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Abstract: Hyperspectral image (HSI) super-resolution (SR) is a classical computer vision task that
aims to accomplish the conversion of images from lower to higher resolutions. With the booming de-
velopment of deep learning (DL) technology, more and more researchers are dedicated to the research
of image SR techniques based on DL and have made remarkable progress. However, no scholar
has provided a comprehensive review of the field. As a response, in this paper we aim to supply a
comprehensive summary of the DL-based SR techniques for HSI, including upsampling frameworks,
upsampling methods, network design, loss functions, representative works with different strategies,
and future directions, in which we design several sets of comparative experiments for the advantages
and limitations of two-dimensional convolution and three-dimensional convolution in the field of
HSI SR and analyze the experimental results in depth. In addition, the paper also briefly discusses
the secondary foci such as common datasets, evaluation metrics, and traditional SR algorithms. To
the best of our knowledge, this paper is the first review on DL-based HSI SR.

Keywords: super-resolution; hyperspectral image; deep learning; convolutional neural networks
(CNNs); generative adversarial networks (GANs)

1. Introduction

As an image processing technique with a wide range of applications, hyperspectral
image (HSI) super-resolution (SR) [1–4] refers to the use of a low-resolution (LR) HSI or
a series of LR HSIs with less detailed information to reconstruct a high-resolution (HR)
HSI that can provide more detailed information. While improving image visualization, it
also facilitates other downstream vision tasks, such as object detection [5–7] and image
classification [8–10].

With the increasing maturity of optical engineering and the improvement of process
manufacturing, hyperspectral imaging technology has been developed as never before.
Hyperspectral images can not only capture the two-dimensional spatial information of
the observed scene, but also record the spectral signal in a continuous spectral band. The
rich spectral signal contains information such as the material of the object, which helps to
accurately identify and classify different objects in the observed scene. Therefore, hyper-
spectral imaging technology has received wide attention in fields such as environmental
monitoring and intelligent agriculture [11–13].

The total energy that can be received by one detection unit of the sensor of a remote
imaging platform is a double integration of the electromagnetic wave in space and in the
wavelength band. Imaging spectrometers with relatively narrow spectral bandwidth need
to use a relatively large instantaneous field of view (IFOV) to obtain acceptable signal-to-
noise ratio (SNR) if they want to obtain the expected HSI. Given a certain height, IFOV
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determines the instantaneous surface area observed by a single detection element within the
sensor. Larger IFOV leads to a larger observation field of view but lower spatial resolution
of the image. Simultaneously increasing spectral resolution and spatial resolution results
in signal integration over a relatively small area and narrower band, which weakens the
signal, lowers SNR, and lowers imaging quality. Therefore, there is a trade-off between
spectral resolution and spatial resolution. As one goes up, the other is bound to decrease,
to ensure that the detection unit receives a strong enough signal. As such, HSIs with high
spectral resolution are generally accompanied by lower spatial resolution. Such low spatial
resolution weakens the visual perception and greatly decreases the accuracy of spectral
interpretation, which brings great challenges to the subsequent image processing. In order
to obtain HSI with higher spatial resolution at a lower cost, SR reconstruction has great
application value as an image post-processing technique.

After just a few decades of development of HSI reconstruction technology, a variety
of reconstruction methods have emerged, among which the traditional methods can be
categorized into three types: wavelet transform-based, maximum a posteriori estimation-
based, and spectral-mixing-analysis-based. These traditional methods have significant
drawbacks, such as difficult and time-consuming nature of solving. In 2014, Dong, et al. [14]
first proposed the use of convolutional neural network (CNN)-based SRCNN models to
solve image SR tasks. Since then, more and more scholars have turned their attention to
the study of deep learning (DL) models [15–17]. In the field of HSI SR, the research on
DL-based reconstruction methods inevitably lags slightly behind natural image SR. To our
relief, from 3D-FCNN [18] to DPRPE [19], DL-based SR methods for HSI are becoming
more abundant than ever. DL-based methods can capitalize on the prior information in the
image, and the reconstruction speed is fast and the reconstruction effect outstanding; this
has become the mainstream technology for the current SR reconstruction of HSI.

In this paper, we give a comprehensive overview of the research on HSI SR. To the
best of our knowledge, unlike previous reviews that primarily focused on traditional
algorithms [20–22], our work is the first review of HSI SR based on DL. The four main
contributions of this review are as follows:

(1) This paper presents a comprehensive summary of HSI SR techniques based on DL,
including upsampling frameworks, upsampling methods, network design, loss func-
tions, representative works with different strategies, and future directions. We also
analyze the advantages or limitations of each component.

(2) In this paper, we carry out a scientific and precise classification of traditional HSI SR
algorithms, based on the difference of underlying ideas.

(3) To explore the influence of multi-channel two-dimensional (2D) convolution and
three-dimensional (3D) convolution on the performance of the HSI SR model, two
sets of comparative experiments are designed, based on the CAVE dataset and Pavia
Centre dataset, and the advantages and shortcomings of each are compared.

(4) This paper summarizes the challenges faced in this field and proposes future research
directions, providing valuable guidance for subsequent research.

The main structure of this review is shown in Figure 1. Section 2 formulates the SR
problem and introduces the commonly used datasets and evaluation metrics. Section 3
briefly summarizes the traditional algorithms for HSI SR. Section 4, as the core part of this
paper, gives a detailed description of each component and representative works of the
DL-based HSI SR method. Finally, Section 5 summarizes the entire review.
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Figure 1. The main structure of this review.

2. Preparations

Before we start to introduce the current state of research in the field of HSI SR in detail,
it is necessary to provide a complete introduction to the basics of the field. Next, we will
introduce three aspects of problem formulation, datasets, and image quality assessment.

2.1. Problem Formulation

HSI SR aims at reconstructing the corresponding HR HSI from the LR HSI. The HSI
SR task is modeled as follows.

It is first established that the LR HSI is obtained from the corresponding HR HSI
after degenerating:

IL = D(IH ; δ), (1)

IL ∈ Rw×h×C and IH ∈ RW×H×C represent LR HSI and HR HSI in Equation (1), where
w/W, h/H, and C respectively represent the width, height, and the number of channels
of the image, and w < W and h < H. D represents the spatial degradation function,
which represents the physical meaning including atmospheric scattering, electronic noise,
etc. δ is the parameter of this degradation model. A large portion of the degradation
encountered during HSI acquisition is unknown, and the imaging quality is affected
by various factors from the environment and the sensor. Although it is not possible to
reproduce the degradation process perfectly, researchers continue to try to characterize the
degradation process mathematically as reasonably relevantly as possible. A part of the
work uses a single downsampling operation to characterize the degradation process, as
shown in Equation (2):

D(IH ; δ) = (IH) ↓ s, {s} ∈ δ, (2)
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where ↓ s represents the downsampling operation and the scaling factor is s. The most
commonly used downsampling means is bicubic interpolation. Some researchers have
proposed more complex representations:

D(IH ; δ) = (IH ⊗ k) ↓ s + nε, {k, s, ε} ∈ δ, (3)

where ⊗ denotes the convolution operation, k is the fuzzy kernel, and nε represents the
additive noise with standard deviation ε. Compared with Equation (2), the representation
of Equation (3) is more realistic. The closer the modeling to the real situation, the better it is
for SR. Researchers often construct datasets by simulating the degradation process using
the above two equations.

The next step is the core step of SR, that is, reconstructing the HR image ÎH ∈ RW×H×C

from the LR HSI that approximates the true HR HSI, expressed as follows:

ÎH = F(IL; θ), (4)

where F denotes the HSI SR model and θ represents the model parameters. The objectives
of an SR model are as follows:

θ̂ = argmin L
(

ÎH , IH
)
+ λΦ(θ), (5)

where L
(

ÎH , IH
)

denotes the loss function between the HR image reconstructed using the
model and the origin HR image, Φ(θ) is the canonical term, and λ is the trade-off coefficient.
From Equation (5), it is evident that the construction of the loss function profoundly
influences the quality of the reconstructed results. The mean absolute error (MAE) is the
most commonly used loss function at present, and many models opt to use a combination
of multiple loss functions to better constrain the generation of reconstructed images.

2.2. Datasets

For the DL-based HSI SR task, especially the supervised learning approach, a large
amount of training data, i.e., HR labeled image sources, is required. Since HR HSIs are
much more difficult to obtain than natural images, the available labeled data sources are
still currently very limited. Multispectral images (MSIs) with tens of bands have similar
properties to HSI, and are therefore favored by scholars in the field as an alternative source
of labeled data. In particular, MSI datasets CAVE [23] and Harvard [24] are unanimously
favored. The existing datasets greatly differ in spatial resolution and number of spectral
bands. The number of images, the size, imaging wavelength range, number of bands and
the sensors used for acquisition and main contents of each commonly used dataset are set
out in Table 1.

Table 1. List of Public Datasets for HSI SR.

Dataset Amount Size Wavelength (nm) Number of
Bands Sensor Contents

CAVE 32 512 × 512 400–700 31 Apogee Alta U260 Stuff, Skin and Hair, Paints, Food
and Drinks, etc.

