSHS), and a single cylindrical
lens. The MGSHS integrates one beam splitter with two multi-gratings, designated MG1 and
MG2, which combine multiple independent sub-gratings with different groove densities, as shown
in Fig. 1(b), and are set in the Littrow condition. Multi-grating MG1 is rolled by a small angle
around the center normal of its groove facet to generate two-dimensional fringes. Figure 2(a) and
2(b) illustrate the equivalent light paths for a polychromatic light beam traveling to and leaving
from multi-grating MGi (i= 1,2) in the longitudinal plane and in the lateral plane, respectively.
The collimated incident light beam from the sample is first reduced in size by the cylindrical lens
group and then dispersed into several light beams by reflection grating Gr in the longitudinal
plane (i.e., in the x-y plane). Each light beam corresponds to a different spectral feature and each
beam is divided into two light beams by the beam splitter. These two groups of light beams then
travel to and are diffracted by the corresponding gratings in multi-gratings MG1 and MG2 of the
MGSHS in the lateral plane (i.e., in the z-x plane). After they leave the multi-gratings and are
combined by the beam splitter, these coherent beams are collimated by the cylindrical lens set
after the MGSHS. Finally, the two-dimensional fringes corresponding to the different spectral
features produced by the interference of these coherent beams are received independently by
different regions on the area-array detector. The detection plane is set at a distance away from
the back focal length of the cylindrical lens.

Fig. 1. (a) Optical layout of the multi-grating-based cross-dispersed spatial heterodyne
spectrometer (MGCDSHS), and (b) the diagram of the light beams on the coordinate system
of the multi-grating.

Throughout this paper, we assume that each row of the area-array detector is oriented parallel to
the x-axis of the detector plane, and that each column of the area-array detector is oriented parallel
to the y-axis of the detector plane. Let the polychromatic light source cover the wavenumber
range from σmin to σmax (i.e., the wavelength range from λmin= 1/σmax to λmax= 1/σmin).



Research Article Vol. 31, No. 11 / 22 May 2023 / Optics Express 18193

Fig. 2. Equivalent light path diagrams before and after multi-grating MGi (i= 1,2) for the
different wavenumbers (a) in the longitudinal plane and (b) in the lateral plane.

Figure 1(b) shows the diagram of the multi-grating, which is the most important component in
the MGSHS. For a multi-grating that combines NMG gratings with different groove densities,
each sub-grating contains a unique Littrow wavenumber σjL and associated groove density 1/dj
(j= 1,2, . . . , NMG). The Littrow condition for each sub-grating in the multi-gratings satisfies the
following:

2σjL sinαL =
1
dj

j = 1, 2, . . . , NMG (1)

where αL is the Littrow angle of the multi-grating. From Eq. (1), when the Littrow angle is
determined, the relationship between the Littrow wavenumber and the groove density for each
sub-grating can be written as follows:

1/d1: 1/d2 : . . . : 1/dj−1: 1/dj = σ1 : σ2 : . . . : σj−1 : σj (2)

Let wGj and hGj denote the width and height of each sub-grating, and let wMG and hMG denote
the width and height of the multi-grating, respectively. By assuming that all the sub-gratings
have the same width, the different regions of the multi-gratings can be expressed as:

MG(xmg, ymg) =

NMG∑︂
j=1

rect
(︃
xmg

wGj

)︃
rect

(︃
ymg − yGj

hGj

)︃
= rect

(︃
xmg

wMG

)︃
rect

(︄
ym − yG1 + yGNMG −

hG1−hGNMG
2

yG1 − yGNMG +
hG1+hGNMG

2

)︄
= rect

(︃
xmg

wMG

)︃
rect

(︃
ym − yMG

hMG

)︃
(3)

where yGj is the ymg-axis position of the center of each sub-grating Gij, the xmg-axis position of
the center of each sub-grating is on the ymg-axis, and yMG is the ymg-axis position of the center of
the multi-grating. The relationship between hGj, hGj−1 and yGj−1, yGj for each pair of adjacent
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gratings Gij−1 and Gij can be expressed as:

yGj−1 − yGj =
hGj−1

2
+

hGj

2
j = 2, . . . , NMG (4)

In Fig. 2, a typical incident light beam with height hL and width wL is drawn, and the light is
first converged by cylindrical lens CL1 with focal length f 1 and then collimated by cylindrical
lens CL2 with focal length f 2 (where f 1 > f 2 > 0) in the longitudinal plane, and the two cylindrical
lenses are placed according to the sum of their back focal lengths. Therefore, after traveling
through the cylindrical lens group, the height hin and the width win of the light beam can be
expressed as: ⎧⎪⎪⎨⎪⎪⎩

hin =
f2
f1 hL

win = wL
(5)

This incident light beam is then dispersed into several beams in the longitudinal direction with
different wavenumbers by reflection grating Gr. The equation for the dispersion is given by:

sin(α1 − φin) − sin
(︂ π
2
− α1 + α2

)︂
=

1
σdr

(6)

where 1/dr is the groove density of grating Gr, σ is the wavenumber of the incident light,
and α1 and α2 are the tilt angle of grating Gr and the deflection angle of the incident light
beam, respectively. When the light beams pass into the MGSHS, the angle of incidence in the
longitudinal plane φin can be obtained using:

φin(σ) = α1 − sin−1
(︃

1
σdr
+ cos(α1 − α2)

)︃
(7)

