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a b s t r a c t

The topology of a 3D continuum structure is usually characterized by the number of independent
connected component and holes in the structure, where the holes include tunnels (through holes) and
cavities (interior holes). The number of these features can be measured by the topological invariants
of the structure (e.g., Betti numbers and Euler characteristic). The quantitative control of structural
topology is important in topology optimization design because of various considerations, including
design freedom, manufacturability, structural performance, and manufacturing costs. However, effec-
tive control of the structural topology during the topology optimization process remains a challenge,
particularly to control the structural tunnels. To simplify the problem, only the number of tunnels (NT )
and cavities (NC) of the structure are controlled in this paper. To solve the aforementioned problems,
this study calculates the characteristic information of the tunnels and cavities by introducing the tunnel
loops of homology theory and fire-burning method (FBM), while proposing a method for quantitative
control of the 3D structural tunnels and cavities within the framework of the solid isotropic material
with penalty (SIMP) interpolation of the design variable and method of moving asymptotes (MMA)
optimization algorithm. The method achieves unilateral constraints over the structural tunnels and
cavities by establishing explicit relationships between the element design variables in the structural
topology optimization and NT as well as NC in the structure. Numerical examples demonstrate that
the proposed method can effectively control the tunnels and cavities of an optimized structure.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Topology optimization techniques are popular and powerful
ools for maximizing the performance of a structure by optimiz-
ng its material layout. Several optimization techniques have been
eveloped over the past three decades, including the homoge-
ization [1], solid isotropic material with penalty [2], evolutionary
tructure optimization (ESO) [3], level set [4], moving morphable
omponents (MMC) [5] and discrete variable [6] methods.
Although remarkable achievements have been made in the

ield of topology optimization, some challenges remain. One of
hese is the quantitative control of the structural topology. The
opology of a 3D continuum structure is typically characterized
y the number of independent connected component, tunnels
or handles), and cavities in the structure [7]. From a struc-
ural design perspective, the basic and most important idea is
here to put the right holes [8]. Detailed information on the
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holes (i.e., position, number, shape, and feature size) determines
the performance of the structure. Therefore, accurate control
of the structural holes can provide designers with design free-
dom. In addition, multiple independent connected components
may occur during topology optimization, thus it is necessary to
control the number of independent connected components of
the structure. From a traditional manufacturing perspective, the
large holes in the structure means that the structure is more
complex, and a more complex structure provides higher manu-
facturing energy consumption and time cost. Quantitative control
over the structural holes is critical to selectively balancing the
structural performance gains obtained by topology optimization
design considering the manufacturing energy consumption and
time cost and warrants further research. From an additive man-
ufacturing (AM) perspective, although advanced AM techniques
significantly reduce the cost related to structural complexity,
cavities in the structure are undesirable for some processes such
as selective laser sintering [9] and fused deposition modeling [10].
In summary, quantitative control over the structural topology in
the topology optimization process has important theoretical and
practical implications. To simplify the problem, only the NT and
NC of the structure are controlled in this paper.
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Beginning with landmark filtering techniques that are used to
eliminate numerical instabilities [11,12], there is a growing inter-
est in controlling the structural topology of continuum structure
in topology optimization. These filtering techniques can indirectly
control the structural topology by changing the filter radius. For
example, keeping other optimization parameters unchanged, the
NT and NC obtained by using a larger filter radius is generally
not greater than that obtained using a smaller filter radius. In
addition to filtering techniques, various other techniques that
can indirectly control the topology of the structure have been
developed. Using the evolutionary structure optimization (ESO)
method, Kim et al. [13] proposed an intelligent cavity creation
(ICC) method that can indirectly control the NC . In addition,
for skeleton-based [14] and geometric constraint methods [15]
among others that can control the scale of the structure, gener-
ally, under the equality volume constraint, the larger the size of
the structural features in the design domain is, the fewer the NT
nd NC in the structure. In contrast, the smaller the allowed struc-
ural feature size, the larger the NT and NC in the structure. Lu
t al. [16] proposed a geometric constraint method for controlling
avities using the level set method. Based on the idea of analogous
hysical field solution characteristics, Li et al. [17], Liu et al. [18],
nd Yamada et al. [19] proposed a virtual temperature approach
o eliminate cavities to fulfill the connectivity requirement.

Recently, scholars have developed a class of explicit direct
ethods for controlling the topology of structure. The idea to
rescribe the NC for the structure has been adopted in a BESO-

based approach [20]. In this approach, a hole-filling method was
proposed to control the existence of cavities during the opti-
mization process. Xiong et al. [21] developed an approach to
controlling the structural cavities by generating tunnels Based
on the graph theory and set theory. Zhao et al. [22] developed
a direct approach to explicitly controlling the structural cavities
during the form-finding process. This approach has been suc-
cessfully applied to the morphological optimization of biological
organs [23]. He et al. [24] proposed a boundary evolution method
based on a thinning algorithm that which can keep the NT of the
tructure constant during the optimization. In the framework of
iscrete variable method and sequential approximate integer pro-
ramming and canonical relaxation algorithm [25], Liang et al. [7]
roposed an explicit formulation to calculate the NC based on the
uler–Poincaré formula and achieve the control of the NC . Han
t al. [26] propose the quotient set design variable method to
mplement the inequality constraint on the maximum NT allowed
n an optimized structure for 3D structural topology optimization.
nder the SIMP method, Wang et al. [27] and Zuo et al. [28] both
alculated the NC of 2D structure based on FBM [20] and achieved
he control of NC based on persistent homology method and hole
illing method, respectively.