Harvard 77 1392 × 1040 420–720 31 Nuance FX 50 daylight images and 27
additional images.

Pavia Centre 1 1096 × 715 430–860 102 ROSIS Water, Trees, Asphalt,
Self-Blocking Bricks, etc.

Pavia
University 1 610 × 340 430–860 103 ROSIS Gravel, Trees, Asphalt,

Self-Blocking Bricks, etc.

Washington DC 1 1208 × 307 400–2400 191 HYDICE Roofs, Streets, Gravel Roads,
Grass, Trees, Shadows.

Houston 1 1905 × 349 380–1050 144 ITRES CASI-1500 Healthy Grass, Stressed Grass,
Trees, Soil, Water, etc.

Chikusei 1 2517 × 2335 363–1018 128 Headwall
Hyperspec-VNIR-C

Water, Bare Soil, Grass, Forest,
Row Crops, etc.
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In addition to the above commonly used datasets, the Urban and Foster datasets are
also frequently used in HSI SR studies. Some of the aforementioned datasets were originally
used for other visual tasks, such as image classification. Researchers often combine multiple
data sources to train the network in order to improve the generalization of the model and
address the challenge of a small amount of training data.

2.3. Image Quality Assessment

As a visual task, reasonable image evaluation metrics are required for measuring the
performance of the model. HSI quality assessment typically starts from the visual effect
of the image and makes objective evaluation of the structure and spectral fidelity of the
observables. Although the mainstream objective evaluation metrics at this stage often
do not match the actual human visual perception, as a simpler and less time-consuming
evaluation method compared with subjective evaluation, objective evaluation is often the
primary choice of researchers when evaluating images. Several of the most frequently used
objective evaluation metrics are introduced in this section.

Peak Signal-to-Noise Ratio. Peak signal-to-noise ratio (PSNR) is one of the most
popular image quality assessment metrics, defined by the maximum pixel value (L) and
the mean square error (MSE) between the labeled HR HSI and reconstructed HR HSI. The
specific definition is as follows:

PSNR = 10 log10

(
L2

1
NM ∑NM

i=1 (I(i)− Î(i))
2

)
, (6)

where I and Î respectively represent the labeled HR image and the reconstructed HR
image with NM pixels, and in general L takes the value of 255. Since PSNR focuses on
pixel-wise differences and is only related to the MSE of both, it often performs poorly
in representing the quality of real-world SR reconstruction. However, there is a lack of
low-cost and superior-performance subjective perception evaluation methods at present.
PSNR, which plays an important role in comparing various SR models, is still one of the
most-used evaluation metrics.

Structural Similarity. Since human subjective perception is sensitive to the structure of
the observed object, researchers proposed the structural similarity (SSIM) [25] index to mea-
sure the structural similarity between the labeled image and the reconstructed image. For
the luminance µI and contrast σI of image I, they are estimated from the mean and standard

deviation of image intensity, i.e., µI =
1

NM ∑NM
i=1 I(i) and σI =

(
1

NM−1 ∑NM
i=1 (I(i)− µI)

2
) 1

2 ,
respectively. The comparison of the two is given by Equations (7) and (8):

Cl
(

I, Î
)
=

2µI µ Î+C1
µ2

I+µ2
Î
+C1

(7)

Cc
(

I, Î
)
=

2σI σÎ+C2

σ2
I +σ2

Î
+C2

, (8)

where C1 = (k1L)2 and C2 = (k2L)2 are stability constants, k1 � 1, k2 � 1.
The researchers chose normalized pixel values to represent the image structure whose

correlation can effectively assess the structural similarity between I and Î . The covariance
between I and Î is expressed as follows:

σI Î =
1

N−1

N
∑

i=1
(I(i)− µI)

(
Î(i)− µ Î

)
. (9)

The comparison of the image structure is given by Equation (10):

Cs
(

I, Î
)
=

σI Î+C3
σI σÎ+C3

, (10)
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where C3 = (k3L)2 is the stability constant.
In summary, SSIM is defined by the following equation:

SSIM
(

I, Î
)
=
[
Cl
(

I, Î
)]α[Cc

(
I, Î
)]β[Cs

(
I, Î
)]γ, (11)

where α, β and γ are trade-off parameters to control the relative importance of each factor.
The SSIM has become one of the most widely used metrics, because it is based on the image
structure and takes more into account the visual perception than PSNR. The results under
the guidance of SSIM are more consistent with human subjective feelings.

Spectral Angle Mapper. Due to the 3D structural properties of hyperspectral or
multispectral data, spectral angle mapper (SAM) is also an important metric for evaluating
reconstructed HSI. The SAM algorithm was proposed by Kruse, et al. [26], and treats
the spectrum of each image element of a HSI as a high-dimensional vector, measuring
the spectral similarity by calculating the angle between the corresponding vectors. The
smaller the angle, the more likely it belongs to the same kind of feature. In performing the
classification task, the class of the unknown image element can be identified by calculating
the magnitude of the spectral angle between the unknown vector and the known vector.
SAM is given by the following equation:

SAM = cos−1
(

YT X
‖Y‖ ‖X‖

)
, (12)

where Y is the given target vector and X is the vector to be measured. For hyperspectral
data, ensuring the spectral fidelity of the reconstructed image is one of the core requirements
of the SR task.

Spectral Information Divergence. The concept of spectral information divergence
(SID) was proposed by Chang [27] in 1999. The SID algorithm treats the spectrum of each
image element as a set of random variables, and measures the similarity by calculating the
probability difference between the corresponding spectra. Suppose the spectral vectors
of X and Y image elements are respectively denoted as X = (x1, x2, x3, · · · , xC)

T and
Y = (y1, y2, y3, · · · , yC)

T . Then, the probability vectors of the two can be respectively
denoted as Q = (q1, q2, q3, · · · , qC) and P = (p1, p2, p3, · · · , pC), where qi = xi/ ∑C

j=1 xj,

pi = yi/ ∑C
j=1 yj. The spectral information divergence is defined by the following equation:

SID(X, Y) = D(X ‖ Y) + D(Y ‖ X), (13)

where D(X ‖ Y) = ∑C
j=1 qj log(qj/pj) and D(Y ‖ X) = ∑C

j=1 pj log(pj/qj). The advantage
of the SID metric is the ability to carry out an overall comparison of the corresponding
spectra, which can capture the randomness of the data.

Except for the above four common reconstruction image quality evaluation metrics,
there are also the erreur relative globale adimensionnelle de synthèse (ERGAS) [28], the uni-
versal image quality index (UIQI) [29] and other metrics. There is often a mismatch or even
contradiction between some objective metrics and subjective perceptions. How to accurately
evaluate the reconstruction image quality remains an urgent problem for researchers.

3. Traditional Methods

Constrained by the imaging capability of sensors, hyperspectral remote sensing data
generally have the problems of long revisit cycles and low spatial resolution. Through
HSI fusion technology, the spatial information of high spatial resolution images can be
used to effectively improve the spatial resolution of HSI. Unlike MSI fusion, the fusion
technology for hyperspectral data requires improving the spatial resolution of images
while preserving the spectral features of the original data as much as possible, to meet the
application requirements of subsequent spectral interpretations. The current mainstream
fusion algorithms for SR reconstruction of HSI can be mainly classified into three categories:
based on wavelet transform (WT), based on maximum a posteriori (MAP) estimation, and
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based on spectral mixing analysis (SMA). Each of these categories are introduced separately
in the following sections.

3.1. Wavelet Transform-Based Methods

WT is an important transform analysis method in the field of information processing.
In the same way that the Fourier transform can decompose a signal into sine waves of
different frequencies, WT decomposes an image signal into a set of wavelets by stretching
and translating the original wavelets. The multi-resolution decomposition capability is its
non-negligible feature, in which the information of the target image is stripped from coarse
to fine, layer by layer, in the transform, which can be commonly understood as the function
of high-pass and low-pass filters.

The method based on 2D WT was first proposed to fuse hyperspectral and multispec-
tral data by Gomez, et al. [30]. The final generated image has both the spectral resolution
of the hyperspectral image and the spatial resolution of the multispectral image by fus-
ing two bands of hyperspectral image with one band of multispectral image. Due to the
three-dimensional characteristic of hyperspectral data, Zhang and He [31] proposed an
image fusion method based on the 3D WT. Unlike panchromatic images or RGB images, the
spectral dimension information is especially important for HSI, and the 3D WT can make
good use of the spectral dimension information of images in order to generate fused images
of higher quality. As more and more researchers focus on the advantages of WT in the field
of SR, Zhang, et al. [32] proposed implementing a Bayesian estimation of hyperspectral
images in the wavelet domain, and this method exhibits a high degree of noise immunity
while producing reliable fusion results. Without considering the spatially varying point
spread function (PSF), Patel and Joshi [33] proposed using estimated wavelet filter coeffi-
cients to learn high-frequency details in the wavelet domain and then use sparsity-based
regularization to obtain the final SR image, which enhances the spatial information of the
image with almost no loss of spectral information. Since the WT-based method can focus
on arbitrary details of a given signal, its potential in the field of image processing is being
explored continuously. It is worth noting that the spectral and spatial resampling methods
largely determine the quality of the images reconstructed using this method.

