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ABSTRACT: Cross-interference among absorptions severely affects the ability
to achieve accurate gas concentration retrieval through gas molecular specificity.
In this study, a novel dual gas sensor was proposed to separate methane and
water absorbance from the blended spectra of their mixture in the mid-infrared
(MIR) band by employing a neural network algorithm. To address the scarcity of
experimental data, the neural network was trained over a simulated data set
constructed with the same distribution as the experimental ones. The system
takes advantages of the broadband spectra to provide high-quality comb data and
allows the neural network to establish an accurate spectral decoupling function.
In addition, a feature absorption peak screening mechanism was proposed to
achieve more accurate concentration retrieval, which avoids the prediction error
introduced by interrogating the only peak of the separated spectra. The
promising results of the systematic evaluation have demonstrated the feasibility of
our methods in practical detections.

1. INTRODUCTION
Methane is the main component of natural gas and the second
most important greenhouse gas after carbon dioxide.1

Therefore, the accurate measurement of methane concen-
tration is of great importance for industrial production and
environmental protection.2,3 At present, the mainstream
methane gas detection technologies mainly include catalytic
combustion,4 electrochemical,5 thermal conductivity,6 and gas
spectroscopy-based detection technologies.7,8 Spectroscopic
detection techniques are becoming increasingly popular among
researchers because of their fast response, high selectivity, high
sensitivity, and noninvasive real-time measurements.9 Laser
spectroscopy techniques include tunable diode laser absorption
spectroscopy (TDLAS),10 cavity decay spectroscopy
(CRDS),11 photoacoustic spectroscopy (PAS),12 etc. After
obtaining the spectra of the target molecules, the concen-
trations can be directly calculated by linear or nonlinear fitting
of the spectra.13 However, these methods are limited by the
overlapping absorbance spectra of various components of the
gas mixture.7

The collimated semiconductor lasers are well suited for
sensitive detection of a specific molecule, especially when the
absorption lines of different molecular species are separated.
Considering the limited tuning range, different equipment may
be required for different gas monitoring in gas mixtures. High-
impact experiments have been carried out with the QCL-based
2f-WMS approach, confirming its efficiency in multicompo-

nent gas sensing. The detection of multicomponent gas
mixtures at ppbv can be achieved by selecting the right
combination of laser. To address the nonlinearity of 2f-WMS
at high concentrations, heterodyne phase-sensitive dispersion
spectroscopy (HPSDS) is used to extend its linearity range to
20 ppmv without replacing the gas measurement cell or
installing an additional gas dilution system.14 However, with
the increase of the number of species of gases of interest,
multiple individual laser sources may be required to analyze
the gas mixture and thus increase the complexity of the
system.15 Furthermore, it may not be possible to find the right
wavelength of laser to overcome the gas cross-talk problem.
Similarly, the developed methane detection techniques often
require a drying treatment before detection because of the
cross-interference introduced by the water vapor.16 However,
drying equipment need to be replaced periodically for a short
period of time, which is undoubtedly time-consuming and a
safety hazard.17 Even so, it is difficult to eliminate the residual
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water due to the material of the inner wall of the gas cell and
improper operation.18

For simultaneous multicomponent gas detection, the
problem of spectral cross-interference is still one of the
difficulties that needs to be broken through.19 Although
mathematical methods such as Bayesian estimation and
principal component analysis are used to solve cross-
interference problems, strict conditions and a set of
assumptions that cannot be realized in practical applications
are often required, which can lead to less accurate
predictions.20,21 Least squares (LS) and partial least squares
(PLS) are also of interest in resolving cross-interference.22,23