According to Eq. (7), when the polychromatic light enters the MGSHS, the ymg-axis position
of the incident beam and the sizes of the beams on the multi-grating MGi (i= 1,2) vary with the
wavenumber, as shown in Fig. 2, and these parameters can be expressed as:

YMG(σ) = l1 tan φin (8)⎧⎪⎪⎨⎪⎪⎩
HMG(σ) = hin

cos(α1−ϕin)
sin(α1−α2) cosϕin

WMG =
win

cosαL

(9)

where YMG is the ymg-axis position of the center of the light beams on multi-grating MGi, and
HMG and WMG are the height and width, respectively, of the light beams on the multi-grating
MGi. It is assumed that the widths and heights of the light beams and the multi-gratings satisfy
the following: ⎧⎪⎪⎨⎪⎪⎩

wG>WMG

hGj>HMG
(10)

For the first situation shown in Fig. 3, the light beam is diffracted by only one sub-grating,
designated Gij, on the multi-grating MGi, and by combining Eq. (8) with Eq. (9), the function of
the diffracted light beam on the grating can be expressed as:

LS1(xm, ym,σ) = rect
(︃

xm

WS1

)︃
rect

(︃
ym − YS1

HS1

)︃
= rect

(︃
xm

WMG

)︃
rect

(︃
ym − YMG

HMG

)︃
(11)

where YS1 is the ymg-axis position of the center of the light beam on grating Gij, and HS1 and WS1
are the height and width of this light beam, respectively.
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Fig. 3. Schematic diagram of light beam diffracted by one sub-grating Gij.

Figure 4 illustrates the wavevector components in the Cartesian coordinate system and the
incoming and outgoing wavevectors for each sub-grating. The multi-gratings are positioned such
that the zmg-axis intersects them at the center normal of the groove facet. As shown in Fig. 4(a),
xc, yc, and zc represent the three coordinate axes of Cartesian coordinate system, the optical axis
lies in xc-zc plane and has an angle of α with the zc-axis, and the wavevector can be decomposed
into: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

kx = 2πσ cos φ sin(β + α) = 2πσ sin θ cos ρ

ky = 2πσ sin φ = 2πσ sin θ sin ρ

kz = 2πσ cos φcos(β + α) = 2πσ cos θ

(12)

where β is the angle between the projection of the wavevector on the xc-zc plane and the optical
axis, φ is the angle between the wavevector and the xc-zc plane, ρ is the azimuth angle between
the projection of the wavevector on the xc-yc plane and the xc-axis, and θ is the polar angle
between the wavevector and the zc-axis.

Fig. 4. (a) Wavevector components in Cartesian coordinate system, and diagrams of the
incoming and outgoing wavevectors of a multi-grating (b) with no roll and (c) with a roll
angle ε in the x–y plane.

Because of the diffraction of the reflection grating Gr, the propagation direction of the incident
light beams no longer lies perpendicular to the facet of the grating groove, and the incoming
and outgoing wavevectors are distributed over a conical plane [27–29]. Based on Eq. (12), the
generalized grating equations based on conical diffraction for the multi-gratings can be expressed
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as: ⎧⎪⎪⎨⎪⎪⎩
sin θout cos ρout + sin θin cos ρin =

1
σdj

sin θout sin ρout + sin θin sin ρin = 0
(13)

where ρin and ρout are the angle of incidence and the diffraction azimuth angle, respectively; and
θin and θout are the angle of incidence and the diffraction polar angle, respectively. Substituting
α=αL, and the incidence angles βin = 0 and φin(σ) in Eq. (12), combining with Eq. (13) can
calculate the diffraction angles β1out(σ), β2out(σ), φ1out(σ), and φ2out(σ).

As shown in Fig. 2(a), after they return from their corresponding multi-gratings and leave
the beam splitter, the light beams are then converged by cylindrical lens CL3, and are finally
received by the detector. According to the geometrical relationship and the characteristics of the
cylindrical lens, the refraction angles after the cylindrical lens in the longitudinal plane can be
expressed as: ⎧⎪⎪⎨⎪⎪⎩

tan φ1 =
YS1+(f3−l2) tanϕ1out

f3

tan φ2 =
YS1+(f3−l2) tanϕ2out

f3

(14)

where φ1 and φ2 are the refraction angles in the longitudinal plane of the central rays of the
converged light beams that are diffracted by multi-gratings MG1 and MG2, respectively; l1 is the
distance between reflection grating Gr and multi-grating MG1 or MG2, l2 is the distance between
the multi-grating and cylindrical lens CL3, and f 3 is the back focal length of cylindrical lens CL3.

When the coherent light beams are received by the detector as shown in Fig. 5, the y-axis
positions of the central rays of the light beams and the heights of the light beams at the detector
plane can be written as follows:⎧⎪⎪⎨⎪⎪⎩

Y1(σ) = YS1 − l2 tan φ1out − (f3 + l3) tan φ1

Y2(σ) = YS1 − l2 tan φ2out − (f3 + l3) tan φ2
(15)

⎧⎪⎪⎨⎪⎪⎩
H1(σ) =

l3
f3 HS1 cos φ1out

H2(σ) =
l3
f3 HS1 cos φ2out

(16)

where Y1 and Y2 are the y-axis positions of the centers of these light beams at the detector plane,
H1 and H2 are the heights of the light beams at the detector plane, and l3 is the distance between
the back focal plane of cylindrical lens CL3 and the detector.

