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In order to solve the problems of noise amplification and excessive enhancement caused by low contrast and uneven
illumination in the process of low-illumination image enhancement, a high-quality image enhancement algorithm
is proposed in this paper. First, the total-variation model is used to obtain the smoothed V- and S-channel images,
and the adaptive gamma transform is used to enhance the details of the smoothed V-channel image. Then, on this
basis, the improved multi-scale retinex algorithms based on the logarithmic function and on the hyperbolic tan-
gent function, respectively, are used to obtain different V-channel enhanced images, and the two images are fused
according to the local intensity amplitude of the images. Finally, the three-dimensional gamma function is used to
correct the fused image, and then adjust the image saturation. A lightness-order-error (LOE) approach is used to
measure the naturalness of the enhanced image. The experimental results show that compared with other classical
algorithms, the LOE value of the proposed algorithm can be reduced by 79.95% at most. Compared with other
state-of-the-art algorithms, the LOE value can be reduced by 53.43% at most. Compared with some algorithms
based on deep learning, the LOE value can be reduced by 52.13% at most. The algorithm proposed in this paper can
effectively reduce image noise, retain image details, avoid excessive image enhancement, and obtain a better visual
effect while ensuring the enhancement effect. ©2023Optica PublishingGroup

https://doi.org/10.1364/JOSAA.472785

1. INTRODUCTION

Image is the basis of the visual, carrying large amounts of infor-
mation. It is also the foundation of computer vision tasks such
as object detection and object recognition. However, the image
obtained in low-illumination scenes is easily influenced by
mixed noises, blurred details, and poor contrast [1], which
seriously degrade the image quality and make it difficult for
subsequent applications. Therefore, obtaining a higher quality
of enhanced low-illumination images has become a hot topic in
the field of image processing.

At present, the low-illumination image enhancement algo-
rithms can be divided into two categories, traditional algorithms
and deep learning. The traditional algorithms include mapping,
histogram equalization, wavelet transform, and retinex theory.
The mapping methods mainly use nonlinear functions [2–4]
for global processing of low-illumination images and adjust the
enhancement amplitude of different regions to avoid image dis-
tortion. Histogram equalization can achieve the enhancement
effect by extending the dynamic range of the image. References

[5,6] belong to the global histogram enhancement, which
improve the image effect by adding brightness limits and con-
trast limits. In Refs. [7,8], the enhancement methods of the local
histogram are adopted, and the contrast of an image is enhanced
by adjusting the histogram distribution of the local area of an
image by a sliding window. Wavelet transform can process both
the frequency domain and the spatial domain of the image at
the same time. It can take into account the detailed information
of each pixel position in the low-light image. It has a unique
theoretical basis and solves many problems in image processing
[9,10]. Retinex theory, based on human visual characteristics,
divides an image into an incident component and a reflection
component [11], and removes the incident component from
the original image to obtain the reflection component to achieve
image enhancement. Therefore, the algorithms based on retinex
theory have the characteristics of dynamic range compression
and color constancy, which are conducive to enhancing details
[12]. According to different path models, it can be divided into
random-path-based retinex [13], multiple-iterations-based
retinex [14], and center/surround-based retinex [15]. Some
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representative algorithms include single-scale retinex (SSR),
multi-scale retinex (MSR) [16], and multi-scale retinex with
color recovery (MSRCR) [17]. In addition, the improvement
of the enhancement algorithms based on retinex theory also
includes another big family, namely the Milano retinex family
[18], which includes random spray retinex (RSR) [19], spatio-
temporal retinex-inspired envelope with stochastic sampling
(STRESS) [20], Remark [21], and segmentation-based approxi-
mation of point-based sampling Milano retinex (STAR) [22].
RSR uses spray sampling instead of Brownian path, which has
a better collection effect on neighboring pixel information.
Therefore, in the subsequent development, light random spray
retinex (LRSR) [23] and smart light random memory spray
retinex (SLRMSR) [24] were proposed on the basis of RSR
to reduce the computational cost. At present, related algo-
rithms based on retinex theory are still developing, and many
corresponding improved algorithms are proposed to solve the
problems of image over-enhancement, color distortion, and
noise amplification. In Ref. [25], the input image is decomposed
based on retinex theory in a continuous sequence, and the
piecewise smooth incident component and noise suppressed
reflection component are estimated successively. Reference
[26] proposes that the MSR algorithm is first used to enhance
the Y channel in YCrCb to obtain the enhanced image; then
the SSR algorithm is used to enhance the RGB image, and
then the two images are weighted and fused. In the Ref. [27],
according to retinex theory, image enhancement is simplified
as a problem of illumination estimation. The underexposure
and overexposure correction are respectively used as the trivial
illumination estimation of the input image and the inverted
input image to obtain two kinds of intermediate exposure cor-
rection results, and then the enhanced image is obtained by
image fusion. In Ref. [28], low-rank prior is injected into the
retinex decomposition process for the first time to suppress noise
in the reflectivity map. In Refs. [12,29], the just-noticeable
difference (JND) is used to adjust the light intensity to avoid
noise amplification caused by over-enhancement, and in [29],
the original image is fused with the enhanced image, and more
details are preserved by using contrast limited adaptive histo-
gram equalization (CLAHE) [30] to process the fused image.
With the development of artificial intelligence, deep learning
has been applied to image enhancement and achieved good
results. Inspired by retinex theory, Refs. [31,32] adopt the step
of decomposition first and then enhancement, and use the
convolutional neural network to divide the image into an inci-
dent image and reflection image, and then combine them after
training. In addition, an adjustment network is added in [32] to
autonomously adjust the illumination intensity. Reference [33]
proposes an enhancement method without reference, which
iteratively uses the pixel value mapping curve to transform the
image to obtain the enhanced image. Reference [34] regards
low-light enhancement as a residual learning problem, that is,
estimating the residual between low-light and normal-light
images. Reference [35] constructs a dual discriminator structure
to process global and local information, respectively, which can
process the illumination conditions that change with the change
of spatial scale.