The problem with such methods is that they cannot identify
the species of a gas mixture from the corresponding blended
spectra.19 In contrast, Deep Learning, a better alternative, has
developed rapidly in recent years and has widely been used in
various fields because of its good performance and powerful
capabilities to integrate with other scientific methods.24 To
date, deep learning algorithms, represented by various kinds of
neural networks, have achieved impressive results in gas
concentration retrieval,7 spectral filtering,25,26 hyperspectral
imaging,27 etc. However, the application of neural networks to
solve the inherent problems of multicomponent gas mixtures
with spectroscopy still needs to be urgently developed.
Based on the aforementioned background, a dual-comb

spectrometer integrated with a neural network-based spectral
decoupling algorithm was developed to overcome the
widespread problem of water interference in methane
detection of broadband MIR absorbance spectra. The
proposed technique can directly separate the target specie
and the interference one from the overlapping absorbance
spectra, overcoming the challenge of light source selection
when faced with too many gas species for QCL-based gas
detection techniques, thus realizing the simultaneous direct
detection of both molecules in the presence of interference
without any preprocessing or additional equipment. The
system includes a spectral acquisition module consisting of
two DFG MIR high-power frequency comb sources, which are
based on femtosecond Er:fiber oscillators with a stabilized
repetition 105 rate at ∼250 MHz and a multipass cell (MPC)
of ∼580 m interaction length. The high-quality comb data is
analyzed by the spectral processing module (SPM) built by a

well-optimized neural network. Through the training of a large
amount of data, SPM learns to identify the respective
contributions of methane and water vapor in the blended
spectra and separate them precisely, thus solving the problem
of cross-interference of water vapor to methane and realizing
the long-term stable detection of methane. In Section 2, we
have discussed the sensor configuration and the implementa-
tion of the SPM. Section 3 shows the results of SPM on the
separation of blended spectra and the performance of the
system in terms of concentration retrieval as well as the
stability of measurements. The conclusive information and
prospects for future work are talked about in Section 4.

2. METHODOLOGY
2.1. Sensor System Configuration. The spectral

acquisition system uses two mid-infrared DFG frequency
combs (Menlo Systems, MIR Comb) based on femtosecond
erbium-doped fiber oscillators whose repetition rates are
locked at ∼250 MHz and referenced to the Rb frequency
standard (Stanford Research, PSR10). The output power of
MIR Comb1 is about 120 mw, covering the spectral range of
2.8−3.6 μm, and the pulse duration is ∼80 fs. The MIR
Comb2 employs a higher-power ytterbium-doped fiber
amplifier that has a similar spectrum and pulse duration to
the MIR Comb1 and produces a combined near-infrared beam
of ∼300 mw. The volume of the MPC is 2.5 L. The two
confocal mirrors have a radius of curvature of 1 m and are
separated by 1 m. The conditions inside the cell are maintained
stable by a flow controller and a pressure controller. After the
laser beam is injected into the gas cell, it is reflected 579 times
and then emitted, with an effective light path of 580 m.
After optical path calibration and mode matching, the laser

beam emitted by the MIR Comb2 is split into two parts by a
50:50 beam splitter. One part serves as the transmission signal,
consisting of signal pulses coupled to the MPC; the other part
serves as the reference signal and then is guided back by the
reflector. The transmitted signal is fully absorbed in the MPC
and then recombined with the reference signal on the same
50:50 beam splitter and overlapped with the pulse from MIR
comb1 on a 92:8 beam splitter. The combined pulses were
focused on an HgCdTe (MCT) detector with a liquid
nitrogen-cooled bandwidth of 100 MHz (Kolmar Technology,

Figure 1. Schematic diagram of the experimental setup. Light from two MIR comb sources is coupled into the multipass cell (MPC) after passing
through multiple lens and mirrors. One 50:50 beam splitter (BS) is used to split the reference and signal pulses, and the other one 92:8 BS is used
to combine the pulses from the two combs. The pulses are eventually detected by an MCT photodetector and further processed by the computer.
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KMPV11-0.1-J1/AC100). By using a filter and beam splitter,
the total incident power on the detector is adjusted to be less
than the detector saturation power of 2 mw. The optics setup
is shown in Figure 1.
2.2. Data Sets. Neural networks as data processing and

analysis algorithms are widely used in various fields because of
their excellent performance. However, their superior perform-
ance relies on the quantity and quality of training data. In the
field of gas absorption spectroscopy, it is time-consuming and
labor-intensive to obtain sufficient data experimentally. Models
trained on small amounts of data are limited in accuracy and
sensitivity and often fail to demonstrate satisfactory results in
the detection of trace gases. In this study, the solution to the
data scarcity problem is to obtain the ideal absorption spectra
of the gas mixtures under predefined experimental conditions
from the HITRAN database and build the simulated data set
by introducing systematic noises. This data augmentation