Although topology control has been extensively studied in
opology optimization, many details deserve further investiga-
ion. For example, implicit indirect methods cannot quantita-
ively control structural topology. Explicit direct methods can
uantitatively control the structural topology, but some of these
pproaches are limited to 2D optimization. Xiong et al. [21], Zhao
t al. [22] and Liang et al. [7] did not discuss tunnels with 3D
tructures. Although the method proposed by He et al. [24] can
ontrol the tunnels, it relies on a fixed topological configuration.
hough Han et al. [26] achieved inequality control of the NT based
n boundary evolution, the efficiency of boundary evolution is
elatively low. Therefore, the development of more effective ex-
licit quantitative topological control methods is still of interest,
specially in the framework of the most general combination of
IMP interpolation and MMA optimization algorithm [29].
In this study, 3D tunnels and cavities control combining SIMP
nterpolation and MMA optimization algorithm is proposed based

2

on 2D topology control work [28]. Compared to the 2D topology
control work, the core difficulty is to calculate the characteristic
information of the 3D structural tunnels. Holes in 2D structure
have only one type, namely cavity, which can be described as a
void area that is surrounded by solid elements. However, holes
in 3D structure contain two types, i.e., cavity and tunnel, where
the tunnel is not enclosed by solid elements. The following is the
research idea of 3D topological control. Because the description
of the independent connected components, tunnels, and cavities
depends on the binarized structure (BS), it is not possible to
directly define the independent connected component, tunnels
and cavities of the structure with gray elements (SGE). Therefore,
the first step was to project the SGE into the BS. The BS may
have nonmanifold points and nonmanifold edges [30,31]. These
behave as 1-node connected hinges and 1-edge connected hinges,
respectively, in the structural topology optimization. The object
of study in this paper is manifold. In other words, this paper
only researches the structure without nonmanifold points and
nonmanifold edges. Therefore, it is necessary to eliminate the
nonmanifold points and nonmanifold edges in each iteration.
Poulsen et al. [32] and Liang et al. [7] effectively handled nonman-
ifold points and nonmanifold edges for a structured hexahedral
mesh. The method of Liang et al. [7] is used in this study to deal
with nonmanifold points and nonmanifold edges.

After obtaining the manifold binarized structure (MBS), in
other words, after obtaining the binarized structure without non-
manifold points and nonmanifold edges, the second step is to
calculate the independent connected components, tunnels, and
cavities of the MBS. The number of these features can be mea-
sured using topological invariants of the structure (e.g., Betti
numbers and Euler characteristic). However, topological invari-
ants do not provide detailed information regarding these features.
Therefore, in this study, detailed information on these features
was calculated using the FBM and tunnel loops of homology
theory [33,34]. The independent connected components, tunnels,
and cavities of the MBS are used to describe the topological
characteristics of the corresponding SGE. The third step is to
control the structural topology by introducing a topological con-
straint into the SIMP-based optimization model. This topological
constraint and corresponding sensitivity establish an explicit rela-
tionship between the element design variables and NT as well as
NC in the MBS. Finally, the element design variables are updated
using the MMA optimization algorithm. The remainder of this
paper is organized as follows. The problem statement is pre-
sented in Section 2. In Section 3, the NT and NC of the MBS
are calculated based on Betti numbers, Euler characteristic, and
FBM. The discrete topology constraint and control method for
the topology are presented in Section 4. Section 5 presents the
optimization framework for controlling the structural topology.
Three 3D numerical examples are presented in Section 6. The
paper ends with concluding remarks in Section 7.

To facilitate the readability of this manuscript, we provide
Table 1 to summarize the acronyms and corresponding extended
definitions.

2. Problem statement

The topology of a 3D continuum structure is characterized
by its number of independent connected component and holes,
where the holes include tunnels (through holes) and cavities
(interior holes). In this paper, we use Ti, 1 ≤ i ≤ NT and Ci, 1 ≤

i ≤ NC to denote the tunnels and cavities, respectively. As in
Fig. 1(a), there are two tunnels and one cavity. In mathematical
topological analysis, the number of independent connected com-
ponent and holes of a geometric entity can be measured in terms
of its topological invariants. To simplify the problem, only NT and
NC of the structure are controlled in this paper.
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Fig. 1. Schematic of 3D structural cavities affecting NT computation.
Table 1
Acronyms and corresponding extended definitions.

Acronyms Extended definitions

1. SIMP Solid isotropic material with penalty
2. MMA Method of moving asymptotes
3. ESO Evolutionary structure optimization
4. BESO Bi-directional evolutionary structural optimization
5. AM Additive manufacture
6. GA Genetic algorithm
7. ICC Intelligent cavity creation
8. HFM Hole-filling method
9. BS Binarized structure

10. SGE Structure with gray elements
11. TCS Topological constraint set
12. SNPE A set of elements to be processed to eliminate nonmanifold points and edges
13. OC Optimality criteria
14. NT Number of tunnels
15. NC Number of cavities
16. MBS Manifold binarized structure
17. FBM Fire-burning method
18. ECi Elements contained in ith cavity
19. ETi Elements contained in ith tunnel
20. Si ith solid connected subdomain
21. Vi ith void connected subdomain
22. VΩ Background mesh
In present work, the topology optimization problem under
onsideration is to minimize or maximize the structural objective
unction value under the structural topological inequality con-
traint. In the SIMP framework, the optimization problem can be
ormulated as follows:
Find ρ = (ρ1, ρ2, . . . , ρn)

T

Min C (ρ) or Max C (ρ)

S.t. K (ρ) u = f
V (ρ) =

∑n
i=1 ρivi/

∑n
i=1 vi ≤ V

ρmin ≤ ρi ≤ 1, ∀i ∈ 1, 2, . . . , n
NT (ρ) ≤ NT

NC (ρ) ≤ NC

(1)

In Eq. (1), ρ is the vector of the element design variables, with
ρi and vi denoting the value and volume of the ith element.
The symbol n denotes the total number of finite elements used
to discretize the prescribed design domain Ω . C is an objective
function. K =

∑n
i=1 ρ

p
i K 0 (p is the penalization index, and p = 3

is adopted in the present study) is the global stiffness matrix,
with K 0 representing the element stiffness matrix corresponding
to ρ = 1. f and u are the external load and displacement fields,
i χ

3

respectively. V is the prescribed upper bound for a solid material.
ρmin is the lower bound of the element design variable. NT (ρ) ≤

NT and NC(ρ) ≤ NC are topological constraints, where NT and
NC represent the maximum constraint numbers of tunnels and
cavities, respectively. Therefore, in this study, three modes were
used to control 3D structural tunnels and cavities. The first is
to control only the structural tunnels, that is NT (ρ) ≤ NT . The
second is to control only the structural cavities, that is, NC(ρ) ≤

NC . The third is to control both the structural tunnels and cavities,
that is NT (ρ) ≤ NT ,NC(ρ) ≤ NC .

3. Measure the structural cavities and tunnels

How to measure the NT and NC of 3D geometrical entities
is a great research topic of mathematical topology analysis. The
topology analysis concentrates on the invariants under the con-
tinuous deformation of the geometrical entity, e.g., the Euler
characteristic and Betti numbers.