As shown in Fig. 2(b), in the lateral plane, the diffracted light beams are not affected by the
cylindrical lens, and they travel to the detector with angles β1 = β1out and β2 = β2out. At the
detector plane, the x-axis positions of the central rays of the light beams and the widths of the
light beams can be expressed as follows:⎧⎪⎪⎨⎪⎪⎩

X1(σ) = (l2 + f3 + l3) tan β1
X2(σ) = (l2 + f3 + l3) tan β2

(17)

⎧⎪⎪⎨⎪⎪⎩
W1(σ) = WS1 cos(αL − β1)

W2(σ) = WS1 cos(αL − β2)
(18)

where X1 and X2 are the x-axis positions of the centers of the light beams at the detector plane,
and W1 and W2 are the widths of the light beams at the detector plane.

As Fig. 5 shows, as a result of the conical diffraction, the two groups of light beams partially
interfere at the detector plane. Combining Eqs. (15)–(18) can calculate the width WI and the
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Fig. 5. Diagrams of the two-dimensional interferograms corresponding to the different
spectral features on the area-array detector.

height HI of the interferograms, and the positions of the interferograms at the x-axis XI and
the y-axis YI , respectively. To obtain sufficient data from the interferograms while preventing
the interferograms that correspond to different spectral features from overlapping each other, it
is necessary to make a trade-off in terms of the sizes of the interferograms. As the schematic
diagram in Fig. 5 shows, at the detector, the size of each pixel is a, and the numbers of pixels in
each row and each column are M and N, respectively. Therefore, the width and the height of the
detector can be denoted by M× a and N× a, respectively. Assuming that the minimum width of
the interferograms is m (m ≤ 1) times the width of the detector, and that the minimum height of
the interferograms is n (n> 1) times the pixel size, the relationship between the parameters of
each interferogram and the parameters of the detector can be limited by the following:

|YI(σmax) − YI(σmin)| +
1
2
(HI(σmax) + HI(σmin)) ≤ Na (19)

HI(σ) ≥ na (20)

WI(σ) ≥ mMa (21)

The areas of the interferograms corresponding to the different spectral features on the detector
can be calculated using:

LI(x, y,σ) = rect
(︃
x − XI

WI

)︃
rect

(︃
y − YI

HI

)︃
(22)

The intensity distribution produced by the interference of two coherent light beams with the
same intensity that are characterized by the wavevectors

⇀

k1 and
⇀

k2 is:

I = B0(1 + cos((
⇀

k1 −
⇀

k2) ·
⇀r )) = B0(1 + cos((k1x − k2x) · x + (k1y − k2y) · y + (k1z − k2z) · z)) (23)

where B0/2 is the intensity of each light beam and ⇀r is the displacement vector. By referring to
the wavevector decomposition diagram shown in Fig. 4(a), the angle between the optical axis and
the z-axis α=0, substituting Eq. (12) into Eq. (23), and combining the resulting equation with
Eq. (22), we can obtain the final intensity distribution on the detector plane (i.e., x-y plane) for a
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polychromatic source of MGCDSHS as follows:

I(x, y) =
∞∫
0

B(σ) · (1 + cos(2πσ((cos φ1 sin β1 − cos φ2 sin β2)x + (sinφ1 − sin φ2)y)))rect
(︂

x−XI
WI

)︂
rect

(︂
y−YI
HI

)︂
dσ

(24)
Having been summarized previously by other researchers in the literature, the spectral resolution
δσ and the spectral range ∆σ of a conventional SHS with two-dimensional interference fringes
are given by:

δσ =
1

4WE sinαL
(25)

∆σ = Mδσ =
M

4WE sinαL
= σmax − σmin (26)

where WE is the effective light beam width on the grating, which can be calculated using:

WE = win/cosαL = wL/cosαL. (27)

As Eq. (26) shows, the inverse relationship between the spectral range and the spectral
resolution cannot be broken by using only a conventional grating in an SHS. By replacing the
conventional gratings with multi-gratings consisting of NMG (where NMG ≥2) gratings with
different groove densities and assuming that the effective spectral range of each grating is equal
and that these ranges are just not covered by each other, the overall spectral range ∆MG can then
be rewritten as [20]:

∆MG = ∆1 + ∆2 + · · · + ∆NMG = NMGMδσ (28)

where ∆j = σjmax − σjmin (j= 1, 2, . . . , NMG) is the spectral range of each sub-grating Gij in the
multi-gratings MGi (i= 1, 2). In this situation, the effective wavenumber range for each grating
Gij is from σjmin to σjmax, and σj−1 min= σjmax.

2.2. Light beam diffracted by two sub-gratings

Figure 3 shows a general case where the beams are diffracted by a single sub-grating of the
multi-grating in the MGCDSHS. However, because of the mosaic structure of the gratings, few
light beams travel to the boundary of the mosaic after being dispersed by the reflection grating Gr.
For the advanced case shown in Fig. 6(a), the light beam is diffracted by two different gratings,
designated Gij−1 and Gij, with different groove densities on the multi-grating MGi. In this case,
the light beam can no longer be regarded as a single beam after diffraction, and the function for
the diffracted light beams on the grating can be expressed as:

Ls2(xmg, ymg,σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ls21(xmg, ymg,σ) = rect

(︂
xmg

WS21

)︂
rect

(︂
ymg−YS21

HS21

)︂
= rect

(︂
xmg

WMG

)︂
rect

(︃ YMG+yGj−1
2 +

HMG−hGj−1
4

YMG−yGj−1+
HMG+hGj−1

2

)︃
on grating Gij−1

Ls22(xmg, ymg,σ) = rect
(︂

xmg
WS22

)︂
rect

(︂
ymg−YS22

HS22

)︂
= rect

(︂
xmg

WMG

)︂
rect

(︃ yGj+YMG
2 +

hGj−HMG
4

yGj−YMG+
hGj+HMG

2

)︃
on grating Gij

(29)
where YS21 and YS22 are the ymg-axis positions of the centers of the light beams on gratings
Gij−1 and Gij, respectively. HS21 and WS21 are the height and the width of this light beam on
grating Gij−1, and HS22 and WS22 are the height and the width of this light beam on grating Gij,
respectively.