3.2. MAP-Based Methods

In the context of Bayesian statistics, MAP estimation performs point state estimation
of unobserved quantities by using empirical data. Compared with the maximum likelihood
(ML) estimation method, it extends the optimized objective function, introduces the prior
probabilities of the parameters in the parameter estimation, and incorporates the informa-
tion of the prior distribution of the predicted measures. The MAP estimate can be regarded
as a regularized ML estimate.

The MAP probability estimation is a Bayesian approach and is based on the
Bayesian formula:

p(θ|X) =
p(X|θ)p(θ)

p(X)
, (14)

where p(X|θ) is the likelihood function, p(θ) is the prior probability of the parameter θ, and
p(θ|X) is the posterior probability. Therefore, the purpose of MAP probability estimation is
to find a set of parameters θ such that the posterior probability p(θ|X) is maximum, i.e.:

θ̂MAP = argmaxp(θ|X). (15)

The goal of MAP estimation applied to the hyperspectral SR reconstruction problem
is to find an estimate of the high spatial resolution HSI that maximizes its conditional
probability with respect to two observations (i.e., the low spatial resolution HSI and the
high spatial resolution auxiliary image).

In 2004, Hardie, et al. [34] proposed a MAP estimation to obtain high spatial resolution
hyperspectral images with the help of spatial detail information from registered high spatial
resolution images acquired by an auxiliary sensor. The estimation framework developed by



Remote Sens. 2023, 15, 2853 8 of 36

the authors is applicable to an arbitrary number of spectral bands in both the image being
enhanced and the auxiliary image, and the proposed technique is suitable for applications
where there is a correlation between two observations. Later, a MAP-based method with
the cost function developed from a stochastic mixture model of the underlying spectral
scene is proposed [35], which optimizes both the estimated hyperspectral scene as well
as the local statistics of the spectral mixture model. In 2012, Zhang, et al. [36] proposed a
multi-frame SR algorithm based on MAP, and principal component analysis (PCA) was
used for both motion estimation and image reconstruction parts of the proposed algorithm.
PCA ensures that the first few principal components contain most of the information of
the original image. This algorithm converts the reconstruction of the original HSI into
the reconstruction of a small number of principal components, which greatly reduces the
computational effort.

A MAP-based algorithm for SR reconstruction of HSI introduces statistical theory into
the field of image processing, which allows the correlation between the enhanced image
and the auxiliary image to be fully utilized. For the research in this direction, seeking
a more complex and reasonable estimation framework can provide more possibilities of
improving the reconstruction results.

3.3. Spectral Mixing Analysis-Based Methods

The spectral unmixing technique assumes [37–39]: in a given geographical observation
scene, the ground surface consists of a finite number of species of features (i.e., end elements)
and these features have relatively stable spectral characteristics. Therefore, the image
element reflectance of a remotely sensed image can be expressed as a function of the
spectral characteristics of the end elements and the proportion of the area occupied by each
end element (i.e., abundance). This function is the spectral unmixing model. The linear
mixed spectral model assumes that there is no interaction between different features in the
observed scene, and the spectrum received by an image element is a linear combination of
the reflected spectra of the pure features in the observed scene corresponding to that image
element, weighted according to their composition ratio. The SR reconstruction algorithm
based on SMA proposes to extract the end element matrix from the low spatial resolution
HSI and the abundance matrix from the high spatial resolution MSI, and then fuse the two
in a matrix.

Yokoya, et al. [40] proposed the well-known coupled non-negative matrix factorization
(CNMF) algorithm based on a linear spectral mixing model. It reconstructs fused images
with high spatial and spectral resolution by fusing low spatial resolution HSI and high
spatial resolution MSI with the structure in Figure 2. The hyperspectral and multispectral
data are alternately decomposed into an end element matrix and an abundance matrix by
the CNMF algorithm, while the sensor observation model is considered in the initialization
matrix. Benefiting from its simple update rules, this method is extremely easy to implement.
However, the multiple iterations in the unmixing process make the CNMF algorithm
very computationally expensive. In 2014, Bendoumi, et al. [41] proposed a new fusion
framework. The authors divided the image into multiple sub-images and applied a fusion
procedure to each sub-image, which further improved the performance of the proposed
SMA-based fusion algorithm.
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The existence of plentiful zero elements in a sparse matrix can effectively reduce the
computation cost. The meaning of sparse representation is the use of linear combinations
of fewer elementary signals to express most or all of the original signals. The elementary
signals selected from the overcomplete dictionary are usually called atoms, and any signal
has different sparse representations under different groups of atoms [42]. In 2013, the
SASFM fusion model proposed by Huang, et al. [43] used sparse matrix decomposition to
deal with the remote sensing image fusion problem. In the same year, a non-negative sparse
facilitation framework based on RGB image and HSI was proposed [44]. The formulation
problem in the form of sparse nonnegative matrix decomposition is handled by alternating
optimization, and each subproblem is solved by a convex optimization solver. This method
achieves a lower average reconstruction error. In 2014, Akhtar, et al. [45] used LR HSI to
learn a dictionary representing the reflectance spectra and then learned sparse coding by
the G-SOMP+ algorithm. The sparse encoding was used simultaneously with the spectral
dictionary to estimate SR HSI. In 2016, by combining the sparsity and nonlocal similarity
of HSIs in the spatial and spectral domains, the algorithm proposed by Li, et al. [46]
maintained spectral consistency while producing a large amount of image texture detail
and was robust to noise. To exploit the spatial correlation between the learned sparse codes,
Dong, et al. [47] proposed an efficient non-negative dictionary learning algorithm using
the block coordinate descent optimization technique and a clustering-based structured
sparse coding method. The proposed NSSR model performs well in terms of computational
efficiency, as well as objective evaluation metrics.
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The SR reconstruction method based on SMA, represented by CNMF, is based on a
linear mixed spectral model, introduces prior knowledge of the sensor, and successfully
works out high-quality fusion data by a simple and intuitive update algorithm. The sparse
representation model is established under the condition that an image space is large enough
and any image of the same type can be linearly represented by such an image subspace.
However, the image space of a class of objects in reality is not linear, which limits the
image quality of the HSI reconstructed by the SR method with the introduction of sparse
representation theory.

Aside from the above methods, researchers have proposed some other models to solve
the HSI SR reconstruction problem [48–53]. Akgun, et al. [54] simulated the hyperspec-
tral image acquisition process as a linear deterministic model. Based on this model, the
reconstruction problem is set to determine the target image satisfying a linear system of
equations. He, et al. [55] focus on the global correlation and local smoothness of the target
image by imposing low-rank and total variational regularization on the tensor to generate
better-quality reconstructed images. The traditional methods provide a valuable source of
inspiration for subsequent researchers by using various mathematical and physical ideas
to transform the task of SR reconstruction of HSI into a more understandable mathemati-
cal problem. At the same time, traditional methods have problems such as difficult and
time-consuming solutions, and inevitably introduce manual errors, which greatly limit the
scope of application of traditional methods.

4. Deep-Learning-Based Methods

In recent years, the SR problem for natural images has made great progress, thanks to
the increasing popularity of CNNs. Dong, et al. [14] first proposed a CNN-based approach
for natural image SR. After that, scholars successively proposed several novel CNN models
to improve the natural image SR performance. All these works show that the design of the
network architecture is a key factor that affects the image reconstruction effect. However,
unlike natural images, HSIs consist of hundreds of spectral bands, and feature extraction
for such high-dimensional 3D data is more difficult to work with. Secondly, it is important
for HSI SR to ensure the spectral fidelity of the reconstructed images while improving
the spatial resolution for better subsequent spectral decoding work. The above reasons
predestine HSI SR to be a more difficult task. From the current research status, typically,
there are two means of enhancing the spatial resolution of HSI: fusion with other high
spatial resolution images, and single image SR. Fusion-based SR techniques can acquire
more external prior information, and the reconstructed images usually have finer textures.
Single-image-based SR techniques do not require any other auxiliary image, and have
better feasibility in practice. From some early models proposed in 2017 to the blossoming
of various strategies today, more and more scholars have devoted themselves to the field of
hyperspectral SR reconstruction. In this section, we will respectively introduce the basic
components, representative works and future directions of DL-based methods.

4.1. Upsampling Frameworks

HSI SR is a typical ill-posed problem. As a key link in the network, the choice of up-
sampling strategy of the upsampling layer greatly affects the quality of the super-resolved
images. At this stage, researchers have proposed a variety of model architectures. Based
on the upsampling methods chosen by each model and the position of the upsampling
layer within the model, they can basically be grouped into three categories, i.e., front-end
upsampling, back-end upsampling, and progressive upsampling.