In this paper, the traditional algorithm is used to enhance
a low-illumination image, and corresponding solutions are

proposed to solve the problems in image enhancement. In this
paper, the total-variation (TV) model is used to denoise the
V-channel image, and the adaptive gamma transform is used
to enhance the details of the structure layer image obtained
after denoising [36]. It successfully realizes image denoising
while retaining as many image details as possible, and obtains
a detailed image. Meanwhile, the hyperbolic tangent function
and logarithmic function are combined to control the ampli-
tude of image enhancement successfully and avoid image noise
amplification and excessive enhancement. We also use the
three-dimensional gamma function to adjust the detailed image
and correct the enhanced image to achieve the restoration of
image color. Finally, the saturation of the image is adjusted by
an automatic threshold to obtain the final effect. The experi-
mental results show that the algorithm successfully improves
the brightness of low-illumination images, suppresses noise
amplification in images, and has good performance in image
fidelity and over-enhancement suppression.

2. BASIC THEORY

A. Retinex Theory

The retinex theory was put forward in the 1980s. The core idea
of retinex is that an image consists of an incident component
and a reflected component. The intensity of the incident com-
ponent determines the dynamic range of an image pixel, while
the reflected component is an inherent attribute of the object
and does not change with the incident component [37]. The
model is as follows:

I (x , y )= R(x , y ) · L(x , y ), (1)

where I (x , y ) is the observation image, R(x , y ) is the
reflection component, and L(x , y ) is the incident compo-
nent. It is usually converted to a logarithmic form to reduce
computational complexity:

log R(x , y )= log I (x , y )− log L(x , y ). (2)

Based on this theory, a classical SSR algorithm was proposed.
A Gaussian kernel function is convolved with the original image
to estimate the incident component, and the reflection compo-
nent is obtained by using Eq. (3) to realize the enhancement of
low-illumination images. The formula is as follows:

log Ri (x , y )= log Ii (x , y )− log(Ii (x , y )⊗ G(x , y )), (3)

where Ri represents the reflective components of different color
channels,⊗ is the convolution symbol, G is the Gaussian kernel
function, and its formula is

G(x , y )=
1

2πσ 2
exp

(
−

x 2
+ y 2

2σ 2

)
, (4)

where σ is the standard deviation of the Gaussian function.
When it is small, the enhanced image retains more details, but
it is easy to cause color distortion in an image. When it is large,
the enhanced image keeps a good color, but the image becomes
blurred [38], and the halo effect easily occurs in the brighter
area.
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In order to solve the above problems, an MSR algorithm was
proposed to enhance low-illuminance image at different scales,
and its expression is as follows:

log Ri (x , y )=
N∑
j

ω j

{
log Ii (x , y )− log(Ii (x , y )⊗ G j (x , y ))

}
,

(5)
where N is 3, representing the three scales, ω j represents the
first j scale parameter, and, in general, ω1 =ω2 =ω3 = 1/3,
G j represents the corresponding Gaussian kernel function with
differentσ .