For the first part of the light beam diffracted by grating Gij−1 with 1/dj−1, after the diffraction
angles are calculated using Eq. (12) and Eq. (13), and the substitutions of YS1, HS1, and WS1 with
YS21, HS21, and WS21, respectively, are made in Eqs. (14)-(18) to determine the angles φi1=φi and
βi1=βi (i= 1,2), the positions XI1=XI and YI1=YI , and the parameters HI1=HI and WI1=WI
for the corresponding interferogram. The interferogram corresponding to the second part of the
light beam diffracted by grating Gij with 1/dj can also be determined using the above analysis
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Fig. 6. Schematic diagram of (a) light beam diffracted by two gratings, Gij−1 and Gij, and
(b) corresponding two-dimensional interferograms on the detector.

by calculating the diffraction angles using Eq. (12) and Eq. (13) with groove density 1/dj, and
then making the substitutions of YS1, HS1, and WS1 with YS22, HS22, and WS22, respectively, to
finally determine φi2=φi, βi2=βi, XI2=XI , YI2= YI , HI2=HI , and WI2=WI . These two parts of
the interferograms finally form a mosaic interferogram with this wavenumber on the detector,
which can be calculated using:

LI(x, y,σ) = rect
(︃
x − XI1

WI1

)︃
rect

(︃
y − YI1

HI1

)︃
+ rect

(︃
x − XI2

WI2

)︃
rect

(︃
y − YI2

HI2

)︃
(30)

As shown in Fig. 6(b), and according to Eqs. (20) and (21), the trade-off between the parameters
of the mosaic interferogram in this advanced case can be limited by the following:

HI1(σ) + HI2(σ) ≥ na (31)⎧⎪⎪⎨⎪⎪⎩
WI1(σ) ≥ mMa

WI2(σ) ≥ mMa
(32)

Based on Eq. (24), we can determine the final intensity distribution on the detector plane in
the advanced case to be:

I(x, y) =
∞∫
0

B(σ) ·
(︂
(1 + cos(2πσ((cos φ11 sin β11 − cos φ21 sin β21)x + (sinφ11 − sin φ21)y)))rect

(︂
x−XI1
WI1

)︂
rect

(︂
y−YI1
HI1

)︂
+(1 + cos(2πσ((cos φ12 sin β12 − cos φ22 sin β22)x + (sinφ12 − sin φ22)y)))rect

(︂
x−XI2
WI2

)︂
rect

(︂
y−YI2
HI2

)︂)︂
dσ

(33)
When the incident light beam of the MGSHS with height hin and width win is dispersed by the

reflection grating Gr in the longitudinal direction and travels to the multi-gratings, the beams
are distributed from top to bottom on the multi-gratings according to their wavenumbers. The
beams with larger wavenumbers are distributed in the upper part, and the beams with smaller
wavenumbers are distributed in the lower part, and this is the same for the multi-grating and for
each sub-grating. As shown in Fig. 6(a), a light beam being diffracted by two different gratings
Gij−1 and Gij will cause losses of both throughput and intensity when the effective spectral
ranges of each grating are just not overlapped. Therefore, it is necessary to set sufficient effective
spectral ranges for the sub-gratings and cause them to be partially covered (i.e., σj−1 min < σjmax)
if we are to obtain the correct spectra from the intensity distributions of the two parts of the
interferogram in this case.

To ensure that all spectral features can be detected and that the losses in the throughput and
the intensity can be avoided, the light beam on the boundary between two gratings should be
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measured by the two gratings simultaneously (i.e., the wavenumber corresponding to the beam is
within the spectral range that is covered); then, the relationship between the parameters of each
pair of adjacent sub-gratings and the wavenumbers of the light beams being diffracted by these
two gratings can be limited by the following:⎧⎪⎪⎨⎪⎪⎩

YMG(σjmax) −
HMG(σj max)

2 ≥ yGj +
hGj
2 j = 2, . . . , NMG

YMG(σjmin) +
HMG(σjmin)

2 ≤ yGj −
hGj
2 j = 1, 2, . . . , NMG − 1

(34)

3. Numerical simulation with an example

If it is assumed that the wavelength range for the polychromatic incident light is from 530 nm
to 645 nm, i.e., that its wavenumber range is from 15503.8760 cm−1 to 18867.9245 cm−1, then
the entire spectral range in terms of the wavenumber of the light is 3364.0486 cm−1. In this
numerical simulation, we intend to design the multi-grating with four sub-gratings to realize
measurement of the spectral range. First, we must select four Littrow wavenumbers with uniform
wavenumber spacing within the wavenumber range, with σ1L = 18400 cm−1, σ2L = 17600 cm−1,
σ3L = 16800 cm−1, and σ4L = 16000 cm−1 being used here; by combining these wavenumbers
with Eq. (2), the relationship for the groove density of the four sub-gratings can be written as:

1/d1: 1/d2: 1/d3: 1/d4 = σ1L : σ2L : σ3L : σ4L = 23 : 22 : 21 : 20 (35)

Based on the existing detector size parameters, the number of valid pixels M×N and the
pixel size a on the detector are selected to be 2048× 2048 and 0.0135 mm, respectively. On
this basis, the maximum beam size that the detector can receive directly can be calculated to
be wL= hL= 27.6 mm. Other important parameters for the components used in this numerical
simulation are listed in Table 1.