strategy has been widely used in areas where information is
scarce and has been proven to be practical [14]. Models
trained on such simulated data sets will also perform well on
experimental data.
From this perspective, we have obtained 15000 sets of

absorption spectral data of methane and water vapor mixture
with the conditions of P = 1 atm, T = 296 K, and path length =
580 m. Each simulated spectrum consists of 3321 sampling
points for consistency according to the resolution of the
experiment spectrum. The concentrations of methane and
water vary randomly from 0 to 20 ppm and from 500 to 3000
ppm, respectively. After the evaluation of the system, system
noise was introduced to the simulated spectra to make the
distribution closer to that of the experimental ones and
increase the robustness of the model to unexpected
disturbances. In this task, the separation of the blended
spectra is a regression problem, where the inputs to the model

Figure 2. Flowchart of development of the blended absorption spectroscopy separation algorithm. The initial model is trained on a simulated data
set. The well-trained neural network model is used to achieve accurate separation of the experimental data.

Figure 3. Neural network model structure. Abbreviations. k, kernel size. The blended spectra are fed into the model, and the separated gas spectra
are output after processing by the feature extraction module and the spectral regression module.
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are the blended absorption spectra of the dual species and the
labels are the respective absorption spectra of the individual
gases. The simulated data sets are divided into a 95% training
set and a 5% validation set, which are used for tuning the
model structure, optimization of the trainable weights, and
training hyperparameters. We also experimentally obtained 100
spectra as the test set for the assessment of SPM under real-
world situations. The test set is not involved in the training
process and is only used as an evaluation of the system
performance. The complete development flow is shown in
Figure 2.
2.3. Model Architecture and Training Strategy. The

architecture of SPM is shown in Figure 3. The input blended
spectrum can be expressed as

NA ( )s
i 1

2

i= +
= (1)

where As is the blended spectra with noise and i is the index of
the gas component. In the present study, the index 1 is for
methane and 2 for water. αi is the absorption spectrum of the i-
th gas, and N is the sum of noises. The SPM consists of two
main modules: the feature extraction module of spectral data
and the spectral regression module for the spectral separation
of individual gases. The SPM is proposed to achieve the
separation of the input blended spectrum function and output
the individual spectra of the molecular species in the gas

mixture, and the underlying function fs(·) can be expressed as
follows

f A, ( )1 2 s s{ } = (2)

f A f f A( ) ( ( ))s s r e s= (3)

where α̂1 and α̂2 represent the separated spectra of methane
and water predicted by SPM, and fe(·) and f r(·) represent the
functions achieved by the feature extraction module and the
spectral regression module, respectively. The feature extraction
module consists of two convolutional layers followed by a
pooling and a batch-normalization layer. The extracted feature
information is then aggregated by an attention layer (ECA
attention). The previous layer learns and extracts the spectral
features and transmits the feature vector to the later layer. The
operation of the feature extraction module can be expressed as
follows

C f A( )out e s= (4)

where Cout is the output feature vector and the ReLU
activation function is chosen here. To avoid overfitting due
to the large redundancy of data, a pooling layer is added to
reduce the computational effort of the model. The final feature
vectors are output by the extraction module and subsequently
fed forward into the spectral regression module, in which it is
mapped to the low-dimensional space to achieve the separation
of spectra. The spectral regression module contains three fully
connected layers, each of which applies weighted sums of the

Figure 4. SPM prediction results for 2 ppm methane and 760 ppm water vapor mixture spectra. (a) Experimental and predicted mixed spectra. (b)
Individual predicted spectra of methane and water. (c) Residuals between predicted and experimental spectra. (d) Zoomed plot within the range of
3054−3063 cm−1.
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results from the previous layer and assigns nonlinear factors
through the activation function. Its calculation can be
expressed as

f C( )out r out= (5)

where α̂out = {α̂1,α̂2} is the set of α̂1 and α̂2. To prevent
overfitting, dropout is added in the penultimate layer with
dropout rate = 0.3, and the final output of the model is a
concatenated spectral vector of individual gases.
We explore extensively the structure of SPM and the setting