Front-end Upsampling. Learning the mapping from LR images to HR images directly
is not an easy task. In contrast, more researchers prefer to first scale up the LR images and
then optimize the scaled-up images using deep neural networks, as shown in Figure 3a.
The front-end upsampling strategy was first used in the field of natural image SR. Dong,
et al. [14] used bicubic interpolation to first scale the LR image to the desired size and
proposed the SRCNN model used to learn the mapping relationship between the interpo-
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lated image and the labeled HR image. The 3D-FCNN model for HSI SR proposed by Mei,
et al. [18] also utilizes the idea of upsampling at the front end. In general, the most difficult
upsampling step is carried out using traditional methods such as bicubic interpolation,
and deep neural networks only need to refine these interpolated images to reconstruct
high-quality details. This strategy greatly reduces the difficulty of training neural networks,
and front-end upsampling has become one of the most mainstream frameworks [56,57].
However, two problems brought by front-end upsampling cannot be ignored. On the one
hand, the noise in LR images will be scaled up with the upsampling layer, which leads to
undesirable reconstruction results. On the other hand, after scaling up the images, most
of the computations are performed in the high-dimensional space, which will bring high
computational cost and time cost.
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Back-end Upsampling. To reduce the computational cost as well as to fully utilize the
learning capability of neural networks, researchers have proposed placing the upsampling
operation at the back end of the model to perform it. Specifically, the network carries out the
feature extraction process in a low-dimensional space, and sets up a learnable upsampling
layer at the back end of the network, as shown in Figure 3b. The upsampling layer usually
performs transposed convolution or sub-pixel convolution operations. The FSRCNN [58]
model and the ESPCN [59] model are the pioneers of the back-end upsampling strategy,
which respectively use transposed convolution and sub-pixel convolution to implement im-
age upsampling. ERCSR [60], as one of the representative works in the field of hyperspectral
SR, also uses transposed convolution to perform upsampling operations after the feature
extraction process. Since most of the computational processes occur before the upsampling
operation, the computational cost is greatly reduced. Therefore, back-end upsampling has
also become one of the most popular frameworks among researchers [61,62].

Progressive Upsampling. The back-end upsampling strategy effectively reduces the
computational cost of the network, but learning large scaling factors (e.g., 8×) as a one-step
upsampling strategy is a difficult task. Therefore, the progressive upsampling strategy
was proposed [63]. The progressive framework decomposes a difficult learning task into
multiple simple tasks, which greatly reduces the learning difficulty of the network and
provides a feasible direction for large-scale SR tasks. Specifically, this strategy sets the
upsampling layer in multiple stages of the network so that the image is scaled up after
each stage until the desired resolution is reached, as shown in Figure 3c. The SSPSR model
proposed by Jiang, et al. [64] first upsamples the grouped sub-images and then performs a
secondary upsampling of the complete image made by fusing the interpolated sub-images.
This architecture alleviates the difficulty of feature extraction in HSIs and makes the overall
training more stable. At the same time, the model with the progressive upsampling strategy
has some problems, such as the need for more accurate modeling and the design of complex
neural networks for each stage.

With the exception of the above three upsampling strategies, other scholars use it-
erative up-and-down sampling strategies [65] to solve the SR problem, which effectively
explores the deep mapping relationship between LR images and HR images by repeatedly
performing upsampling and downsampling operations. Various upsampling strategies
have their advantages and disadvantages, and meet different design requirements. As the
most essential step of the SR task, it is crucial to select a suitable upsampling strategy for
the model.

4.2. Upsampling Methods

In Section 4.1, we introduced three mainstream upsampling frameworks. After deter-
mining the upsampling framework, it is also important to decide how to implement the
upsampling operation. In previous SR research, scholars have proposed many traditional
upsampling methods. However, with the development of DL, end-to-end upsampling
methods based on neural networks have gradually become mainstream. This section
presents the traditional interpolation-based upsampling methods and the learning-based
upsampling methods, separately.

4.2.1. Interpolation-Based Upsampling

Image interpolation, i.e., resizing a digital image according to a predefined scaling
factor. The most commonly used interpolation algorithms include nearest-neighbor inter-
polation, bilinear interpolation, and bicubic interpolation. Because of their simplicity and
ease of implementation, interpolation algorithms are widely used in SR models, and are
mostly used in front-end upsampling and progressive upsampling structures.

Nearest-neighbor Interpolation. Nearest-neighbor interpolation, by far the simplest
interpolation means, requires only the value of the nearest pixel to be selected for each
location to be interpolated. The advantages of this interpolation algorithm are that is easy
to understand and has a simple algorithm and fast operation speed. However, only the
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value of the nearest pixel is considered, without the influence of other pixels, which makes
the grayscale value of the resampled image discontinuous and the interpolated image often
has a significant mosaic effect.

Bilinear Interpolation. Bilinear interpolation, as the name implies, is an algorithm
that implements linear interpolation in two directions. Specifically, linear interpolation is
first used in one direction of the two-dimensional data, and then another linear interpolation
is completed in the other direction. Although the above operation is linear in position as
well as pixel values, as a secondary sampling means, the values of the four pixels around
the interpolation point can be taken into account, having a larger perceptual field than the
nearest neighbor interpolation. Therefore, the bilinear interpolation ensures the simplicity
of the algorithm while obtaining a more excellent interpolation effect compared with the
nearest-neighbor interpolation. However, although this method considers the grayscale
values of the surrounding four pixels, it does not consider the effect of the rate of change of
grayscale values between neighboring pixels, so that the high-frequency information of the
interpolated image is damaged, and blurred image edges are often obtained.

Bicubic Interpolation. Bicubic interpolation has become the most widely used inter-
polation algorithm in SR, by performing cubic interpolations in two directions. While the
pixel values of the interpolation points of bilinear interpolation are obtained by weighting
the four surrounding pixels, bicubic interpolation is obtained by weighting the sixteen
nearest pixels, and the weight occupied by each pixel is determined by the distance from
that pixel to the interpolation point. Bicubic interpolation takes into account the effect of
the gray value of the four nearest pixels, while also taking into account the effect of the rate
of change of the surrounding gray values, thus obtaining smoother edges, fewer artifacts,
and less lost-image information than the previous two interpolation methods. However,
the higher computational accuracy is obtained along with a larger computational effort.

In addition to the above three commonly used interpolation algorithms, researchers
have also proposed interpolation algorithms such as Sinc, as well as Lanczos. The three
interpolation algorithms all possess strong interpretability, which is the advantage of
traditional algorithms. However, the upsampling method based on interpolation can only
obtain and utilize the information of the image itself, and cannot bring information outside
the image. Most of the time it also brings bad effects, such as high computational effort and
noise amplification. Therefore, more and more scholars are exploring the use of learnable
upsampling layers to implement image upsampling.

4.2.2. Learning-Based Upsampling

Since the traditional interpolation-based upsampling method cannot introduce ex-
ternal prior information and is not applicable as an upsampling layer in the back-end
upsampling structure, scholars have introduced learning-based upsampling layers into SR
research. Transposed convolution as well as pixel shuffle are respectively introduced in
this section.

Transposed Convolution. Transposed convolution, also known as deconvolution,
was first applied to solve the SR task in the FSRCNN [58] model. It is worth noting that
transposed convolution is not the inverse operation of regular convolution, but exists as
a special type of convolution. Specifically, transposed convolution first increases the size
of the input image by zero padding, and then performs the convolution operation on
the padded image to achieve the purpose of increasing the image resolution. As shown
in Figure 4a, suppose the input image is a 2× 2 size, and we want to use a 3× 3 size
convolution kernel to change the image resolution to twice the original one, i.e., to obtain
a 4× 4 size output image. First, we zero-fill the original image to make it 6× 6, and then
use the 3× 3 convolution kernel to perform convolution on the 6× 6 image to obtain
a 4× 4 output, which completes the process of twice upsampling. The above example
is with stride = 1 and padding = 0. Other parameters can be set to achieve different
padding and magnification. Transposed convolution makes the upsampling process more
flexible by continuously refining the image magnification operation in a learnable way.
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Transposed convolution is also the most popular upsampling method among the back-end
upsampling structures.
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Pixel Shuffle. Pixel shuffle, also known as sub-pixel convolution, is another way of
upsampling LR images, and was first applied to solve the SR task in the ESPCN [59] model.
SSPSR [64] and HSRnet [66] models are its representative works in the field of HSI SR. Pixel
shuffle is a sub-pixel image-based convolution algorithm. When the convolution operation
is performed on a sub-pixel image obtained by zero padding, the kernel is effectively
convolved with the non-zero pixels in the sub-pixel image. The weights corresponding to
their space in the kernel are activated, while the weights corresponding to the sub-pixels
are not calculated. Different parts of the filter take turns to participate in the convolution
calculation when sliding over the sub-pixel image. The output obtained is the same size
as the sub-pixel image. Since the activation of the weights in the convolution kernel is
independent, the shape of the kernel can be changed according to the batch of activated
weights, to accomplish the above operation. Specifically, pixel shuffle first increases the
number of feature map channels by convolution, and then rearranges the pixels of all
channels to achieve image upsampling. As shown in Figure 4b, suppose we need to r-fold
the input of size w × h × C to finally obtain an output image of size rw × rh × C. The
pixel shuffle method first obtains a feature map of size w× h× r2C by convolution, and
then periodically shuffles the pixels on this feature map to arrange them into an output
image of size rw× rh× C. Pixel shuffle uses a unique way of extracting features to solve
the upsampling problem, providing more possibilities and inspiration for constructing
high-performance networks.