B. Guided Filtering

Guided filtering is an adaptive local linear filter, which has good
edge preserving characteristics and can preserve the edge details
of the image while smoothing the image. Its expression is as fol-
lows [39,40]:

q(x , y )=
1
|w|

∑
k(x ,y )∈Mk

[ak J (x , y )+ bk], (6)

where, q(x , y ) is the output image, J (x , y ) is the guidance
image, Mk is the filtering window with radius r , |w| is the total
number of pixels in window Mk , k(x , y ) is the pixel value in
window Mk , k is the center of the filtering window, ak and bk are
the linear coefficients when the center of the filtering window is
located at pixel k(x , y ), and their expressions are, respectively,
as follows:

ak =

1
|w|

∑
k(x ,y )∈Mk

J (x , y )p(x , y )− uk pk

σ 2
k + ε

, (7)

bk = pk − akuk, (8)

where p(x , y ) represents the input image, σk represents the
variance of the guidance image J (x , y ) in window Mk , pk

represents the average value of image p(x , y ) correspond-
ing to filtering window Mk , uk represents the mean value of
image J (x , y ) corresponding to filtering window Mk , and ε
represents a regularization parameter.

3. METHOD

To obtain high-quality enhancement performance without
noise amplification in the low-illumination condition, we
present an efficient algorithm based on retinex theory. The over-
all framework of the image enhancement algorithm is shown in
Fig. 1. The proposed algorithm is composed of a TV denoising
unit, an adaptive saturation adjustment unit, a double-function
image fusion enhancement unit, and a three-dimensional
gamma correction unit. The original image is the input RGB
format image, which is first converted to HSV format, and then
the optimized S-channel and V-channel images, namely S ′

and Iimg, are obtained through different processing methods.
Finally, the three channel images obtained are reconstituted
into HSV format and then converted into RGB format. The
V-channel image needs to be smoothed by the TV model to get
the image I V

u , and then the details are enhanced by adaptive
gamma enhancement to get the image Id . The S-channel image
only needs to be smoothed to get the image I S

u . The following
sections will discuss the details of each unit for this algorithm.

A. TV Denoising

According to retinex theory, after removing the incident compo-
nent in the image, the reflected component obtained can show
the true color of the object, so the related algorithms based on
retinex theory have good color retention ability. However, in
practice, it is difficult to accurately estimate the incident com-
ponent in the image, which may lead to defects in the obtained

The overall framework of the algorithm
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Fig. 1. (a) Overall framework of the algorithm. (b) Framework of TV denoising.
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reflection component, destroy the correlation between differ-
ent color channels, and lead to color distortion in the image
enhancement result [38,41]. To avoid this situation, the image
can be transferred to a HSV color model. Through the analy-
sis of the conversion process, it is found that the transformed
image noise is mainly concentrated in the S and V channels
[42]. Therefore, to reduce the noise amplification in the image
enhancement process, the above image channels need to be
denoised first.

Among the denoising methods based on partial differential
equations, a TV model has been proved to be one of the most
effective algorithms [43,44]. Through this model, the image
denoising problem can be transformed into an unconstrained
optimization problem to solve the minimum energy functional,
and the expression is shown as follows:

min
I c
u

E (I c
u )=

min
I c
u

∫∫
�

|∇ I c
u |dxdy +

λ

2

∫∫
�

(I c
u − I c

f )
2dxdy ,

(9)
where c represents the different channels, namely the S channel
or V channel, I c

u represents the ideal image of the channel, and
I c

f represents the observed image of the channel. In Eq. (9), the

former is a regularization term and ∇ =
(
∂
∂x ,

∂
∂ y

)
represents

a Hamiltonian operator, |∇ I c
u | =

√
I c

ux
2 + I c

u y
2; this term

can suppress noise and play a smoothing role on the image.
The latter term is the fidelity term, which is used to keep the
edge information of the image, so that the image is closer to the
original image. The λ represents the regularization parameter,
which is used to balance the regularization term and the fidelity
term, Experiments show that better results can be achieved when
the value is 90. The following function can be obtained from
Eq. (9):

F =
λ

2
(I c

u − I c
f )

2
+
∣∣∇ I c

u

∣∣= λ
2
(I c

u − I c
f )

2
+

√
I c
u

2
x + I c

u
2
y .