For the 3D geometrical entity as shown in Fig. 1, the Euler
characteristic χ can be expressed as follows:

= n − n + n − n (2)
0 1 2 3
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here n0, n1, n2, and n3 represent the number of vertices, edges,
faces, and elements, respectively. The relationship between the
Euler characteristic χ and the Betti numbers B0, B1, B2 is:

χ = B0 − B1 + B2 (3)

where the Betti number B0, is the number of the independent
connected component, the Betti number B1 is the sum of the NT
of the 3D geometric entity and the NT of its extracted solidified
independent cavities, and the Betti number B2 is the NC . It can be
seen that the NT calculation of a 3D geometric entity is influenced
by the topological information of its cavities. For example, a
simply connected 3D geometric entity as shown in Fig. 1(a) has
two tunnels Ti, 1 ≤ i ≤ 2 and a cavity C1 without tunnels, thus
its three Betti numbers are B0 = 1, B1 = 2, and B2 = 1. A
simply connected 3D geometric entity as shown in Fig. 1(b) has
two tunnels Ti, 1 ≤ i ≤ 2 and a cavity C1 with a tunnel, thus its
three Betti numbers are B0 = 1, B1 = 3, and B2 = 1. Therefore,
the NT in a 3D structure cannot be measured directly using B1.

Multiple independent connected components may occur dur-
ing topology optimization. Therefore, in this paper, the strategy
to calculate NT and NC of geometric entities is to first calculate
all independent connected components Si, 1 ≤ i ≤ ns, where ns
is the number of independent connected components. Then the
NCi, 1 ≤ i ≤ ns is calculated for each independent connected
component. The NC for geometric entities is

NC =

∑
1≤i≤ns

NCi (4)

Before calculating the NT , the whole cavities of the structure are
filled as solids. In this way, the three Betti numbers for each
independent connected component can be expressed as B0 = 1,
B1 = NTi and B2 = 0. Therefore, according to Eqs. (2) and (3), the
number of tunnels in the ith independent connected component
without cavities can be calculated.

NTi = B1 = B0 +B2 −n0 +n1 −n2 +n3 = 1−n0 +n1 −n2 +n3 (5)

The NT for geometric entity is

NT =

∑
1≤i≤ns

NTi (6)

The definition of an independent connected components, tunnels,
and cavities is dependent on the BS. However, in the framework
of the SIMP method, gray elements inevitably appear in the
structure. In addition, nonmanifold points and nonmanifold edges
may appear in the BS. However, this paper only study structure
without nonmanifold points and nonmanifold edges. Therefore,
three problems must be addressed to identify cavities and tunnels
during the optimization. First, a method should be defined to
project the continuous design variable to 0–1 to obtain the BS.
Second, the nonmanifold points and nonmanifold edges in BS
are processed to obtain MBS. Finally, a numerical algorithm is
applied to calculate the cavities and tunnels in the MBS. The main
flowchart for calculating the cavities and tunnels of the MBS is
shown in Fig. 2.

3.1. Projecting SGE to BS

To obtain the BS, a straightforward approach is to project
the continuous value of the design variables ρ ∈ [ρmin, 1] to
the discrete 0–1 design variables. There are many algorithms for
implementing projection operations [35–40]. We adopted Wang’s
projection strategy [27] for this study. This strategy consisted of
two separate steps. The first step is to calculate the threshold
ρ using the classical OC algorithm under the volume equation
constraint, and the second step is to map the design variables
greater than the threshold to 1 and to 0 otherwise. Thus, the 0–1
4

Fig. 2. Main flow chart for calculating cavities and tunnels.

design variable ρ̂ is obtained. At each iteration of the optimiza-
tion process, the volume preservation projection method ensures
that the variables satisfy the following formula:

ρ̂i =

{
1, ρi > ρ

0, ρi ≤ ρ∑
ρ̂ivi =

∑
ρivi

(7)

where ρi and vi denote the design variable value and volume
f the ith element, respectively. Fig. 3(a) shows the SGE for one
teration. Fig. 3(b) shows the BS obtained by projecting according
o a given threshold ρ = 0.5, where V = 0.12. Fig. 3(c) shows
the BS obtained by volume preservation projection under the
condition of volume fraction V = 0.12, where ρ = 0.5038.

3.2. Fire-burning method

The identification of nonmanifold points and nonmanifold
edges as well as the calculation of tunnels and cavities in the
paper require the partitioning of the mesh by the FBM. This
section provides a detailed description of the FBM.

In this paper, the mesh element is denoted by e ∈ VΩ = Si ∪
Vj, 1 ≤ i ≤ ns, 1 ≤ j ≤ nv, where VΩ , Si, Vj, ns and nv denote the
background mesh, solid connected subdomains, void connected
subdomains, the number of solid connected subdomains and the
number of void connected subdomains, respectively. Two pieces
of information are required to divide the mesh into connected
subdomains using FBM, one is the property of mesh (e.g., discrete
variable value) and the other is information about the mesh
neighbors. The objects studied in this paper do not allow for non-
manifold points and nonmanifold edges, thus the face-neighbors
FN (e) of the mesh element e shown in Fig. 4 is used. Two mesh
elements ei and ej belong to the same connected subdomain if
they satisfy the following equation:{
ei ∈ FN

(
ej
)

ρ̂ (ei) = ρ̂
(
ej
) (8)

Based on the above two pieces of information, the detailed pro-
cedure for calculating all elements contained in the connected
subdomain using FBM is shown in Table 2.