There is no absolute advantage or disadvantage to any of these upsampling methods,
including interpolation-based and learning-based upsampling methods. The adaptation
to other components of the network needs to be considered before choosing an upsam-
pling method. It is crucial for researchers to choose the suitable upsampling method for
their networks.
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4.3. Network Design

It has become a consensus in the field of deep learning that network design can
significantly impact the capabilities of a model. In the field of HSI SR, researchers have
employed various network design strategies to build complete networks based on the
three upsampling frameworks described above. In this section, we introduce each of the
commonly used network structures and analyze their advantages and limitations. The
structures of these networks are shown in Figure 5.
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Residual Learning. For deep network models, depth is a very important factor that
affects the ability of the model, and residual learning [67] is thus born. Deep neural
networks naturally integrate features at different levels of low, medium and high, and the
level of features can be enriched by deepening the network. Therefore, when building
models, researchers tend to use deeper network structures in order to extract higher-level
features. However, as the number of operation layers increases, the network will produce a
degradation phenomenon, that is, when the model capacity tends to saturate; as long as the
network still has depth and either forward or backward propagation, there must be more
or less information loss or decay. When a feature map loses some of its useful information,
then the performance of the network will degrade. Assuming that a researcher designs a
network where an optimal number of layers exists, often the deep network is designed
with redundant layers, and the ideal state is that these redundant layers can complete a
constant mapping, i.e., the output through the redundant layers is guaranteed to be exactly
the same as the input.

As in Figure 5a, assuming that the layer is redundant, for the first conventional
structure, the parameters learned by the layer need to be able to satisfy H(x) = x to
complete the constant mapping. For the second residual learning structure, it needs to
satisfy H(x) = x + F(x), when only F(x) = 0 needs to be learned. Learning F(x) = 0 is
much simpler than learning H(x) = x. The proposed residual learning effectively alleviates
the problem of model degradation and gradient vanishing, making deep neural networks
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go deeper, in a real sense. Subsequent hyperspectral SR works are almost inseparable from
the residual learning structure.

Recursive Learning. In order to learn more high-ranking features without introducing
overwhelming parameters, scholars have introduced recursive learning (applying the same
module multiple times in a recursive manner) into the SR domain, with the structure shown
in Figure 5b. From DRCN [68] to CARN [69] to SRFBN [70], recursive learning ideas have
been developed massively in natural image SR tasks. In the field of hyperspectral SR,
GDRRN [56] uses a single residual unit as the recursive unit for nine recursions, where all
residual units share the same weight, greatly reducing the number of model parameters. In
general, recursive learning does allow learning more high-ranking representations with
relatively fewer parameters, but still does not avoid the high computational cost. Addition-
ally, recursive learning inherently introduces the problem of gradient vanishing or gradient
exploding, so it is a wise choice to combine residual learning with recursive learning.

Multi-Path Learning. Multi-path learning refers to assigning images or features to
multiple paths to perform the same or different operations, and fusing them back for better
modeling capability, as shown in Figure 5c. SSPSR divides an HSI into multiple groups
from spectral dimensions, and then fuses the features extracted from each group after each
group passes through different paths with shared weights. Compared with SSPSR, the
neighboring-group integration module is proposed in the GELIN [71] model to enhance the
complementary information among image subsets, effectively supplementing the missing
details. Inspired by the spectral difference network SDCNN [72], Hu, et al. [73] proposed
feeding two adjacent bands and the difference feature maps between them into three
network branches separately, to better exploit the spectral correlation between adjacent
bands. In addition, the Interactformer [74] model consists of a transformer structure and a
3D convolutional network, where the two parallel branches are used to capture global and
local features, respectively, and interactive connections are used to enhance the information
fusion between the branches. For the high dimensionality and complexity of hyperspectral
data, multi-path learning is a promising research direction.

Attention Mechanism. Each image element of a hyperspectral image can be regarded
as a high-dimensional vector, reflecting the spectral characteristics of the object corre-
sponding to that image element, so there is a strong dependence and correlation between
channels. Hu, et al. [75] used the “Squeeze-and-Excitation” module to add an attention
mechanism to the channel dimension with the structure shown in Figure 5d. Specifically,
a small network is used to automatically learn the importance of each channel, and then
assign a weight to each feature based on this importance, so that the network focuses on
certain feature channels. RCAN [76] combines the channel attention with the SR task, which
greatly improves the SR performance of the model. To mitigate the spectral distortion of
reconstructed images, Li, et al. [77] proposed combining the band attention mechanism
with 3D convolution to fully exploit the spectral information. Zheng, et al. [78] firstly
applied the spatial–spectral attention mechanism to the HSI panchromatic sharpening task
in order for the network to learn spatial and spectral information adaptively. SGARDN [79]
is also the representative work for refining the reconstructed image details by using the
attention mechanism. Due to the special need for spectral fidelity in this research area, the
attention mechanism is gradually becoming an indispensable part of network construction.

Dense Connections. Similar to residual learning, dense connections also realize the
direct correlation between the previous layer and the subsequent layer through skip connec-
tion, but this connection includes the connection between the current layer and all layers,
which is the reason for its “dense” structure, as shown in Figure 5e. Obviously, the most
important feature of dense connections is the ability to reuse features including low-level
features and high-level features, which is a superior aspect compared with ordinary skip
connections. Since DenseNet [80] was proposed, more and more scholars have been solving
SR problems based on dense connections [81,82]. Due to the structural characteristics of
dense connections, they inevitably cause structural redundancy while enhancing infor-
mation dissemination. To alleviate this problem, Dong, et al. [83] used a cross-feedback
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strategy based on dense connections to achieve more efficient and hierarchical signal trans-
mission. How to achieve more efficient feature reuse is probably the most important issue
to be explored when using dense connections.

With the continuous deepening of the study of neural networks, more and more
forms of networks are being developed and applied. Apart from the above five types of
networks, common structures such as group convolution [84] are also available. With the
gradual diversification of network designs, the performance of SR models is also improving.
Exploring network structures that are more suitable for SR tasks has become one of the
hottest topics in the field.

4.4. Loss Functions

In the field of deep learning, the loss function often represents the learning objective
of a deep network. The loss function for SR tasks can embody the reconstruction error and
constrain the optimization process of the model. Next, we provide a brief introduction to
several loss functions commonly used in the HSI SR field.

Pixel-wise Loss. L1 and L2 loss are representatives of pixel-wise loss. Both of them
directly calculate the pixel-wise error for the labeled HR image and the reconstructed SR image,
and the difference lies in the different calculation methods used to calculate the difference of
the corresponding pixels; the expressions are given in Equations (16) and (17), respectively:
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Îi,j,k − Ii,j,k

)2
. (17)

The former calculates the MAE, while the latter obtains the MSE. Compared with
L1 loss, L2 loss can powerfully handle larger errors, but cannot make an effective penalty
for smaller errors, thus often leading to over-smoothing of results. This makes the L1 loss
the better option in most cases. Besides the above two losses, other scholars have used a
loss function called Charbonnier loss [63,85] with the following expression:
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where ε is the stability constant. Considering that the definition of PSNR has a high
correlation with MSE, and PSNR reaches its maximum value when pixel-wise loss is
minimized, pixel-wise loss is the loss function most favored by researchers. However,
the reconstructed images generated by pixel-wise loss guidance often lose high-frequency
details and produce overly smooth textures, which cannot achieve excellent results in
visual perception.

Adversarial Loss. Generative adversarial networks (GAN) [86] were pioneeringly
proposed in 2014. As a network architecture with unique advantages for generative tasks,
more and more scholars have successfully introduced generative adversarial ideas into
the study of image SR, among which SRGAN [87] is a representative work of GAN in
the field of natural image SR. Specifically, GAN consists of a generator responsible for
generative tasks and a discriminator responsible for identifying whether the output of the
generator obeys the target distribution. When training the GAN network, the generator and
discriminator need to be trained alternately. When training the discriminator, the generator
needs to be fixed in order to improve the discriminative ability of the discriminator; when
training the generator, the discriminator needs to be fixed in order to generate results
that can fool the discriminator. By alternating the above training process, after sufficient
adversarial training the generator is able to generate results that are consistent with the
target distribution, while the discriminator is unable to distinguish the source of the input
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data. When applied to the SR domain, the generator plays the role of the SR model and the
discriminator is used to identify whether the input image is the reconstructed image from
the generator or labeled image. Ledig, et al. [87] proposed the adversarial loss as follows:

LGANG
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where LGANG and LGAND represent the adversarial loss of the generator and discriminator,
respectively. In extensive mean opinion score tests, it was found that the model trained
using the adversarial loss obtained a lower PSNR compared with the pixel-wise loss, but
the reconstructed image exhibited better visual perception [88]. The reason for this is that
the discriminator is able to extract a portion of the underlying patterns in the labeled HR
images and use this to guide the generator to reconstruct a more realistic result.