(10)
When the minimum value is obtained through Eq. (9), Eq. (10)
satisfies the Euler Lagrange equation, and the formula is as
follows:

∂F
∂ I c

u
=
∂

∂x

(
∂F
∂ I c

ux

)
+
∂

∂ y

(
∂F
∂ I c

u y

)
. (11)

The calculation expression of the divergence is given as
follows:

divF =∇ · F =
∂Fx

∂x
+
∂Fy

∂ y
. (12)

By combining Eqs. (9)–(12), the final Euler Lagrange
equation can be obtained, which is expressed as follows:

−∇ ·

(
∇ I c

u∣∣∇ I c
u

∣∣
)
+ λ(I c

u − I c
f )= 0, (13)

where 1/|∇ I c
u | represents the diffusion coefficient. |∇ I c

u | is
large at the edge of the image, and the diffusion coefficient is
small so that the edge can be preserved. On the contrary, |∇ I c

u |

is small in the smooth area of the image, the diffusion coefficient
is large, and the noise can be removed [45]. The finite difference

Fig. 2. Processed image: (a) original image. (b) Denoised image.
(c) Detailed image.

method is used to solve the above equation and get a smooth
image I c

u ; the formula is as follows [46]:

I c (n+1)
u(i, j ) = I c (n)

u(i, j ) −1tλ(I c (n)
u(i, j ) − I c

f (i, j ))+1t

∇ ·
 ∇ I c (n)

u(i, j )∣∣∣∇ I c (n)
u(i, j )

∣∣∣
,
(14)

where n represents the number of iterations, and t represents the
time step. Experiments show that better results can be achieved
when the two are 100 and 0.25, respectively.

Although most of the image information is retained in the
denoising process, part of the image details are also lost. So, the
image details need to be improved [36]. In Ref. [47], the gray
information and variance of the image are used to set the gamma
transform parameters to highlight the details of the image. The
formula is as follows:

Id = I V
u (x , y )

(
N(x ,y )

I V
u (x ,y )

+b(x ,y )
)
, (15)

N(x , y )=

∑
m,n

I V
u (x , y )

m · n
, (16)

b(x , y )=

∑
m,n

(
I V
u (x , y )− N(x , y )

)2

m · n
, (17)

where N and b are the average gray value and variance of the
local area of the pixel point centered on I V

u (x , y ).
Based on Eqs. (9)–(17), the denoising effect of the images

is shown in Fig. 2. By observing the images in Fig. 2, it can be
found that the denoising effect of the denoised image is signifi-
cantly improved compared with the original image. The noise
points in the image background are effectively eliminated, and
the main structural layer of the image is effectively preserved.
However, the edge effect of the image also becomes blurred to a
certain extent, which reduces the hierarchical sense of the image
and affects the subsequent enhancement effect of the image.
After further processing with the adaptive gamma transform,
it can be found from the detailed image that the edge details
of objects and some tiny traces in the image are expanded,
enriching the sense of image layers, and improving the contrast.
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B. Double-Function Image Enhancement

As mentioned above, the traditional MSR algorithm uses the
Gaussian kernel function that emphasizes spatial information
to estimate the incident image and ignores the edge informa-
tion of the image, which leads to the occurrence of a halo in
the enhanced image at the light source. This problem can be
effectively solved by using guided filtering that considers both
to estimate the incident image. The initial adjustment image
Id is used as the input image and the guidance image. The
incident component of the image is obtained by combining
Eqs. (6)–(8), and then the preliminary image enhancement
result Il is obtained by Eq. (5).