3.3. Handling nonmanifold points and nonmanifold edges

Nonmanifold points and nonmanifold edges may be present
in the BS. From a geometric point of view, a nonmanifold point
and nonmanifold edge refer to solid elements (elements with
design variable 1) connected by only one node and one edge,
respectively. The nonmanifold points and nonmanifold edges in
the structural topology optimization behave as 1-node connected
hinges and 1-edge connected hinges, respectively. For example,
the blue point in Fig. 5(a) is a nonmanifold point, and the blue
edge in Fig. 5(b) is a nonmanifold edge. However, this paper only
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Fig. 3. Schematic of the projection with a threshold of 0.5 and the volume preservation projection.
Table 2
Algorithm for calculating connected subdomains with FBM.
Algorithm 1:

Input: VΩ

1. Define the connected subdomain CS and fire-burning set fire.
2. Select an arbitrary element from VΩ . Label it and add it to fire and CS.
3. while fire is not empty
4. Takes the first element fp of fire and removes it from fire.
5. for m = 1 to the number of FN(fp)
6. if the value of the current element is equal to that of fp and is not labeled
7. label it and add it to both fire and CS.
8. end
9. end

10. end
Output: A connected subdomain CS of VΩ
F

S

Fig. 4. The shaded elements are the face-neighbors FN(e) of the red element e
t the center. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

tudy structure without nonmanifold points and nonmanifold
dges. Therefore, it is best to eliminate all nonmanifold points and
dges completely in each iteration. The set of adjacent elements
Pi for the ith point pi of the mesh is defined as:

Pi =
{
ej|pi ∈ PEj

}
(9)

here PEj represents the set of points of the jth element ej. Use
lgorithm 1 to calculate the solid connected subdomains of EPi.
f the number of its solid connected subdomains is greater than
, then the pi is a nonmanifold point. The method of identify-
ng nonmanifold edges is similar to the method of identifying
onmanifold points.
Typically, the nonmanifold points and nonmanifold edges can

e eliminated by using a sufficiently large filter radius. How-
ver, there is no predefined quantitative method for choosing an
ppropriate filter radius. In this paper, the strategy for dealing
ith nonmanifold points and nonmanifold edges is to change the
oid elements (elements with design variable 0) that are adjacent
o the nonmanifold points and nonmanifold edges in the BS to
olid elements, marking the set consisting of these void elements
liminating nonmanifold points and edges in BS as SNPE, and then
dding SNPE to the topological constraint set (TCS). The purpose
5

Fig. 5. Schematic of the nonmanifold point and the nonmanifold edge. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

of adding the SNPE to the TCS is to update their values with a
target of 1 according to the MMA, thus achieving the suppression
of 1-node connected hinges and 1-edge connected hinges in the
SGE. This article uses the algorithm of Liang et al. [7] to calculate
the SNPE.

3.4. Calculating the NC and NT

As described at the beginning of Section 3, the number of B1
in a 3D structure is affected by the cavity. To avoid the influence
of the cavity in the structural tunnel calculations, this study
calculates the cavities and tunnels based on Betti numbers, Euler
characteristic, and FBM.

During the optimization process, the MBS obtained after vol-
ume preservation projection may be multiconnected. The calcu-
lation of NT and NC consists of the following steps.

Step 1. The solid and void connected subdomains Si, 1 ≤ i ≤ ns
and Vj, 1 ≤ j ≤ nv of the MBS are calculated according to the
BM.
Step 2. Calculate the surface meshes SSi, 1 ≤ i ≤ ns and

V , 1 ≤ j ≤ nv for S , 1 ≤ i ≤ ns and V , 1 ≤ j ≤ nv, respectively.
j i j
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Fig. 6. Schematic diagram of the reduction of structural cavities and tunnels
ccording to the filling and cutting methods, respectively. (For interpretation of
he references to color in this figure legend, the reader is referred to the web
ersion of this article.)

Step 3. Traverse SSi, if SVj ⊆ SSi exists, then Vj is a cavity.
Denote these cavities by ECi, 1 ≤ i ≤ NC , where ECi denotes the
et of elements contained in the ith cavity.
Step 4. Fill all cavities of MBS as solids so that Si, 1 ≤ i ≤ ns

ave no cavities. Then the NT of MBS was calculated according to
qs. (5) and (6).

. Control structural tunnels and cavities

There are two methods to reduce the NT and NC , one is the
filling method, which is to fill the tunnels and cavities of the
structure as solids. For example, the tunnel and cavity of the
structure shown in Fig. 6(a) are filled as solids shown in Fig. 6(b)
and (d), respectively. The other is the cutting method, in which
the solid structures around the tunnels and cavities are sheared
apart. For example, the solid structure of the tunnel and cavity
shown in Fig. 6(a) is cut into the solids shown in Fig. 6(c) and
(e), respectively. In this paper, the tunnels and cavities of the
structure are controlled by the filling method.

For the case where topological constraints in Eq. (1) are not
satisfied, the tunnels and cavities of the structure must be con-
trolled according to the set of elements contained in the tunnels
and cavities. The set of elements contained in each cavity ECi, 1 ≤

i ≤ NC has been calculated in Section 3.4, but the set of elements
contained in the tunnels ETi, 1 ≤ i ≤ NT is still unknown. In
his study, there are two requirements for the set of elements
ontained in the tunnels: one is that the intersection of the
et of elements contained in the tunnels should be as small as
ossible to reduce the mutual influence between the tunnels, and
he ideal state is that there is no intersection; the other is that
he tunnels should contain as few elements as possible because
onstraining more elements may lead to topological constraint
hat are difficult to satisfy smoothly. In order to satisfy the above
equirements, this paper calculates the ETi, 1 ≤ i ≤ NT based on
he triangular meshing of the 3D polygons and tunnel loops (3D
olygons) in the homology theory.

.1. Discrete topological constraint

The control of tunnels and cavities is realized by adding a
opological constraint to the framework of the SIMP interpolation
f the design variable and MMA optimization algorithm.
6

The NT ≤ NT and NC ≤ NC in Eq. (1) are integrated as a
topological constraint with the following discretized form.

tc (ρ) =

∑
j∈TCS

(
ρj − 1

)2
≤ ε (10)

In Eq. (10), TCS is the topological constraint set such that

TCS =
{
i|i ∈ {1, . . . , n} , ρi ∈ ∪1≤j≤NT−NTETj ∪1≤k≤NC−NC ECk

}
(11)

where n denotes the total number of finite elements used for
discretizing the prescribed design domain. ETj and ECk denote
the set of elements contained in the jth tunnel and the set of
elements contained in the kth cavity, respectively. NT and NC
denote the number of tunnels and cavities, respectively. NT and
NC refer to the maximum constraint number of tunnels and
cavities, respectively. As shown in Fig. 7, the maximum constraint
numbers of tunnels and cavities are both zero, that is, NT =

NC = 0. However, the number of tunnels and cavities of the
MBS are both one, that is, NT = NC = 1. The sets of elements
red elements) contained in the tunnel and cavity are denoted as
T1 and EC1, respectively. Therefore, both ET1 and EC1 need to be

added to TCS to realize topological constraint. The sensitivity of
the topological constraint is expressed as

∂tc
∂ρi

=

{
2 ∗ (ρi − 1) ≤ 0, i ∈ TCS
0, i /∈ TCS and i ∈ Ω

(12)

Therefore, the element design variables can be updated simulta-
neously by considering multiple constraints, including topological
inequality constraint using the MMA optimization algorithm.