Total Variance Loss. When performing the SR task, how to suppress the noise in the
reconstructed image is a problem worth exploring. Aly and Dubois [89] first used the total
variance loss to solve the SR problem, and Li, et al. [77] combined the total variance loss
with other losses to constrain the reconstructed HSI. The total variance is calculated as the
difference between each pixel and its immediate neighbors in the horizontal and vertical
directions, and is usually defined as follows:

LTV
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Î
)
= 1

HWC ∑
i,j,k

√(
Îi,j+1,k − Îi,j,k

)2
+
(

Îi+1,j,k − Îi,j,k

)2
. (21)

A noise-contaminated image has a larger total variance compared with a noise-free
image, so the process of minimizing the total variance is the process of limiting the noise.

Perceptual Loss. To evaluate the reconstruction quality at a deeper level, Johnson,
et al. [90] introduced perceptual loss into the SR domain. The idea of perceptual loss
is to measure the perceptual quality of the reconstructed image by comparing the high-
level semantic differences between the reconstructed image Î and the labeled image I.
Specifically, the reconstructed image and the labeled image are fed as inputs to a pre-
trained classification or detection network (usually VGG [91] or ResNet [67]), and the
“high-level representations” extracted at the l-th layer of the network can be denoted as
ϕl( Î

)
and ϕl(I), respectively. The perceptual loss is expressed as the Euclidean distance

between the two, as follows:

LPerceptual
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Î, I
)
= 1

HlWlCl

√
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(
ϕl

i,j,k
(

Î
)
− ϕl

i,j,k(I)
)2

. (22)

While pixel-wise loss requires an exact match between the point-to-point pixel values
of the reconstructed image and the labeled image, perceptual loss constrains the former
to be close to the latter in terms of perceptual quality, and thus is more likely to produce
reconstructed results that match visual perception, and is widely used in the field of SR.

Cycle Consistency Loss. The style transfer network CycleGAN proposed by Zhu,
et al. [92] provides a new idea for unsupervised SR. Later, Yuan, et al. [93] proposed the well-
known CinCGAN, which uses an embedded loop structure to complete the “denoising-SR”
process. The cycle consistency loss is the key for the above model to work. Specifically, the
HR image Î reconstructed by the generator network needs to be fed into the degradation
network again for a LR image Î lr with the same size as the input image Ilr. The cycle
consistency loss requires that the Î lr obtained by the degradation network has the same
pixel-wise performance as the initial LR image Ilr, i.e.,

LCycle
(

Î lr, Ilr
)
= 1

HWC

√
∑
i,j,k

(
Îlr,i,j,k − Ilr,i,j,l

)2
. (23)
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By comparing the pixel-wise loss of two LR images, the optimization process of the
model is not dependent on the HR labeled images for the purpose of unsupervised SR.
Most subsequent SR models based on CycleGAN are inseparable from the constraint of
cycle consistency loss. With the increasing popularity of unsupervised learning, the cycle
consistency loss has inevitably become one of the most widely used loss functions in
this field.

The more comprehensive the consideration in constructing the loss function, the more
accurate its constraints on the network. Therefore, in reality, based on different network
characteristics and purposes, the loss function chosen by scholars is usually a combination
of multiple single losses. In addition to the above commonly used loss functions, many
scholars incorporate SAM restrictions into the construction of the loss function [71] in order
to better constrain the reconstruction of spectral information.

4.5. Representative Works with Different Strategies

Before introducing the DL-based SR reconstruction techniques for HSIs, we briefly
review the development process of natural image SR techniques. Before the emergence
of DL-based algorithms, reconstruction-based methods were the mainstream techniques
for image SR, including iterative back projection method [94], KK [95], total-variation
regularization method [89], and deconvolution method [96], etc. In 2014, Dong, et al. [14]
first introduced convolutional neural networks into the field of image SR and constructed
the SRCNN model with a relatively simple structure. Based on this, FSRCNN [58] and
ESPCN [59] introduced two different learning-based upsampling methods. To build deeper
networks, Kim, et al. [97] first used residual learning in an SR network, which increased the
perceptual field while speeding up the convergence, and VDSR was the first deep network
model in this field. DRCN [68] and DRRN [98] are both representative works based on
recursive learning which greatly reduced the number of parameters by sharing parameters.
Lai, et al. [63] proposed a pyramidal network structure. The progressive upsampling
strategy proposed by this model can still achieve good reconstruction results in the face
of large scaling factors. Ledig, et al. [87] introduced GAN to the field of image SR for
better model generalization. In addition, SRFeat [99] and ESRGAN [100] are also excellent
works based on GAN. CinCGAN [93] realizes unsupervised SR by cycle consistency loss,
and most of the subsequent related researches are based on this model. KernelGAN [101]
learned the parameters of fuzzy kernel through the cross-scale similarity to better mine the
internal prior information. Based on the above representative works, the field of natural
image SR has entered a boom period [70,102].

From the germination of deep-learning-based hyperspectral SR reconstruction tech-
niques in 2017 to the various network models being proposed today, scholars have been
striving to find a more suitable SR method for HSI. Since hyperspectral data has hundreds
of channels in the spectral dimension, this 3D characteristic predestines the fact that the
hyperspectral SR task cannot be solved by the same method for the natural image. The
works in recent years can be divided into two main technical lines, which are single-image-
based methods and fusion-based methods. The method based on single image can only
obtain relatively limited external prior information, so scholars prefer the fusion-based
approach at this stage. The fusion-based methods usually have both MSI and panchromatic
image (PAN) in the choice of auxiliary images. MSI usually has similar properties to his,
while carrying part of the spectral information. Palsson, et al. [103] proposed solving
the HSI-MSI fusion problem using a 3D convolution-based network as early as 2017 and
reducing the dimension of HSI by PCA before performing the fusion operation, to cut
down the computational cost. Yang, et al. [104] designed a two-branch network to extract
the spectral information of each pixel in the HSI and the spatial information of its spatial
neighborhood in the MSI, and then fused the two extracted features efficiently through
a fully connected layer. Xu, et al. [105] realized information fusion with MSI at multiple
scales by gradually amplifying HSI. The UAL framework designed by Zhang, et al. [57]
uses a two-stage network in which the LR image is first passed through a generalized
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fusion module and then fed into an adaptive module for a specific data distribution, to
obtain more refined texture features. Dian, et al. [106] achieved SOTA fusion results based
on subspace representation and using CNN, which is used for grayscale graph denoising,
to regularize the estimation of coefficients. Zhang, et al. [107] realized blind HSI SR by
jointly training a generator network and two degradation networks based on deep image
prior. Xie, et al. [108] proposed a blind MHF-Net model that can cope with the case of
mismatch between training and testing data which greatly improves the practicality and
application value of this technique. The process of obtaining HR HSI by fusing LR HSI
with HR PAN of the same scene is often referred to as HS pansharpening. Zheng, et al. [78]
utilized deep hyperspectral prior and used the channel–spatial attention mechanism for
the first time for pansharpening, which effectively preserved the spectral information.
The MSSL model proposed by Qu, et al. [109] unsampled and downsampled the HSI and
PAN, respectively, extracted features from images at different scales through a multipath
network, and finally fused the spatial and spectral features from different scales. This
process uses multiple shallow networks to extract spatial–spectral features, which greatly
reduces the computational cost. Guan and Lam [110,111] took HR, PAN and the cascade
of the two as the input of a three-branch network, separately, and fused the feature in-
formation extracted from each branch at different stages through a multi-level attention
module, which effectively enhanced the information interaction between images. Zhuo,
et al. [112] used five high-pass filters, a deep–shallow fusion network, and spectral attention
mechanism to fully exploit spatial information and spectral features. Dong, et al. [113]
proposed an image segmentation-based injection gain estimation algorithm, which can
effectively alleviate the oversharpening problem. In addition, CFDcagaNet [83] is also an
excellent work for pansharpening.

Despite the numerous difficulties encountered during research, researchers never give
up the pursuit of faster speed and better results. In the previous four subsections, we
introduced each component of the SR model, interspersing some classical networks. In this
section, we present a systematic introduction of some of the most representative models
to date, at a more macro level. Based on the extensive literature research and summary
analysis, we find that DL-based HSI SR works basically start from three strategies, namely,
key bands, based on traditional framework, and 2D/3D convolution. To discuss the 2D/3D
convolution strategy more effectively, we designed two sets of comparative experiments
and analyzed the experimental results. Finally, we summarize the structural features of
some of the representative HSI SR models in a tabular layout. This section is also the central
part of this review.