In the MSR algorithm, logarithmic image data is obtained
according to Eq. (5). In order to avoid a negative infinity state,
a smaller parameter is usually added, namely log(x + eps). It
leads to the error of some data. In addition, in some areas, the
estimated pixel value is much smaller than itself and the reflected
image data is too large, which leads to the phenomenon of exces-
sive enhancement of images after inverse logarithm processing.
Therefore, the continuity and finiteness of the hyperbolic
tangent function are used to compensate for partial data and
suppress excessive image enhancement [48]. However, the
hyperbolic tangent function cannot be directly used to enhance
the image, and its effect image is shown in Fig. 3.

As shown in Fig. 3, the maximum value of the hyperbolic
tangent function approaches 1. Although the enhancement of
the dark region can be realized and excessive enhancement of the
bright region can be inhibited, the enhancement effect between
the two degrees is not obvious; the enhancement effect of the
whole image is dim, while the logarithmic function changes
greatly after inverse transformation. Therefore, this paper
utilizes the characteristics of both. The fusion parameters are
designed according to the brightness of the image local region to
achieve a balance between the two images. The formula is shown
below:

Ip = α Il + β It , (18)

α =

∑
m,n It∑
m,n Il

, (19)
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Fig. 3. Function contrast image.

It =

N∑
j

ω j

{
tanh

(
Id (x , y )

Id (x , y )⊗ G j (x , y )

)}
, (20)

where α and β are the adjusting parameters, α + β = 1. Il

and It are enhanced by a logarithmic function and hyperbolic
tangent function, respectively. In the above formula, tanh is the
hyperbolic tangent function, and its expression is as follows:

tanh(x )=
exp(x )− exp(−x )
exp(x )+ exp(−x )

. (21)

Using Eqs. (18)–(21), an image effect example is shown in
Fig. 4. The image obtained by logarithmic function has higher
overall brightness, and more loss of local details, and a halo
appears at the edge of some buildings, while the image obtained
by the hyperbolic tangent function has lower overall brightness,
low contrast, and a blurred image. The image obtained by com-
bining the two functions can suppress excessive enhancement
and the edge halo, but the “white fog” caused by the darkest
region of the image after enhancement has not been solved, and
it still needs to be further processed.

C. Three-Dimensional Gamma Correction

In order to solve the above “white fog” problem, this section uses
gamma transform to adjust the detailed image and then, on this
basis, correct the enhanced image. Considering the brightness
and detail information of the image, the gamma parameter
values are set from three dimensions, namely the gray scale,
variance, and gradient values of the image. The formula is as
follows:

Iout = Id
(ψ ·exp(A)+µ·exp(B)+ν·exp(C)), (22)

where ψ , µ, and ν are the control parameters, which are 0.1,
0.1, and 0.05 after the test, respectively; A is the gray level
information of the image, which is the ratio between the pixel
value of input image Id (x , y ) and the maximum pixel value
in the m × n region of the image; B is the local mean gradient
in a region m × n centered on Id (x , y ), as shown in formula

Fig. 4. Images of different functions: (a) original image, (b) loga-
rithmic image, (c) hyperbolic tangent image, and (d) double-function
image.
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Fig. 5. Image correction: (a) original image, (b) uncorrected image,
(c) gamma corrected image, and (d) three-dimensional corrected
image.

Fig. 6. Effect image of algorithm.

Eq. (23); and C is the local variance of the image, which can be
obtained by referring to formula Eq. (17). The final image Iimg is

B(x , y )=

∑
m,n
|∇ Id (x , y )|

m · n
, (23)

Iimg = Ip · Iout. (24)

Based on Eqs. (22)–(24), the correction effect of an image is
shown in Fig. 5. As shown in Fig. 5, the contrast of the corrected
image is significantly improved, the sense of layers of the image
is richer, and the overall brightness of the image is coordinated.
Compared with the original image, the enhancement of the
highlighted areas, such as the sky and buildings, is inhibited,
while the enhancement effect of the low-illumination areas,
such as trees, pedestrians, and roads, is obvious.

D. Saturation Regulation

In low-illuminance image, the image saturation in the dark
area is low. Directly transforming the processed channel images
into an RGB image will lead to the phenomenon of a “dark
spot” in the dark area of the image. This phenomenon can be
alleviated by adjusting the saturation channel of the image, and

the formula is shown as follows:

S ′ =

 1+ 0.8 · log
(

Sm
I S
u (i, j )+0.5·Sg (i, j )

)
, I S

u (i, j )≤ ϑ

exp
(

Sm−I S
u (i, j )
2

)
, else,

(25)
where Sm is the mean value in a region m × n centered on this
point, Sg is the gradient of this point, and ϑ is the sum of the
global mean value of the S channel and the gradient value of this
point.