4.2. Definition and calculation of tunnel loops and handle loops

In order to give a precise control of the structural tunnels, it is
necessary to define the tunnels in a mathematical rigorous way.
In the following, this will be achieved by introducing the concept
of tunnel loops on the outer surface of a given structure. Let M
be the outer surface of a structure which is a connected, closed
(compact and without boundary), orientable, and embedded in
R3. The genus of M represents the maximum number of cuttings
along nonintersecting closed simple curves achievable without
disconnecting M . The M partitions R3 into two regions, I and O,
where I∩O = M and I∪O = R3. The unbounded region O is called
the exterior of M , whereas the bounded region I is the interior of
M . Based on the work of Dey et al. [41] we can define the tunnel
loop and handle loop as follows:

Definition 1 (Tunnel Loop). A loop on M is a tunnel loop if it is
trivial in O but nontrivial in I .

Definition 2 (Handle Loop). A loop on M is a handle loop if it is
trivial in I but nontrivial in O.

As shown in Fig. 6, the green loop can be continuously reduced
to a point in I , but not in O, hence the green loop is a handle
loop; similarly, the red loop can be continuously reduced to a
point in O, but not in I , hence the red loop is a tunnel loop. It
is worth noting that a handle loop necessarily corresponds to a
tunnel loop and vice versa. In addition, the initial tunnel loop may
not have an ideal geometry; specifically, it may be unnecessarily
overlong and twisted. Therefore, the shortest length constraint
must be added to the tunnel loop to obtain the shortest tunnel
loop. The red loops in Figs. 6 and 8 are the shortest tunnel loop.
For structures with complex topologies, the tunnel loops may
differ from general geometric intuition. As shown in Fig. 8, the
surface does not separate after cutting along the three red curves,
but if cutting is continued along the blue curve, the surface will
split into two parts. Thus, the genus of this surface is 3, which



T. Zuo, H. Han and Z. Liu Computer-Aided Design 158 (2023) 103482

i

c
t
t
u
o
s
l
q
o
t
o
l

4

t

Fig. 7. Demonstrate the topological constraint set TCS, where opaque (a), half (b) and semi-transparent (c) versions of the structure are used for visualization. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
w

Fig. 8. A group of shortest tunnel loops on a surface, where opaque (a) and
semitransparent (b) versions of the surface are used for visualization. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. Multisolution of the shortest tunnel loop position. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

means that the surface has three tunnel loops. Notably, any three
of the four loops in Fig. 8 can be selected as a group of tunnel
loops, but under the constraint of the shortest length, the three
red curves are a group of shortest tunnel loops of the surface,
which naturally reduces the multisolvability.

In this paper, the outer surface of the independent connected
omponent is a discrete structured quadrilateral mesh; thus,
here may be multiple sets of shortest tunnel loops on this surface
hat are equal in length but differ in spatial location. To ensure
niqueness, this study triangulates the quadrilateral mesh based
n the two diagonals of the quadrilateral and calculates the
hortest tunnel loops based on the triangular mesh. As in the
eft and middle two figures of Fig. 9, they are both the same
uadrilateral mesh, but the two shortest tunnel loops (red loops)
btained are at different locations, and after triangular meshing of
he quadrilateral mesh, only the shortest tunnel loop (red loop) is
btained, as shown on the right side of Fig. 9. In this study, tunnel
oops are calculated using Dey et al.’s algorithm [34].

.3. Calculate the set of elements contained in the tunnel

Once the shortest tunnel loops have been computed in Sec-
ion 4.2, the triangulating 3D polygons algorithm [42] can be
7

adopted to find the triangular mesh with the minimum area
bounded by each tunnel loops (3D polygons) as a boundary. For
the sake of completeness, the basic ideas of this algorithm will
be explained as follows. Each shortest tunnel loop consists of a
sequence of points TLi =

{
pj|1 ≤ j ≤ n, pj ∈ R3

}
, 1 ≤ i ≤ NT ,

here n is the number of points in the ith tunnel loop. Define a
weight function

WF : TL3i → Larea = [0, ∞) (13)

Where TL3i = {pm, pn, pk} is a triangle constructed from any three
points in TLi, WF assigns an area to each triangle TL3i , and Larea is
the sum of the areas of all the triangles formed by TLi. Finally, the
triangular mesh with TLi as the boundary is calculated according
to the algorithm of Dey et al. [42] which minimizes Larea. Then,
the void elements are taken on the background mesh intersecting
each triangular mesh as the set of elements contained in the
corresponding tunnel ETi, 1 ≤ i ≤ NT .

The flow for calculating the set of elements contained in the
tunnel of an independently connected component is illustrated
in Fig. 10. The surface quadrilateral mesh of an independently
connected component without a cavity is shown in Fig. 10(a).
Fig. 10(b) shows the surface triangular mesh of the indepen-
dent connected component and one of the shortest tunnel loops.
Fig. 10(c) shows one of the shortest tunnel loops. Fig. 10(d) shows
the triangular mesh generated with the shortest tunnel loop
shown in Fig. 10(c) as the boundary. Fig. 10(e) shows the void
element (yellow element) on the homogeneous mesh that inter-
sects the triangular mesh shown in Fig. 10(d). Fig. 10(f) shows the
set of elements contained in the tunnel (yellow elements).

4.4. Strategies for controlling NT and NC

When controlling the tunnels and cavities of the structure
it may occur that the regions where the tunnels and cavities
were reduced by topological constraint in the previous iterations
generate new tunnels and cavities in the subsequent topolog-
ical optimization process. To solve the above problem, we use
boundary evolution to update the TCS.

For any element e ∈ VΩ , it belongs to the set of the boundary
elements ∂Si of Si if it satisfies the following condition:

e ∈ Si and FN (e) ∩
(
∪1≤j≤nvVj

)
̸= ∅ (14)

In addition, when controlling the tunnels of Si, further processing
of ∂Si is needed to prevent the NT of Si from increasing when
deleting arbitrary boundary elements. The detailed procedure for
processing ∂Si is shown in Table 3. As shown in Fig. 11, all solid
elements of the given structure are boundary elements. If the
red solid elements are changed to void elements, the NT of the
structure increases.