Table 1. Key Parameters of the Components Used in the Numerical Simulation

l1 l2 l3 f 1 f 2 f 3 ε

160 mm 70 mm 50 mm 100 mm 10 mm 150 mm 0.01°

α1 α2 1/d WE wL hL αL

71.00 ° 17.00° 600 mm−1 28.06 mm 27.60 mm 27.60 mm 10.4426°

M N m n a

2048 2048 1/2 16 0.0135 mm

By combining Eq. (35) with Eq. (1) and Eqs. (25)–(27) and using the parameters above, the
groove densities of the four sub-gratings can be expanded in equal proportion by multiplying
them with different magnifications to achieve different resolutions, effective wavenumber ranges
(i.e., effective spectral ranges), and covering wavenumber ranges (i.e., covering spectral ranges),
as shown in Table 2.

Analysis of the data given in Table 2 shows that greater magnification leads to a higher groove
density and a higher corresponding resolution, but the effective wavenumber range and the
covering wavenumber range are both narrower. When the groove density is enlarged to a certain
extent, the resolution is high enough, but the effective wavenumber range is too narrow, which
will then lead to the wavenumber range not being covered between the two adjacent sub-gratings,
and thus will lead to discontinuity over the entire measurement range of the multi-grating.
Using the grating design principle described in the previous section and the data presented in
Tables 1 and 2, we can design a multi-grating with a wavenumber range from 15496.7319 cm−1

to 18903.2681 cm−1 and high spectral resolution of 0.4915 cm−1 when the magnification in
Table 2 is 29, with an overall spectral range of 3406.5362 cm−1. Each sub-grating has an effective
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Table 2. Effective Wavenumber Ranges and Covering Wavenumber Ranges for Different Groove
Densities

Magnification 1/d1 1/d2 1/d3 1/d4 δσ Effective
wavenumber

range

Covering
wavenumber

range

1 23 mm−1 22 mm−1 21 mm−1 20 mm−1 14.4925 cm−1 29680.5879 cm−1 28880.5879 cm−1

8 184 mm−1 176 mm−1 168 mm−1 160 mm−1 1.8093 cm−1 3705.5043 cm−1 2905.5043 cm−1

15 345 mm−1 330 mm−1 315 mm−1 300 mm−1 0.9619 cm−1 1970.0291 cm−1 1170.0291 cm−1

22 506 mm−1 484 mm−1 462 mm−1 440 mm−1 0.6525 cm−1 1336.3291 cm−1 536.3291 cm−1

29 667 mm−1 638 mm−1 609 mm−1 580 mm−1 0.4915 cm−1 1006.5363 cm−1 206.5363 cm−1

36 828 mm−1 792 mm−1 756 mm−1 720 mm−1 0.3923 cm−1 803.3360 cm−1 3.3360 cm−1

43 989 mm−1 946 mm−1 903 mm−1 860 mm−1 0.3264 cm−1 664.8648 cm−1 none

wavenumber range of 1006.5363 cm−1 and a covering wavenumber range of 206.5363 cm−1 for
every two adjacent sub-gratings.

To display the resolution of the MGCDSHS based on the designed multi-grating clearly,
Table 3 presents the wavelength differences corresponding to the wavenumber differences in the
different spectral regions. The data presented here indicate that the designed spectral resolution
in terms of the wavelength is 0.0138 nm at around 530 nm, 0.0168 nm at around 585 nm, and
0.0205 nm at around 645 nm.

Table 3. Wavelength Difference versus Wavenumber Difference for Several Wavelengths

Wavelength Wavenumber Wavelength difference Wavenumber difference

529.9736 nm 18868.8651 cm−1 529.9874 - 529.9736= 0.0138 nm 18868.8651 - 18868.3736= 0.4915 cm−1

529.9874 nm 18868.3736 cm−1 530.0012 - 529.9874= 0.0138 nm 18868.3736 - 18867.8821= 0.4915 cm−1

530.0012 nm 18867.8821 cm−1 530.0150 - 530.0012= 0.0138 nm 18867.8821 - 18867.3906= 0.4915 cm−1

530.0150 nm 18867.3906 cm−1

584.9704 nm 17094.8836 cm−1 584.9872 - 584.9704= 0.0168 nm 17094.8836 - 17094.3922= 0.4915 cm−1

584.9872 nm 17094.3922 cm−1 585.0040 - 584.9872= 0.0168 nm 17094.3922 - 17093.9007= 0.4915 cm−1

585.0040 nm 17093.9007 cm−1 585.0208 - 585.0040= 0.0168 nm 17093.9007 - 17093.4092= 0.4915 cm−1

585.0208 nm 17093.4092 cm−1

644.9700 nm 15504.5955 cm−1 644.9905 - 644.9700= 0.0205 nm 15504.5955 - 15504.1040= 0.4915 cm−1