4. EXPERIMENTAL RESULTS

In order to prove the effectiveness of the algorithm, we selected
several groups of images for experiment. These images are
derived from the datasets presented in Refs. [8,49,50]. The
specific implementation effects of the algorithm are shown in
Fig. 6.

In order to further prove the superiority of the algorithm, we
chose some enhanced images to compare with the enhanced
images of other algorithms from both subjective and objective
aspects.

A. Subjective Evaluation

To verify the effectiveness of the algorithm, we selected some
images for the enhancement experiments; the image size is
640× 480, compared with the MSRCR [17], low-light image
enhancement via illumination map estimation (LIME) [49],
CLAHE [30], the low-rank regularized retinex model (LR3M)
[28], Retinex-Net [31], the deep lighten network (DLN) [34],
joint enhancement and denoising (JED) [25], and dual illumi-
nation estimation for robust exposure correction (DIEREC)
[27]. In our experiments, the radius r of the filtering window is
15, and the three regularization parameters ε are 0.005, 0.015,
and 0.025, respectively.

The observation results are shown in Figs. 7–11. From
Figs. 7(b)–11(b), we find that the overall visual effect of images
enhanced by the MSRCR algorithm is white, with serious color
loss and low image contrast. From Figs. 7(c)–11(c) we find
that the contrast and color retention of the images obtained
by the LIME algorithm are relatively high, but also maintain a
certain enhancement amplitude in the bright area of the image,
resulting in an excessive enhancement in this area and image
noise amplification. From Figs. 7(d)–11(d), it can be found
that the texture details of the enhanced images obtained by the
CLAHE algorithm are seriously lost, and there is a phenome-
non of color distortion in the sky region of the enhancement
images. It can be seen from Figs. 7(e)–11(e) that the image effect
obtained by using the LR3M algorithm is slightly blurred. In
Fig. 7(e), there is excessive enhancement and a virtual shadow at
the light source. From Figs. 7(f )–11(f ), it can be seen that there
is noise amplification and detail loss in the enhanced images
obtained with Retinex-Net. For DLN enhanced images from
Figs. 7(g)–11(g), the images have a good enhancement effect in
the lower brightness area, but there is a general phenomenon of
over-enhancement in the brighter area. From Figs. 7(h)–11(h),
we find that the enhanced images obtained by the JED algo-
rithm have good overall vision, but the image details are also
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Fig. 7. (a) Original. (b) MSRCR. (c) LIME. (d) CLAHE. (e) LR3M. (f ) Retinex-Net. (g) DLN. (h) JED. (i) DIEREC. (j) Proposed.

Fig. 8. (a) Original. (b) MSRCR. (c) LIME. (d) CLAHE. (e) LR3M. (f ) Retinex-Net. (g) DLN. (h) JED. (i) DIEREC. (j) Proposed.

Fig. 9. (a) Original. (b) MSRCR. (c) LIME. (d) CLAHE. (e) LR3M. (f ) Retinex-Net. (g) DLN. (h) JED. (i) DIEREC. (j) Proposed.

Fig. 10. (a) Original. (b) MSRCR. (c) LIME. (d) CLAHE. (e) LR3M. (f ) Retinex-Net. (g) DLN. (h) JED. (i) DIEREC. (j) Proposed.
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Fig. 11. (a) Original. (b) MSRCR. (c) LIME. (d) CLAHE. (e) LR3M. (f ) Retinex-Net. (g) DLN. (h) JED. (i) DIEREC. (j) Proposed.

slightly blurred, which is the same as LR3M. From Figs. 7(i)–
11(i), it can be found that the enhanced images obtained by
the DIEREC algorithm have insufficient enhancement in
the local area of the image, as shown in Fig. 10(i), and some
images are distorted, as shown in Figs. 7(i). Figures 7(j)–11(j)
are the proposed algorithms in this paper. Compared with other
algorithms, the images are preprocessed, so the image noise
is effectively suppressed and the details of the image are also
preserved. The proposed algorithm in this paper can not only
realize the enhancement effect but also effectively suppress the
phenomenon of excessive enhancement in the bright area of the
images; for example, the sky and light source areas in each scene
have better visual effects.