In this study, the element design variables are updated based
on MMA to reduce NT and NC by adding the selected set of
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Fig. 10. Flowchart showing the calculation of the set of elements contained in corresponding tunnel. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
Table 3
Algorithm for processing the set ∂Si of boundary elements of Si .
Algorithm 2:

Input: VΩ , Si , ∂Si
11. Calculate the B1 of Si according to Eqs. (2) and (3).
12. for k = 1 to number of elements contained in ∂Si do
13. Assign Si to the temporary elements set STi .
14. Change the elements in STi corresponding to the kth element and its FN to the

void elements. Then calculate the Bk
1 of STi according to Eqs. (2) and (3).

15. if Bk
1 − B1 = 1

16. Remove the current element from ∂Si .
17. end
18. end
Output: ∂Si
elements contained in the tunnel ETi and cavity ECi to TCS. How-
ever, this approach may severely affect the topology optimization
process because the controlled tunnels and cavities contain re-
gions that are too large, including topological constraint, which
make it difficult to smoothly satisfy the constraint. To solve this
problem, this study controls NT and NC using the following
strategy. First, the tunnels and cavities are arranged in ascending
order according to their contained regions as ETi, 1 ≤ i ≤ NT
and ECi, 1 ≤ i ≤ NC , respectively. Then ETi, 1 ≤ i ≤ NT − NT
nd ECi, 1 ≤ i ≤ NC − NC are added into TCS. Notably, other
trategies can be used to sort the tunnels and cavities, such as
orting tunnels and cavities based on the sensitivity sum of the
lements they contain. A more general discussion of this point is
ot extended in this study.
To suppress the phenomenon in which the regions where the

unnels and cavities were reduced by the topology constraint
n the previous iterations generate new tunnels and cavities in
he subsequent topology optimization process, the detailed im-
lementation is divided based on the following two cases. The
irst case occurs where the current iteration does not satisfy the
opological constraint. In this case, instead of initializing TCS to
mpty, the intersection of TCS with the updated MBS boundary
lement set is removed from TCS. The updated MBS is obtained
y filling selected tunnels ETi, 1 ≤ i ≤ NT − NT and cavities
C , 1 ≤ i ≤ NC − NC in the MBS as solids, and then performing
i

8

nonmanifold points and nonmanifold edges processing. In the
second case, the topological constraint is not satisfied in the
previous iteration but is satisfied in the current iteration. In this
case, TCS is first changed to empty, and all the solid elements of
the MBS except the boundary elements are then added to TCS. The
set of boundary elements of the MBS must be further processed
in the control structure tunnels using Algorithm 2.

5. Optimization framework

In summary, the algorithm in this study first binarized the
SGE to BS. Then, the nonmanifold points and nonmanifold edges
of the BS are processed to obtain the MBS. Subsequently, the
tunnels and cavities of the MBS are analyzed, and the topology
of the SGE is described using the tunnels and cavities of the
MBS. For cases in which the topological constraint is not satisfied,
such as NT > NT or NC > NC , the specified set of elements
contained in the tunnels or cavities are selected to join the TCS,
and the element design variables are updated based on the MMA
algorithm to achieve the NT or NC reduction. Moreover, one of
the basic features of topology optimization is the generation of
tunnels and cavities. In this study, a boundary evolution strategy
is used to control the generation of new tunnels and cavities for
the two cases of the structure not satisfying topological constraint
and structure satisfying topological constraint after topological
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Fig. 11. Solid boundary elements that can change NT . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 12. Algorithm flow chart for control tunnel only.
ontrol. Notably, in the optimization process, the optimized result
f a certain iteration does not strictly satisfy the topological con-
traint, but the final optimized result is guaranteed to satisfy the
opological constraint. The flowcharts of the algorithm controlling
nly the structural tunnel and cavity are shown in Figs. 12 and 13,
9

respectively. The detailed optimization algorithm of topological
control above can be expressed as follows:

a) Define the design domain, loads, boundary conditions, fi-
nite element mesh and initialization parameters.
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Fig. 13. Algorithm flow chart for control cavity only.
b) Finite element analysis, calculating and filtering the objec-
tive sensitivity and the volume sensitivity.

c) Binarize the SGE to obtain the BS.
d) Calculate the set of elements SNPE that need to be pro-

cessed to remove nonmanifold points and nonmanifold
edges, and then obtain the MBS.

e) If only the tunnel is controlled, the NT of the MBS is
calculated.

f) If only the cavity is controlled, calculate the NC of the MBS
and skip to step j).

g) If NT ≤ NT , end the optimization process if the optimiza-
tion model converges.

h) If the optimization model does not converge, then deter-
mine if NT ≤ NT is satisfied in the previous iterations;
if not, then change the TCS to empty and add all solid
elements in the MBS to the TCS except for the boundary
elements processed with Algorithm 2, and skip to step n)
if satisfied.
10
i) If NT > NT , first calculate the set of elements contained
in the tunnel ETi, 1 ≤ i ≤ NT . Then select the tunnels
specified in the MBS and turn them into solids while adding
the elements contained in these tunnels to TCS. Update
SNPE and add it to TCS. Then the boundary elements of the
MBS processed with Algorithm 2 are removed from the TCS.

j) If NC ≤ NC , end the optimization process if the optimiza-
tion model converges.

k) If the optimization model does not converge, then deter-
mine if NC ≤ NC is satisfied in the previous iterations; if
not, then change the TCS to empty and add all the solid
elements of the MBS except the boundary elements to TCS,
and skip to step n) if satisfied.

l) If NC > NC , select the cavities specified in the MBS and
turn them into solids, then add the elements contained in
these cavities to the TCS. Add the SNPE to the TCS and
remove the solid boundary elements of the MBS from the
TCS.

m) Calculate the sensitivity of the topological constraint.
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n) Update the element design variables based on MMA.
o) Repeat steps b)–n) until the optimization model satisfies

the constraints.