644.9905 nm 15504.1040 cm−1 645.0110 - 644.9905= 0.0205 nm 15504.1040 - 15503.6125= 0.4915 cm−1

645.0110 nm 15503.6125 cm−1 645.0314 - 645.0110= 0.0205 nm 15503.6125 - 15503.1210= 0.4915 cm−1

645.0314 nm 15503.1210 cm−1

Because the wavenumber ranges of the sub-gratings have been determined, it is vital to
adjust the parameters of both the light beam and the reflection grating to ensure that the beam
is distributed reasonably over the multi-gratings and to determine an appropriate size for the
sub-gratings. As shown in Table 1, we selected cylindrical lens CL1 with a focal length f 1= 100
mm and cylindrical lens CL2 with a focal length f 2= 10 mm. According to Eq. (5), the beam
size in the longitudinal plane can be reduced by 10 times. Using the tangent value of the angle of
incidence in the longitudinal plane φin to represent the distribution of the incident light beams
on the MGSHS, Fig. 7(a) shows the simulated curve for tanφin with different wavenumbers
when diffracted by the reflection grating Gr with different values of the grating tilt angle α1
and the incident light deflection angle α2 when the grating line density 1/dr is fixed and the
beam positions corresponding to the maximum and minimum wavenumbers are distributed
symmetrically. Analysis of the curves in Fig. 7(a) shows that the distribution curve of the light
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beams changes rapidly at small wavenumbers but changes slowly at large wavenumbers; this
phenomenon is particularly obvious when the deflection angle α2 increases gradually from a
negative value.

Fig. 7. (a) Relationships between tanφin and the wavenumber shift for different angles α1
and α2 when the groove density 1/dr = 600 mm−1, and (b) distributions of the light beams at
the wavenumbers of σjmin, σjL, and σjmax (j= 1,2,3,4) when the parameters are determined.

On the basis of Eq. (8) and Eq. (15), the distributions of the centers of the light beams
on the multi-gratings YMG and the detector planes YI , YI1, and YI2 are related to tanφin, and
YMG in particular is proportional to tanφin. Based on Eq. (34), the ymg-axis position yGj and
height hGj for each sub-grating on the multi-grating should adapt to the light beam distribution
corresponding to its effective wavenumber range. If the tanφin curve changes too unevenly (as
indicated by the green and red dotted lines in Fig. 7(a)), the height of the sub-grating with an
effective wavenumber range at small wavenumbers will be too high, while the height of the
sub-grating with an effective wavenumber range at large wavenumbers will be too small, and
this is not conducive to fabrication of the multi-grating or to its adjustment in the optical path
during the experiments. In addition, an uneven distribution curve will also lead to a compact
interferogram distribution at large wavenumber and an unduly sparse interferogram distribution
at small wavenumbers. Therefore, it is better to select appropriate values for α1 and α2 to obtain
a tanφin curve that shows relatively smooth change for design of the multi-gratings and for the
distribution of the interferograms that can be accepted by the detector.

As shown in Table 2, when α1, α2, and l1 are determined, the main parameters of the
sub-gratings and the multi-grating can be determined accordingly, and these parameters are
shown in Table 4.

The distributions of the light beams at the wavenumbers σjmin, σjL, and σjmax (j= 1,2,3,4)
on the multi-grating are shown in Fig. 7(b). The figure shows that the maximum and minimum
wavenumbers corresponding to each effective wavenumber range are distributed reasonably on
the sub-gratings; this not only ensures the continuity of the spectral range, meaning that all the
wavenumbers can be detected, but also avoids losses in the throughput and the intensity. To
provide a better illustration of the distribution and the production of the interferograms, the
distributions of the light beams when diffracted by a single sub-grating and by two sub-gratings
on the multi-grating are shown in Fig. 8.

By combining Eqs. (15)–(18) with the data in Tables 1 and 4, we are able to calculate the size
parameters of the interferograms corresponding to the beam diffracted by one sub-grating, as
shown in Table 5, and by two sub gratings, as shown in Table 6. Table 5 shows that the minimum
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Table 4. Key Parameters of the Sub-gratings on the Multi-grating

Gi1
σ1max σ1min σ1L 1/d1 hG1 yG1

18903.2681 cm−1 17896.7319 cm−1 18400 cm−1 667 mm−1 7 mm 14.5 mm

Gi2
σ2max σ2min σ2L 1/d2 hG2 yG2

18103.2681 cm−1 17096.7319 cm−1 17600 cm−1 638 mm−1 7 mm 7.5 mm

Gi3
σ3max σ3min σ3L 1/d3 hG3 yG3

17303.2681 cm−1 16296.7319 cm−1 16800 cm−1 609 mm−1 8 mm 0 mm

Gi4
σ4max σ4min σ4L 1/d4 hG4 yG4

16503.2681 cm−1 15496.7319 cm−1 16000 cm−1 580 mm−1 14 mm -11 mm

MGi
σmax σmin ∆MG wMG hMG yMG

18903.2681 cm−1 15496.7319 cm−1 3406.5362 cm−1 36 mm 36 mm 0 mm

Fig. 8. Distributions of the light beams when (a) diffracted by one sub-grating at the
wavelength in Table 5 and (b) diffracted by two sub-gratings at the wavelength in Table 6 on
the multi-grating.