of hyperparameters. For the model, different combinations of
feature extraction modules and spectral regression modules
with different structures are explored. Each module structure is
determined by starting with a single layer structure and
gradually increasing the number of layers to improve its feature
learning capability. For the feature extraction module, the size
of the convolution kernel is first adjusted to fit the broad
spectral data, and then, the number of layers is gradually
increased. For the regression module, the effects of different
numbers of hidden layers and the neurons in the hidden layer
on the model performance are explored. In terms of the
training hyperparameters, a certain range of each was explored
empirically rather than performing a grid search. For example,
for the learning rate, we tried from 10−2 to 10−7. However, too
small a learning rate may slow down the convergence of the
model. To solve this problem, the learning rate decay is finally
used. The initial learning rate is 0.01, and the learning rate
decays to one-tenth of the original rate at every 2000 epoch
interval. In this task, we use the mean square error (MSE) as
the loss function with the following expressions

m
MSE

1
( )

j

m
j j

1
label out

2=
= (6)

where m is the number of spectra in the data set, and it is
15,000 in the present study. αlabelj is the ground truth. The
optimizer chosen is the Adam optimizer. The entire model was
built using the PyTorch framework and the Python 3.7
programming environment. The model was trained on an
NVIDIA RTX A5000 GPU for 15,000 epochs. Full code
implementation of SPM is available in the Supporting
Information.

3. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the generalization performance of SPM under
practical conditions, 100 gas mixtures with different concen-
trations of methane and water vapor were experimentally

configured, where the methane was in the range of 0−20 ppm
and the water vapor was in the range of 500−3000 ppm. The
spectral separation performance of SPM was satisfactory
throughout the whole concentration range. Figure 4a shows
one presentative prediction of the results with 2 ppm methane
and 760 ppm water. The predicted spectrum was synthesized
based on the separated spectra and illustrated with the
measured one for intuitive comparison. The separated spectra
of the individual target gases were inverted as shown in Figure
4b for clarity. Both residuals, which are maintained at low
levels throughout the whole spanning range (Figure 4c), and
the high agreement of the zoomed range shown in Figure 4d,
demonstrate the good performance of SPM. Although the
residuals are relatively large in some bands with dense feature
absorption peaks, the magnitude was still within the allowable
range, demonstrating excellent global realizations. In addition,
the experimental measurements inevitably introduce systematic
noise, the SPM still performs well and shows strong robustness
of noise.
The separated spectra of the individual gases were also

compared with their corresponding respectively measured
spectra for further verification of separation accuracy. The
comparisons were also referred to 2 ppm methane and 760
ppm water. Good agreements were demonstrated for both
gases, with the residual under the limits of tolerance (see
Figure 5a,b).
The precise separation of blended spectra of SPM allows the

system to further achieve the accurate concentration retrieval
capability with respect to the target gas methane in the
presence of interfering gas water. Considering the potential
error of a separated spectrum in the absorption peak, a feature
absorption peak screening mechanism was proposed to achieve
more accurate concentration retrieval, which avoids the
prediction error introduced by only interrogating the
individual peaks of the separated spectra. We give full play
to the advantages of broadband spectra and use multiple
absorption feature peaks to compute the concentration. The
top n absorption features in terms of the peak magnitude were
leveraged to compute the mean concentration value. The effect

Figure 5. Comparison of measured and predicted spectra of a single gas sample. (a) Measured and predicted methane spectra and their residuals.
(b) Measured and predicted water spectra and their residuals.

Table 1. Mean AEs of the Predicted Results for Methane
and Water of the Top n Absorption Feature Screening
Mechanism with Respect to the 100 Experimental Spectra

top n gas specie 1 2 3 4 5

CH4 (ppm) 0.0721 0.0712 0.0652 0.0562 0.0698
H2O (ppm) 12.2538 10.6521 8.6529 7.6531 8.2873
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of different numbers of selected feature peaks on the predicted
concentrations was evaluated and is summarized in Table 1.
The best results were derived from the mean concentrations
corresponding to the top 4 feature peaks.