6. 3D numerical examples

Under the structural topological and volume constraints, the
topology optimization model that minimizes structural compli-
ance can be written in the following form:

Find ρ = (ρ1, ρ2, . . . , ρn)
T

Min C (ρ) = uTK (ρ) u
S.t. K (ρ) u = f

V (ρ) =
∑n

i=1 ρivi/
∑n

i=1 vi ≤ V

tc (ρ) =
∑

j∈TCS

(
ρj − 1

)2
≤ ε

ρmin ≤ ρi ≤ 1, ∀i ∈ 1, 2, . . . , n

(15)

In Eq. (15), ρ is the vector of the design variables, with ρi and vi
denoting the density and volume of the ith element. n denotes the
total number of finite elements used to discretize the prescribed
design domain Ω . K =

∑n
i=1 ρ

p
i K 0 (p is the penalization index

and p = 3 is adopted in the present study) is the global stiff-
ness matrix, with K 0 representing the element stiffness matrix
orresponding to ρi = 1. ρmin = 0.001 is the lower bound of
he element density. V is the prescribed upper bound for solid
aterial. f and u are the external load and displacement fields,

espectively. tc (ρ) ≤ ε is a topological constraint, where TCS is
efined in Eq. (11), and the value of ε is 0.001 in the numerical
mplementation.

Under the conditions of structural topological and volume
onstraints, the topology optimization model of the compliant
echanism problem can be expressed as follows:

Find ρ = (ρ1, ρ2, . . . , ρn)
T

Max C (ρ) = lTu
S.t. K (ρ) u = f

V (ρ) =
∑n

i=1 ρivi/
∑n

i=1 vi ≤ V

tc (ρ) =
∑

j∈TCS

(
ρj − 1

)2
≤ ε

ρmin ≤ ρi ≤ 1, ∀i ∈ 1, 2, . . . , n

(16)

Where u and f are the solution and input vectors, respectively.
The vector l takes a value of zero at all positions, except for the
position corresponding to the output degree of freedom, which is
set to one.

In this section, three 3D numerical examples of a bridge, can-
tilever beam, and compliant gripper are presented to demonstrate
the effectiveness of the proposed algorithm. It should be noticed
that the topological constraint is highly non-convex function of
the design variables and the final optimization results are ex-
pected to be only local minima. Therefore, in order to prevent
the topological constraint from hindering the formation of the
appropriate load-carrying structural topology at initial stages of
optimization, thus leading the optimization process into local
minima prematurely, topological constraint should be added after
certain iteration steps from numerical implementation point of
view.

6.1. Bridge

In this example, we consider a 3D bridge. The model is il-
lustrated in Fig. 14. At the top of the design domain is a thin
non-designable deck. The finite-element mesh consists of 20 ∗

20∗40 hexahedral elements. The target volume fraction and filter
radius are 0.4 and

√
3, respectively.
11
Fig. 14. Bridge model.

For comparison purposes, the classical compliance minimum
problem without topological constraint is first solved, and the
optimized structure is shown in Fig. 15, where the opaque (a),
cross-sectional (b), semi-transparent with a set of shortest tunnel
loops (red loops) (c), semi-transparent with non-shortest tunnel
loops (blue loops) (d), and semi-transparent (e) versions of each
structure are used for visualization. Fig. 15(f) shows the iterative
curves of the objective function, NT and NC , where the objective
function value, NT and NC are 15.73, 4 and 2, respectively. As
shown in Fig. 15(f), there is a large NT in the early stages of
topology optimization (first 20 iteration steps), and one of the
reasons for this phenomenon in our analysis is the large gray
area at projection. In addition, a better topology has not been
developed in the early stages of optimization, thus to avoid falling
into a local minimum prematurely, in this case we added topolog-
ical constraint after the 20th step. Subsequently, three different
topological control modes are solved under the same conditions.
The first controls only the structural tunnel, given NT = 0.
Fig. 16 shows the corresponding optimized structure with the
objective function values, NT and NC values of 15.96, 0 and 2,
respectively. The second controls only the structural cavity, given
the NC = 0. Fig. 17 shows the corresponding optimized structure
with the objective function values, NT and NC values of 16.04,
4 and 0, respectively. The third is to control both the structural
tunnel and cavity, given NT = 0,NC = 0. Fig. 18 illustrates the
corresponding optimized structure with the objective function
values, NT and NC values of 16.04, 0 and 0, respectively. In
addition, the objective function values of the above optimization
results with topological constraint are smaller than that of the
original optimization result, which indicates that the topological
constraint is satisfied at the expense of the objective function
value.

6.2. Cantilever beam

The second example considers a cantilever beam. The sizes of
the design domain and boundary conditions are shown in Fig. 19.
The finite-element mesh consists of 30 × 45 × 90 elements.
The target volume fraction and filter radius are 0.12 and

√
3,

respectively. For comparison purposes, the classical compliance
minimum problem without topological constraint is first solved,
and the optimized structure is shown in Fig. 20, where the opaque
(a), semi-transparent (b), and semi-transparent with a set of
shortest tunnel loops (red loops) are arranged in ascending order
according to the length and symmetry of the tunnel loops (c)–
(h). Further, the semi-transparent with non-shortest tunnel loop
(blue loop) (i) versions of each structure are used for visualization.
For the structure with NT = 10,NC = 0. Next, the same
problem is solved using the optimization model in Eq. (15) with
NT = 0, 1, 2, 3, 4, 5, 6, 7. Figs. 21–28 show the corresponding
optimized results.
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Fig. 15. Optimized result without topological constraint, where opaque (a), cross-sectional (b), semi-transparent with a set of shortest tunnel loops (red loops) (c),
semi-transparent with non-shortest tunnel loops (blue loops) (d) and semi-transparent (e) versions of each structure are used for visualization. (f) Iteration curves
of the objective function, NT and NC , where the objective function value, NT and NC of the optimization result are 15.73, 4 and 2, respectively. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
.3. Compliant gripper

The third example is a 3D compliant gripper, a quarter of
hich is shown in Fig. 29. The finite-element mesh consists of
0 × 30 × 40 elements. An input load f = 1 is applied at the
enter point of the left-side surface. The input spring stiffness
in = 10, and the output spring stiffness is kout = 10. The target

volume fraction and filter radius are 0.05 and
√
3, respectively.

Owing to the symmetrical property, only a quarter of the design
domain is analyzed with a finite element. Topology analysis is
conducted on the entire design domain. For comparison, the
complaint mechanism problem without topological constraint is
first solved, and the optimized structure is shown in Fig. 30,
where the versions of the opaque (a), semi-transparent (b), semi-
transparent with a set of shortest tunnel loops (red loops) and
12
arranged in ascending order according to the length and sym-
metry of the tunnel loops (c)–(g), and semi-transparent with the
non-shortest tunnel loop (blue loop) (h) structure are used for
visualization. For the structure with NT = 10,NC = 0. Next,
the same problem is solved using the optimization model in
Eq. (16) with NT = 0, 1, 2, respectively. Figs. 31–33 show the
corresponding optimized results.