4.5.1. Key Bands

Hyperspectral sensors usually collect the reflection information of objects in hundreds
of consecutive narrow bands over a certain electromagnetic spectrum, and HSIs have
more spectral information compared with natural images. First, compared with single-
channel panchromatic images and three-channel RGB images, feeding a complete HSI with
hundreds of spectral dimensional channels as input to an SR reconstruction network will
bring great computational cost and model training difficulty. Second, during the imaging
process, the collected information is inevitably corrupted by noise, and this corruption is
different among different bands. The information from different channels is a description of
the same scene in different bands, but the quality may vary with the band, so those bands
with good information quality have a higher reference. Thus, the researchers propose the
strategy of SR reconstruction utilizing key bands, as shown in Figure 6.
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SEC_SDCNN [72] uses the PCA method to select the key bands. The PCA method
ensures that most of the information is retained in a small number of significant principal
components and that the principal component images contain rich spatial information.
Therefore, the authors use the first principal component image as a reference to select the
key bands, i.e., the band with the highest similarity to the first principal component image
(using multiple grayscale co-occurrence matrix for image texture measurement). In order
to complete the unabridged HSI SR task, the model attempts to reconstruct the key bands
with super resolution first, and then extend from the magnified key bands to the non-key
bands. DFMF [114] divides the complete set of bands into several highly correlated subsets,
and then selects the band with the highest entropy in each subset as the key band of that
subset, according to the information theory. An MSI with high spatial resolution is obtained
by reconstructing the key bands, and then the original HSI with low spatial resolution
and the high spatial resolution MSI are fused utilizing the classical CNMF algorithm, to
obtain a high spatial resolution HSI. Different from the above, the BDCF model proposed
by Sun, et al. [115] divides both LR HSI and HR MSI used for fusion into overlapping and
non-overlapping parts from the spectral dimension. The overlapping bands of the two are
first used to fuse the high-quality HR data, and then the mapping relationship between
the overlapping and non-overlapping parts of the LR HSI is learned by a neural network.
Finally, this mapping relationship is applied to the HR data of the overlapping part fused
in the first step to obtain the HR data of the non-overlapping part, and the HR HSI is then
merged from these two parts of the HR data.

4.5.2. Based on Traditional Framework

Compared with DL-based SR techniques, traditional SR algorithms do not require
training of the model, but at the cost of lower accuracy. Apart from the DL-based hyper-
spectral SR approach, which learns the mapping from LR HSI to HR HSI in an end-to-end
manner, some scholars proposed using a neural network as an auxiliary tool to better use
the framework or ideas of traditional methods to solve SR problems, as shown in Figure 7.

TLCNN [116] borrows the transfer learning idea to apply the pre-trained CNN model
on the natural image dataset to LR HSI band by band to obtain HR HSI, and then enhance
the collaboration between HR-LR HSI pairs using a collaborative non-negative matrix
factorization algorithm, thus requiring the final estimated HR HSI to have same end
elements as LR HSI. This method transfers the mapping relationship between LR-HR
image pairs from natural images to hyperspectral images, providing the possibility of
interoperability between the two domains. The uSDN [117] uses an “encoder–decoder”
structure to implement HSI SR. The neural network is used to respectively resolve the
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end element matrix and the abundance matrix from the LR HSI and HR MSI, and the
Dirichlet distribution is used to constrain the abundance matrix. The process of solving
end-member matrix and abundance matrix is transformed into a deep network learning
process which enhances the generalization of the model. Zheng, et al. [118] proposed
using an autoencoder structure to solve the pixel unmixing problem and to enhance the
interaction between abundance matrices by a learnable PSF. There are many other works
such as MHF-net [119], URSR [120], MIAE [121], and GJTD-LR [122]. Although DL-based
SR techniques have become mainstream, the ideas provided by traditional methods still
have a profound influence on the research in this field.

Remote Sens. 2023, 15, x FOR PEER REVIEW 23 of 38 
 

 

 
Figure 7. Based on traditional framework strategy. The ellipse shows the traditional algorithms used 
to guide or constrain CNN. 

TLCNN [116] borrows the transfer learning idea to apply the pre-trained CNN model 
on the natural image dataset to LR HSI band by band to obtain HR HSI, and then enhance 
the collaboration between HR-LR HSI pairs using a collaborative non-negative matrix fac-
torization algorithm, thus requiring the final estimated HR HSI to have same end elements 
as LR HSI. This method transfers the mapping relationship between LR-HR image pairs 
from natural images to hyperspectral images, providing the possibility of interoperability 
between the two domains. The uSDN [117] uses an “encoder–decoder” structure to im-
plement HSI SR. The neural network is used to respectively resolve the end element ma-
trix and the abundance matrix from the LR HSI and HR MSI, and the Dirichlet distribution 
is used to constrain the abundance matrix. The process of solving end-member matrix and 
abundance matrix is transformed into a deep network learning process which enhances 
the generalization of the model. Zheng, et al. [118] proposed using an autoencoder struc-
ture to solve the pixel unmixing problem and to enhance the interaction between abun-
dance matrices by a learnable PSF. There are many other works such as MHF-net [119], 
URSR [120], MIAE [121], and GJTD-LR [122]. Although DL-based SR techniques have be-
come mainstream, the ideas provided by traditional methods still have a profound influ-
ence on the research in this field. 

4.5.3. 2D/3D Convolution 
Compared with natural images, the greatest value of HSI lies in the ability to collect the 

spectral signal of the observed target, which is also the core of supporting the later image 
interpretation work. Therefore, for the task of SR reconstruction of HSI, it is one of the core 
requirements for SR models to reduce spectral distortion and improve the spectral fidelity 
of reconstructed images while improving spatial resolution. Some scholars believe that, 
compared with the most commonly used 2D convolution, 3D convolution can better capture 
the information of spectral correlation and is more in line with the 3D characteristics of hy-
perspectral data. 3D-FCNN [18] first proposed using 3D convolution to explore spatial in-
formation and spectral correlation, and HSRGAN [61] first applied the GAN using 3D con-
volution to the hyperspectral image SR. Both of the above methods use regular 3D convolu-
tion. However, 3D convolution brings an additional number of parameters and great com-
putational cost while exploring spectral correlation. Considering this, researchers have 
modified the convolution kernel 𝑘 × 𝑘 × 𝑘 to 𝑘 × 1 × 1 and 1 × 𝑘 × 𝑘, with typical algo-
rithms such as MCNet [62], by which the network parameters are greatly reduced and allow 
for a more in-depth design of the network. Nevertheless, its use of parallel structures to 

Figure 7. Based on traditional framework strategy. The ellipse shows the traditional algorithms used
to guide or constrain CNN.

4.5.3. 2D/3D Convolution

Compared with natural images, the greatest value of HSI lies in the ability to collect
the spectral signal of the observed target, which is also the core of supporting the later
image interpretation work. Therefore, for the task of SR reconstruction of HSI, it is one of
the core requirements for SR models to reduce spectral distortion and improve the spectral
fidelity of reconstructed images while improving spatial resolution. Some scholars believe
that, compared with the most commonly used 2D convolution, 3D convolution can better
capture the information of spectral correlation and is more in line with the 3D characteristics
of hyperspectral data. 3D-FCNN [18] first proposed using 3D convolution to explore spatial
information and spectral correlation, and HSRGAN [61] first applied the GAN using 3D
convolution to the hyperspectral image SR. Both of the above methods use regular 3D
convolution. However, 3D convolution brings an additional number of parameters and
great computational cost while exploring spectral correlation. Considering this, researchers
have modified the convolution kernel k × k × k to k × 1× 1 and 1× k × k, with typical
algorithms such as MCNet [62], by which the network parameters are greatly reduced and
allow for a more in-depth design of the network. Nevertheless, its use of parallel structures
to extract features leads to modular redundancy. ERCSR [60] alternately uses 2D and 3D
units to relieve the structural redundancy problem, which enhances the learning capability
of the model in spatial domain by sharing spatial information. Importantly, it reduces the
size of the model while improving network performance, compared with networks using
only 3D convolution. Additionally, the use of the SAEC module allows the exploration
of the spectral and spatial information in horizontal or vertical directions, in parallel. In
order to make better use of the similarity between bands, Wang, et al. [123] proposed a
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two-branch network, in which the 2D network branch and the 3D network branch focus on
mining spatial information and spectral correlation, respectively.

In this section, we will discuss the advantages and shortcomings of 2D convolution
and 3D convolution in solving the HSI SR problem, design two sets of related compara-
tive experiments based on the CAVE dataset and Pavia Centre dataset, and analyze and
summarize the experimental results.