Table 5. Parameters of the Interferograms Corresponding to the Beam
When Diffracted by One Sub-grating

Wavelength Wavenumber yI (σ) hI (σ) wI (σ)

530 nm 18867.9 cm−1 13.1119 mm 0.4708 mm 23.7598 mm

550 nm 18181.8 cm−1 9.4754 mm 0.4401 mm 24.6153 mm

570 nm 17543.9 cm−1 5.5927 mm 0.4074 mm 26.7574 mm

585 nm 17094.0 cm−1 2.4741 mm 0.3808 mm 24.2172 mm

600 nm 16666.7 cm−1 -0.8724 mm 0.3514 mm 26.0021 mm

615 nm 16260.2 cm−1 -4.5151 mm 0.3197 mm 24.5473 mm

630 nm 15873.0 cm−1 -8.5618 mm 0.2836 mm 25.5242 mm

645 nm 15503.9 cm−1 -13.1988 mm 0.2420 mm 20.0451 mm
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Table 6. Parameters of the Interferograms Corresponding to the Beam
When Diffracted by Two Sub-gratings

Wavelength Wavenumber yI1(σ) hI1(σ) wI1(σ)

555 nm 18018.2 cm−1 8.4869 mm 0.2593 mm 22.8892 mm

582 nm 17182.1 cm−1 3.0723 mm 0.2188 mm 22.6886 mm

610 nm 16393.4 cm−1 -3.3428 mm 0.0094 mm 22.5868 mm

Wavelength Wavenumber yI2(σ) hI2(σ) wI2(σ)

555 nm 18018.2 cm−1 8.5983 mm 0.1618 mm 23.4490 mm

582 nm 17182.1 cm−1 3.1720 mm 0.1561 mm 23.2376 mm

610 nm 16393.4 cm−1 -3.2571 mm 0.3099 mm 22.8932 mm

height of the interferograms is hImin = 0.2420 mm, the minimum width of the interferograms
is wImin = 20.0451 mm, and the interferograms that correspond to the maximum wavenumber
and the minimum wavenumber are both located in the boundary of the detector plane, which
meets the requirements of Eqs. (19)–(21) for the sizes and positions of the interferograms
completely. Table 6 shows that the minimum summarized height of the mosaic interferograms
(hI1+ hI2)min = 0.3193 mm, the minimum width of the first part of the mosaic interferograms
wI1min = 22.5868 mm, and the minimum width of the second part of the mosaic interferograms
wI2min = 22.8932 mm, which meets the requirements of Eqs. (31) and (32) for the sizes of the
interferograms completely.

The interferograms generated by the MGCDSHS that were recorded simultaneously on the
detector plane corresponding to the results in Table 5 and Table 6 are shown in Fig. 9(a), and the
detailed spectrum obtained from Fourier transform processing and analysis of the corresponding
interferograms at the different positions on the detector plane in Fig. 9(a) is shown in Fig. 9(b).
The interferogram can have an arbitrary wavelength dependent phase without affecting the
recovery of the power spectral density. The red, yellow, green, and blue spectral lines in Fig. 9(b)
represent the spectra as measured by sub-gratings Gi1, Gi2, Gi3, and Gi4, respectively. Figure 9(c)
shows the measured spectrum of the entire spectral range produced by plotting all the individual
spectra on the coordinate axis. Because of the coverage of the spectral range between each pair
of adjacent sub-gratings and the existence of the mosaic interferograms, the individual spectra
in Fig. 9(c) must be spliced, and the spectra in the covering spectral range must restore the
peak intensity through superposition. The final spectrum generated by splicing and intensity
reduction of all these spectra is shown in Fig. 9(d). Because these interferograms are separated,
the problem of overlapping interferograms in traditional SHS is resolved, and this technique can
prevent a high-intensity light beam at a specific wavelength from interfering with measurement
of the interferogram of the other wavelengths; this is beneficial for detection of multiple spectral
features and for weak spectral feature detection [26].

Based on the analysis above, we simulate the interferograms on the detector and corresponding
detailed spectrum with a continuous incident spectrum in Fig. 10. From the simulation result on
the detector in Fig. 10(a), we can clearly observe that the interferograms corresponding to the
different spectral features are well separated, and the interferograms corresponding to the spectral
features with relatively higher light intensity do not overlap the interferograms corresponding to
the spectral features with lower light intensities around them. The blue curve in Fig. 10(b) is the
detailed spectrum obtained from the Fourier transform of the interferograms in Fig. 10(a), which
fits well with the normalized intensity of the incident spectrum, the weak spectral features next to
the strong spectral features has also been well measured due to the separated interferograms.

In Table 4, the spectral resolutions at wavelengths around 530 nm, 585 nm, and 645 nm,
which display the resolutions of the MGCDSHS at the beginning, middle, and end of the
measurement spectral range, are shown. To provide a better illustration of the spectral resolutions
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Fig. 9. (a) Several interferograms generated by the MGCDSHS and recorded simultaneously
on the detector. (b) Detailed spectrum obtained from Fourier transform processing of
corresponding interferograms at different positions on the detector plane. (c) Direct
spectrum for the entire measurement range of the MGCDSHS. (d) Final spectrum generated
by splicing and intensity reduction.

shown above, we simulated the interferograms and the detailed spectra corresponding to the
wavelengths in Table 4, with results as shown in Fig. 11. Figure 11(a), 11(c), and 11(e) show the
interferograms for the wavelengths around 530 nm, 585 nm, and 645 nm with equal intensities,
respectively. The interferogram shown in Fig. 11(a) contains the wavelengths of 529.9736 nm,
529.9874 nm, 530.0012 nm, and 530.0150 nm only; the interferogram shown in Fig. 11(c) contains
the wavelengths of 584.9704 nm, 584.9872 nm, 585.0040 nm, and 585.0208 nm only; and the
interferogram shown in Fig. 11(e) contains the wavelengths of 644.9700 nm, 644.9905 nm,
645.0110 nm, and 645.0314 nm only.