7. Conclusion

In this study, a method is proposed to explicitly and quanti-
tatively control the topology of a 3D structure. The method was
successfully integrated into the computational framework of the
SIMP interpolation and MMA optimization algorithm. Numerical
examples demonstrate that the maximum number of structural
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Fig. 16. Optimized result with NT = 0, where opaque (a), cross-sectional (b), and semi-transparent (c) versions of each structure are used for visualization. (d)
Iteration curves of the objective function, NT and NC , where the objective function value, NT and NC of the optimization result are 15.96, 0 and 2, respectively.

Fig. 17. Optimized result with NC = 0, where opaque (a), cross-sectional (b), and semi-transparent (with a set of shortest tunnel loops (red loops)) (c) versions of
each structure are used for visualization. (d) Iteration curves of the objective function, NT and NC , where the objective function value, NT and NC of the optimization
result are 16.04, 4 and 0, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Optimized result with NT = 0,NC = 0, where opaque (a), semi-transparent (b), and cross-sectional versions of each structure are used for visualization. (d)
Iteration curves of the objective function, NT and NC , where the objective function value, NT and NC of the optimization result are 16.04, 0 and 0, respectively.
Fig. 19. Cantilever beam model.

unnels and cavities can be quantitatively controlled using this
ethod to control the structural topology.
In this paper, only the control of cavities and tunnels in 3D

tructures is discussed, but the control of independent connected
omponents deserves further study. In this study, the character-
stic information of tunnel is calculated by using the tunnel loop
f homology theory, and the NT of structure is reduced by filling
he tunnel loop. We believe that the characteristic information of
tructural tunnel can also be obtained from the skeleton of the
tructure, as well as the NT of the structure can be reduced by
utting the handle loop. In addition, the efficient computation of
he shortest tunneling loop with repeatability is worth further
tudy. From a manufacturing and assembly point of view, it is
14
worthwhile to control the shape and size of the holes and rods
when controlling the topology of the structure.
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Fig. 20. Optimized result without topological constraint, where opaque (a), semi-transparent (b), semi-transparent with a set of shortest tunnel loops (red loops)
(c)–(h), and semitransparent (with non-shortest tunnel loop) (blue loop) (i) versions of each structure are used for visualization. The structure has 10 tunnels
(NT = 10) and 0 cavities (NC = 0). The objective function value of the optimized result is 78.95. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)
Fig. 21. Optimized result with NT = 0, where opaque (a) and semitransparent
b) versions of each structure are used for visualization. The structure has zero
unnels (NT = 0) and zero cavities (NC = 0). The objective function value of
he optimized result is 85.20.
15
Fig. 22. Optimized result with NT = 1, where opaque (a) and semi-transparent
(b) versions of each structure are used for visualization. The structure has zero
tunnels (NT = 0) and zero cavities (NC = 0). The objective function value of
the optimized result is 85.20.
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Fig. 23. Optimized result with NT = 2, where opaque (a), semitransparent (b) and semitransparent (with a set of shortest tunnel loops) (red loops) (c) versions of
each structure are used for visualization. The structure has two tunnels (NT = 2) and zero cavities (NC = 0). The objective function value of the optimized result is
80.40. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 24. Optimized result with NT = 3, where opaque (a), semi-transparent (b), and semi-transparent (with a set of shortest tunnel loops) (red loops) (c)–(d) versions
of each structure are used for visualization. The structure has three tunnels (NT = 3) and zero cavities (NC = 0). The objective function value of the optimized result
is 80.13. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 25. Optimized result with NT = 4, where opaque (a), semi-transparent (b) and semi-transparent (with a set of shortest tunnel loops) (red loops) (c)–(d) versions
of each structure are used for visualization. The structure has three tunnels (NT = 3) and zero cavities (NC = 0). The objective function value of the optimized result
is 80.13. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

16
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Fig. 26. Optimized result with NT = 5, where opaque (a), semi-transparent (b) and semi-transparent (with a set of shortest tunnel loops) (red loops) (c)–(e) versions
of each structure are used for visualization. The structure has five tunnels (NT = 5) and zero cavities (NC = 0). The objective function value of the optimized result
is 80.58. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 27. Optimized result with NT = 6, where opaque (a), semi-transparent (b) and semi-transparent (with a set of shortest tunnel loops) (red loops) (c)–(e) versions
of each structure are used for visualization. The structure has five tunnels (NT = 5) and zero cavities (NC = 0). The objective function value of the optimized result
is 80.58. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 28. Optimized result with NT = 7, where opaque (a), semi-transparent (b) and semi-transparent (with a set of shortest tunnel loops) (red loops) (c)–(f) versions
of each structure are used for visualization. The structure has five tunnels (NT = 7) and zero cavities (NC = 0). The objective function value of the optimized result
is 79.64. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 29. Compliant gripper model.

Fig. 30. Optimized result without topological constraint, where the versions of opaque (a), semi-transparent (b), semi-transparent with a set of shortest tunnel loops
(red loops) (c)–(g), and semi-transparent with non-shortest tunnel loop (blue loop) (h) structures are used for visualization. The structure has 10 tunnels (NT = 10)
and 0 cavities (NC = 0). The objective function value of the optimized result is 0.70. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 31. Optimized result for NT = 0, where opaque (a) and semi-transparent (b) versions of each structure are used for visualization. The structure has zero tunnels
(NT = 0) and zero cavities (NC = 0). The objective function value of the optimized result is 0.18.

Fig. 32. Optimized result with NT = 1, where the versions of opaque (a), semi-transparent (b), and semi-transparent with a set of shortest tunnel loop (red loop)
(c) structures are used for visualization. The structure has one tunnel (NT = 1) and zero cavities (NC = 0). The objective function value of the optimized result is
0.82. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 33. Optimized result with NT = 2, where versions of opaque (a), semi-transparent (b), and semi-transparent with a set of shortest tunnel loops (red loops)
c)–(d) structures are used for visualization. The structure has two tunnels (NT = 2) and zero cavities (NC = 0). The objective function value of the optimized result
s 0.71. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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