B. Objective Evaluation

The peak signal-to-noise ratio (PSNR) is used to measure the
noise of the enhanced image, and structural similarity (SSIM) is
used to measure the structural similarity between the enhanced
image and the original image to judge the distortion of the
image. Standard deviation (SD) is used to reflect the dispersion
degree of pixels relative to the mean to characterize the image
contrast. The information entropy (IE) is used to reflect the
richness of image information and characterize the complex-
ity of image. The lightness order error (LOE) [50] is used to
measure the preservation of the naturalness of the enhanced
image. In the experimental results obtained, the higher the
values of PSNR, SSIM, SD, and IE obtained, the better the
image effect. On the contrary, the lower the LOE value, the
better the image effect. We show the optimal and suboptimal
results for each experiment in bold italic and bold, respectively.
The specific parameters of various algorithms are shown in
Tables 1–5.

As shown in Table 1, the PSNR of the images obtained by
the proposed algorithm is second only to the DIEREC algo-
rithm, and it is improved in different degrees compared with
other algorithms. Compared with MSRCR, LIME, CLAHE,
LR3M, and JED, the PSNR has improved by 58.46%, 36.87%,
24.64%, 6.06%, and 5.09%, respectively, and compared
with the Retinex-Net and DLN, the PSNR has improved by
31.87% and 41.06%, effectively reducing the image noise.
In Table 2, the SSIM of the algorithm in this paper is second
only to the DIEREC algorithm. Compared with the LR3M
algorithm and JED algorithm, the SSIM of the proposed algo-
rithm is improved by about 6.10% and 3.19%, respectively,
which avoids the huge distortion of the image compared with
the original image. In Table 3, the SD value of the algorithm
in this paper is slightly smaller than the LIME, but from the
perspective of the image effect, the proposed algorithm still
has a good ability to maintain details. In Table 4, the IE of this
algorithm is second only to the CLAHE algorithm and higher
than other algorithms. Compared with the DLN algorithm,
the improvement is the highest, which is about 18.02%. In
Table 5, the LOE of the algorithm presented in this paper is
the lowest. Compared with other algorithms, the effect of this
algorithm is greatly improved. Compared with the MSRSR,
LIME, CLAHE, LR3M, JED, and DIEREC algorithms, the
maximum reduction can be 79.95%, and compared with the
Retinex-Net and DLN algorithms, the reduction is 52.13% and
19.08%, respectively, which have great advantages. Combining
the subjective and objective aspects of the image, the algorithm
in this paper has better overall performance and has certain
advantages over other algorithms.

Table 1. Comparison of Image PSNR

Image MSRCR LIME CLAHE LR3M Retinex-Net DLN JED DIEREC Proposed

Fig. 7 8.0750 10.2291 9.7745 13.3078 11.5351 12.2034 13.7423 15.9812 14.0252
Fig. 8 10.2918 10.1171 13.1106 13.9916 10.4461 10.5819 14.0420 17.5930 14.1186
Fig. 9 7.2332 8.9235 10.2332 12.4189 9.6542 11.0284 12.6383 14.8569 12.9890
Fig. 10 8.9312 12.7726 13.3584 13.2545 11.2153 10.8836 12.7390 18.8025 15.7365
Fig. 11 11.0291 10.7060 11.4494 15.0996 11.8980 12.4837 15.5393 17.2493 15.3276
Mean 9.1121 10.5497 11.5852 13.6145 10.9497 10.2362 13.7402 16.8966 14.4394
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Table 2. Comparison of Image SSIM

Image MSRCR LIME CLAHE LR3M Retinex-Net DLN JED DIEREC Proposed

Fig. 7 0.4773 0.5505 0.4080 0.5935 0.5615 0.5600 0.6177 0.6394 0.6388
Fig. 8 0.4006 0.5939 0.5922 0.6321 0.5885 0.3856 0.6512 0.7207 0.6703
Fig. 9 0.2968 0.4489 0.3512 0.5420 0.4620 0.4953 0.5637 0.6095 0.5772
Fig. 10 0.2302 0.6694 0.5981 0.6591 0.6275 0.5499 0.6529 0.7445 0.7146
Fig. 11 0.2737 0.6518 0.5387 0.6878 0.6352 0.4198 0.7171 0.6899 0.7035
Mean 0.3357 0.5829 0.4976 0.6229 0.5749 0.4821 0.6405 0.6808 0.6609