The detailed spectra obtained from Fourier transform processing of the corresponding
interferograms in Fig. 11(a), 11(c), and 11(e) are shown in Fig. 11(b), 11(d), and 11(f),
respectively. In Fig. 11(b), the four peaks in the spectrum obtained correspond to the wavelengths
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Fig. 10. (a) Several interferograms recorded simultaneously by the CDCDSHS with a
continuous incident spectrum (b) Detailed spectrum obtained from the Fourier transform of
these interferograms and the normalized intensity of incident spectrum.

Fig. 11. Interferograms and detailed spectra obtained from Fourier transform processing of
the interferograms for the wavelengths listed in Table 4 with equal intensity: (a) interferogram
and (b) detailed spectrum containing the wavelengths of 529.9736 nm, 529.9874 nm,
530.0012 nm, and 530.0150 nm only; (c) interferogram and (d) detailed spectrum containing
the wavelengths of 584.9704 nm, 584.9872 nm, 585.0040 nm, and 585.0208 nm only; and
(e) interferogram and (f) detailed spectrum containing the wavelengths of 644.9700 nm,
644.9905 nm, 645.0110 nm, and 645.0314 nm of.

of 529.9736 nm, 529.9874 nm, 530.0012 nm, and 530.0150 nm, and the wavelength difference
between each pair of adjacent peaks is 0.0138 nm. In Fig. 11(d), the four peaks in the spectrum
obtained correspond to the wavelengths of 584.9704 nm, 584.9872 nm, 585.0040 nm, and
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585.0208 nm, and the wavelength difference between each pair of adjacent peaks is 0.0168 nm.
As shown in Fig. 11(f), the four peaks in the spectrum obtained correspond to the wavelengths
of 644.9700 nm, 644.9905 nm, 645.0110 nm, and 645.0314 nm, and the wavelength difference
between each pair of adjacent peaks is 0.0205 nm. From the analysis above, it can be concluded
that the spectral resolution in terms of the wavelength of the designed MGCDSHS is 0.0138 nm
around 530 nm, 0.0168 nm around 585 nm, and 0.0205 nm around 645 nm, and all spectral
features within the spectral range can be detected.

4. Conclusion

In conclusion, we have demonstrated the modeling and calculation processes of the multi-grating-
based cross-dispersion SHS (MGCDSHS) for two cases, where the light beam is diffracted by
one sub-grating and where it is diffracted by two sub-gratings, and equations for the widths,
heights, and locations of the interferograms in these two cases were derived. Then, based on
the theoretical derivation above, an instrument design with a simulation of the MGCDSHS was
presented.

In the numerical simulation, we designed a MGCDSHS based on a multi-grating that combines
four sub-gratings to measure polychromatic incident light with a wavelength range from 530 nm to
645 nm. Based on the calculation results and analysis, a multi-grating design with a broad spectral
range and high spectral resolution was obtained. The spectral resolution in wavelength terms
is 0.0138 nm around 530 nm, 0.0168 nm around 585 nm, and 0.0205 nm around 645 nm. After
the spectral performance design, we simulated the light beam distribution on the multi-grating
and designed the size parameters of the different sub-gratings. Our analysis indicated that it is
necessary to select appropriate parameters for the angle of incidence and the reflection grating to
produce a reasonable distribution of the beams over the multi-grating and uniform separation of
the interferograms on the detector.

According to the numerical simulation results, the designed MGCDSHS can record separated
interferograms simultaneously that correspond to the different spectral features with high spectral
resolution over a broad spectral range. Combining the lateral dispersion reflection grating with
the longitudinal dispersion multi-grating not only resolves the mutual interference problem
caused by overlapping of the interferograms that correspond to the different spectral features, but
also provides both high spectral resolution and a broad spectral measurement range that cannot
be achieved via single grating measurements. Replacing the conventional gratings with a multi-
grating consisting of NMG gratings with different groove densities breaks the mutual restriction
between high spectral resolution and a broad spectral range that occurs in the conventional
CDSHS. Additionally, with increasing NMG, the spectral resolution and the spectral range of
the MGCDSHS will become higher and broader, respectively, than those of the conventional
CDSHS. The combination of the cylindrical lens group with the reflection grating can cause the
light beams corresponding to the different spectral ranges to be diffracted by the corresponding
sub-gratings on the multi-gratings without loss of throughput and also avoid intensity reduction
of the fringes on the detector. In addition to these effects, the roll of one multi-grating around
the central normal of its groove facet and the conical diffraction equation that was introduced
for the first time in the SHS modeling process allows the interference fringe distribution to be
calculated more accurately and makes the model suitable for multi-grating-based measurements
by eliminating the ambiguity associated with the “true” and “ghost” spectra.

The MGCDSHS offers advantages that include high throughput, high spectral resolution, and
a broad spectral range simultaneously while also requiring no moving parts. The MGCDSHS
instrument has great potential for use in wide-range applications, including measurement of
samples with multiple characteristic peaks, weak spectral measurements, and broadband and
high-spectral-resolution measurements.
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