The concentrations of methane and water were retrieved
based on the top 4 absorption features of the separated spectra.
The results are shown in Figure 6. The coefficients of
determination reached 0.99975 and 0.99987 for methane and
water, respectively, showing a good linear dependence between

Figure 6. Linear relationship between predicted and preset concentrations: (a) methane and (b) water.

Figure 7. Error analysis of the predicted concentrations. (a) AE of methane. (b) AE of water. (c) RE of methane. (d) RE of water.

Figure 8. System real-time measurement results. (a) Methane real-time measurement results. (b) Water real-time measurement results. (c)
Histogram of statistical distribution of methane real-time measurement results. (d) Histogram of statistical distribution of water real-time
measurement results.
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the predicted gas concentrations and the standard gas
concentration preset by the mass flow controller. The
systematic error analysis was also conducted by comparing
the two statistical indicators of relative error (RE) and absolute
error (AE), as shown in Figure 7. The system maintains stable
AEs, and the mean AEs for both species are 0.056 and 7.563
ppm, respectively (Figure 7a,c).
Although the AE of water vapor is higher, it is mainly due to

its 2 order of magnitude higher concentration level compared
with that of methane, and the overall performance can still
meet the needs of most applications. In terms of REs, the mean
REs for methane and water vapor were 1.046 and 0.595%,
respectively. The RE of water is stable throughout the whole
concentration range (Figure 7d), while the RE of methane
increased with the decrease of concentration (Figure 7b). This
may be due to the more complex spectral structure of methane
compared to water within the selected spectral window and the
relatively low signal-to-noise ratio of methane spectra at lower
concentrations. This problem can be subsequently, in general,
be eliminated by means of active real-time filtering.
To assess the long-term detection stability of the proposed

system, the customized gas mixture with 5 ppm methane and
1500 ppm water vapor was injected into the gas cell. The real-
time detection was carried out at the ambient pressure of 1 atm
and temperature of 296 K. During the one-hour experiment,
each prediction was retrieved at one-minute intervals. The
results demonstrated the good stability of the system as shown
in Figure 8. The mean predictions were 5.0014 ppm and
1499.998 ppm for methane and water, respectively. The
statistical histograms can be well fitted by Gaussian
distribution with half-width at half-maximum (HWHM) values
of 0.0346 and 0.0118 ppm, respectively, as shown in Figure
8c,d. The results show that the SPM enhanced broadband MIR
dual-comb spectrometer can achieve stable measurement in
real-time detections. The detection column densities for
methane and water vapor were 17.052 and 6.148 ppm-m,
respectively. The absorptions of methane and water are widely
spread and overlapped within the selected spectral window;
therefore, the successful decoupling of our system to blended
absorption spectra demonstrates the potential feasibility of
applying such a method to other gas mixtures.

4. CONCLUSIONS
In general, we have developed a dual-comb spectrometer
integrated with a neural network-based spectral decoupling
algorithm for the simultaneous detection of a methane and
water gas mixture. The system features the broadband dual
frequency comb laser source in conjunction with a multipass
cell to realize high sensitivity and quality of spectra data. A
novel deep learning model, referred to as SPM, was proposed
to achieve the precise spectral separation of the target gas
methane from the interference gas water. In addition, to
achieve more accurate concentration retrieval from the
separated spectra, a feature absorption peak screening
mechanism was proposed, which avoids the prediction error
introduced by only interrogating the individual peaks of the
separated spectra. Subsequently, the feasibility of SPM in
practical detection applications is verified by evaluating the
systematic error and long-term detection stability. The
successful decoupling of the blended absorption spectra of
methane and water shows that the proposed method can
effectively solve the cross-interference problem in the blended

spectra and demonstrates the underlying feasibility for spectral
decoupling to other gas mixtures.
Although the performance of SPM was validated for

mixtures of methane and water, the current SPM is still a
prototype. The performance of SPM in a wider range of gas
mixtures remains to be validated. Based on the successes of
deep learning in concentration retrieval and gas prediction in
the field of absorption spectroscopy, we believe that deep
learning can effectively contribute to the research of sensing
and decoupling of multicomponent gas mixtures. Therefore,
we will continue working in decoupling of multicomponent gas
mixtures in massive paralleling molecular sensing in our future
research.
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