Table 3. Comparison of Image SD

Image MSRCR LIME CLAHE LR3M Retinex-Net DLN JED DIEREC Proposed

Fig. 7 0.1978 0.2751 0.2460 0.2797 0.2389 0.2920 0.2844 0.2635 0.2777
Fig. 8 0.2378 0.2620 0.2364 0.2881 0.1921 0.2954 0.2839 0.2531 0.2478
Fig. 9 0.2091 0.2380 0.2014 0.2174 0.1749 0.2665 0.2241 0.1892 0.2116
Fig. 10 0.2195 0.2778 0.1915 0.2695 0.2049 0.2987 0.2689 0.2346 0.2556
Fig. 11 0.2605 0.3016 0.2116 0.3166 0.2315 0.3385 0.3241 0.2676 0.2844
Mean 0.2250 0.2709 0.2174 0.2743 0.2085 0.2982 0.2771 0.2416 0.2554

Table 4. Comparison of Image IE

Image MSRCR LIME CLAHE LR3M Retinex-Net DLN JED DIEREC Proposed

Fig. 7 7.2070 7.3703 7.8465 7.5569 7.6575 6.0262 7.4770 7.7344 7.6929
Fig. 8 7.3586 7.4271 7.9426 7.6325 7.4984 6.7205 7.6985 7.6931 7.8353
Fig. 9 7.2808 7.8193 7.8905 7.8207 7.6683 7.4378 7.7907 7.6513 7.7969
Fig. 10 6.8935 7.6407 7.8727 7.5205 7.6375 6.6456 7.4826 7.7094 7.8114
Fig. 11 7.1932 7.4093 7.9372 7.4737 7.6813 6.1471 7.4563 7.7830 7.7847
Mean 7.1866 7.5333 7.8979 7.6001 7.6286 6.5954 7.5810 7.7142 7.7842

Table 5. Comparison of Image LOE

Image MSRCR LIME CLAHE LR3M Retinex-Net DLN JED DIEREC Proposed

Fig. 7 986.4367 301.6633 900.2940 229.1155 340.6755 235.9075 167.0367 257.0033 220.0170
Fig. 8 958.1582 263.4301 406.8269 261.9773 448.2594 147.8415 226.3490 223.4806 184.5203
Fig. 9 799.4448 271.8690 613.3749 244.1949 427.1367 126.9063 205.8839 331.1307 249.8173
Fig. 10 942.2824 261.4358 753.5755 976.6908 550.1650 344.6213 996.1461 399.2855 134.4097
Fig. 11 1373.9960 336.1939 505.1650 466.6208 353.5218 398.6355 498.1139 278.9129 225.9137
Mean 1012.0636 286.9184 635.8472 435.7198 423.9517 250.7824 418.7059 297.9626 202.9356

5. CONCLUSION

This paper proposed an efficient image enhancement algorithm
capable of overcoming the problems of noise amplification and
excessive enhancement in the process of low-illumination image
enhancement. This work adopts a TV denoising method to
preprocess image, and the adaptive gamma transform is used
to enhance the image details. The tanh function and logarithm
function are combined to obtain the preliminary enhanced
image to avoid excessive image enhancement. Meanwhile,
a three-dimensional gamma transform is used to adjust and
correct the enhanced image. From the subjective result, it is
found that the enhanced image achieves the denoising effect and
retains details effectively, and avoids excessive image enhance-
ment on the basis of ensuring the enhancement effect. From the
objective results, compared with the MSRCR, LIME, CLAHE,
LR3M, JED, and DIEREC algorithms, the LOE value of
the proposed algorithm can be reduced by up to 79.95%,
29.27%, 68.08%, 53.43%, 51.53%, and 31.89%, respectively.
Compared with the Retinex-Net and DLN algorithms, the
reduction is 52.13% and 19.08%, respectively. The enhanced

image maintains better naturalness and has certain advantages
in other parameters.
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