Mechanisms

First, we observe the difference between performing multi-channel 2D convolution
and 3D convolution on the HSI. Suppose for an image of size 5× 5× 5 the spatial dimension
of the convolution kernel is chosen to be 3× 3, the result of convolution is a single-channel
map, and the convolution operation is performed by default without padding and in steps
of one. As shown in Figure 8, when performing multi-channel 2D convolution, the size of
the convolution kernel is 3× 3. The number of parameters and multiplication operations
performed are 45 and 405. When performing 3D convolution, the number of parameters
and multiplication operations are 27 and 729, while the size of the kernel is 3× 3× 3. The
reason for this is that the depth of the convolution kernel does not need to match the
channel dimension of the input data when performing 3D convolution, which results in
fewer parameters. At the same time, the reduced depth of the convolution kernel brings the
sliding in the spectral dimension, which is not needed during 2D convolution. Excluding
the case of excessive step size, in general the sliding causes the input data to be used more
times, which makes it more computationally expensive to use 3D convolution. Of more
concern is that the single-channel output obtained by 3D convolution is a data cube, which
triggers an explosion of computation in subsequent convolution operations.
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Experiments and Results

In order to compare the advantages and disadvantages of 2D convolution and 3D
convolution from different perspectives, we designed two sets of comparative experiments.
The performance differences between 2D convolution and 3D convolution are compared
and analyzed from four perspectives: the time consumed by each epoch during training,
and three objective image evaluation metrics (PSNR, SSIM, and SAM).
Part A

Firstly, the selection and design of models are introduced. For comparing the perfor-
mance of 2D convolution and 3D convolution in a more reasonable and feasible way, we
choose the three most classical models in the field of SR as benchmark models, namely
SRCNN [14], FSRCNN [58] and ESPCN [59]. Among them, SRCNN adopts a front-end
upsampling structure, and the upsampling method is bicubic interpolation, while FSRCNN
and ESPCN both adopt a back-end upsampling structure; the upsampling methods are
transposed convolution and pixel shuffle, respectively. Since all three models are research
results for natural images, we adjust the hyperparameters in the models to be more suitable
for processing HSIs including the number of output channels per layer and the size of
the convolution kernel. Specifically, based on the original model, the 2D version of the
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new model adjusts the hyperparameters, and the 3D version of the new model replaces all
the 2D convolutions in the initial model with 3D convolutions. In the experiments, it was
found that the performance of the 2D version of the ESPCN model was far from that of
the 3D version. To further explore the reasons, two additional 3D versions of the model
were added, specifically by extending the original three convolutional layers to eight and
twelve layers. In summary, eight models are designed, namely SRCNN-2D, SRCNN-3D,
FSRCNN-2D, FSRCNN-3D, ESPCN-2D, ESPCN-3D1, ESPCN-3D2, ESPCN-3D3; 2×, 3×,
and 4× SR are performed on the images, and the performance differences are compared
from several perspectives.

Secondly, the dataset used in the experiment is introduced. The CAVE dataset we
selected for this experiment contains 32 images, each with a spatial resolution of 512× 512,
31 bands, and an imaging wavelength range of 400–700 nm in steps of 10 nm. The images
mainly include Stuff, Skin and Hair, Paints, Food and Drinks, Real and Fake. Due to the
small number of images in the CAVE dataset, we randomly selected 24 patches on each
image to increase the data for training, and each patch was horizontally flipped, rotated at
different angles, and scaled at different magnifications. These patches were downsampled
into LR HSI of size 32× 32× 31 according to different scale factors, by bicubic interpolation,
which is used as the input to the network.

Finally, the experimental details are introduced. For fairness, all training and testing
for this experiment were performed in the same environment. The hardware conditions
include two Nvidia RTX3090 GPUs, and the batch size of each graphics card is set to 2. All
training procedures in this experiment are performed using the Adam optimizer. Because
of the large number of models, more adapted hyperparameter settings needed to be chosen
for each model in order to more reasonably compare the performance of each model, and
it is not possible to strictly unify the experimental settings. Specifically, in the training
process, the batch size was set to 16 or 32, and the initial learning rate was set to 0.0001 or
0.00005 or 0.00001.

Table 2 shows all the experimental results and Figure 9 presents the convergence of
each model for the 3× SR during training. It can be observed that the time used for each
epoch increases substantially for the 3D version of the model compared with the 2D version
when trained. This phenomenon is consistent with the mechanism.

Among the three objective evaluation metrics, the PSNR of the images reconstructed
by the 3D version of the model is slightly lower than that of the 2D version, but the SAM
is significantly superior, and the SSIM is not much different. Specifically, in the SRCNN
model comparison, the PSNR values for the 2D model were 0.128 dB, 0.551 dB, and 0.5 dB
ahead of the 3D model for the experiments with scaling factors of 2, 3, and 4, respectively,
and the SAM values of the 3D model were 0.436, 0.237, and 0.217 lower than those of the
2D model. In the model comparison of FSRCNN, the PSNR values of the 2D model were
0.522 dB, 0.528 dB and 0.637 dB ahead of the 3D model with scaling factors of 2, 3 and 4,
respectively, and the SAM values of the 3D model were reduced by 0.475, 0.386 and 0.063,
compared with the 2D model. This is due to the fact that the 3D convolution brings about
the sliding of the convolution kernel in the spectral dimension. This sliding enhances the
continuity of the spectrum and the correlation between different bands, which is a unique
advantage of 3D convolution that has been noticed by many scholars. The prerequisite for
improving the spatial resolution must be to preserve the original spectral information of
the pixels as much as possible, which is one of the core tasks of SR for HSI. The HSI that
lose the original spectral information almost lose their value of existence.

In the comparison of the 2D and 3D models of ESPCN, we found that the PSNR,
SSIM and SAM values were much worse than those of the 2D model when using the
3D model with the same depth (i.e., ESPCN-3D1). Therefore, we increased the number
of convolutional layers to eight and twelve (i.e., ESPCN-3D2 and ESPCN-3D3). As the
number of layers increased, the performance of the model gradually became better, but
still differed significantly from that of the 2D model with only three convolutional layers.
By observing the experimental phenomenon and the network composition, we conjecture
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that the upsampling method of pixel shuffle may not be adapted to the 3D convolutional
structure, and, specifically, that the rearrangement strategy conflicts with the continuity of
the spectral information, thus producing unconventional results. As for the exact cause of
this phenomenon, more rigorous and in-depth theoretical studies and experimental designs
are needed.

Table 2. Average Quantitative Comparisons on CAVE Dataset by Factor 2, 3 and 4.

Scale Factor Model PSNR ↑ SSIM ↑ SAM ↓ Running Time/Epoch

2× SRCNN-2D 41.558 0.9874 3.247 13.21
SRCNN-3D 41.43 0.9884 2.811 98.33

3× SRCNN-2D 37.243 0.9711 3.749 20.41
SRCNN-3D 36.692 0.9701 3.512 208.86

4× SRCNN-2D 34.765 0.9523 4.199 33.96
SRCNN-3D 34.265 0.9507 3.982 363.42

2× FSRCNN-2D 40.849 0.9862 3.627 14
FSRCNN-3D 40.327 0.9865 3.152 21.26

3× FSRCNN-2D 37.244 0.9704 4.188 16.18
FSRCNN-3D 36.716 0.9696 3.802 24.19

4× FSRCNN-2D 34.928 0.9532 4.677 19.19
FSRCNN-3D 34.291 0.9492 4.614 28.08

2×

ESPCN-2D 42.083 0.9889 3.05 10.975
ESPCN-3D1 25.989 0.8397 20.482 28.51
ESPCN-3D2 30.804 0.923 10.12 78.87
ESPCN-3D3 34.68 0.9617 6.778 142.52

3×

ESPCN-2D 37.491 0.9726 3.66 14.145
ESPCN-3D1 24.728 0.7698 23.887 30.65
ESPCN-3D2 28.928 0.8653 13.11 81.435
ESPCN-3D3 32.455 0.9254 8.549 139.155

4×

ESPCN-2D 35.024 0.9556 4.121 19.76
ESPCN-3D1 24.545 0.7322 23.641 35.865
ESPCN-3D2 28.307 0.8312 14.354 85.545
ESPCN-3D3 31.303 0.9009 10.087 143.045

The data highlighted in red in the table is the better data.
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The visualization results for the 4× SR are shown in Figure 10. The results of 2D
convolution-based models have smoother edges, while the reconstructed images of 3D
version have a more pronounced mosaic effect. In addition, the 3D model based on ESPCN
shows severe spectral distortion. Figure 11 presents the spectral fidelity in the 3× SR case.
We can find that, except for the special ESPCN model, the 3D version of the model has
higher spectral fidelity and can better reconstruct the spectral details.
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Part B
In the first set of experiments, we chose three representative models in the field of

natural image SR. This time, we choose two classical HSI SR models, namely 3D-FCNN [18]
and ERCSR [60]. 3D-FCNN is an early classic work that introduces 3D convolution into
HSI SR, and the original network is completely based on 3D convolution. We only need to
replace the 3D convolution with 2D convolution and select appropriate hyperparameter
settings when constructing the 2D version. ERCSR is a representative work exploring the
synergy of 2D and 3D convolution. E-HCM blocks composed of 2D units and 3D units are
connected in the original network. Instead of E-HCM blocks, we used blocks based entirely
on 2D and 3D units, respectively, to construct the final 2D version and 3D version of the
model. In summary, we designed four models, which are FCNN-2D, FCNN-3D, ERCSR-2D
and ERCSR-3D; 2×, 3×, and 4× SR were performed on the images, and the performance
differences were compared from several perspectives. For this set of experiments, we chose
the most commonly used Pavia Centre dataset. This dataset is a hyperspectral remote
sensing dataset containing only one HSI with 1096× 715 pixels and 102 spectral bands,
captured by the ROSIS sensor over Pavia. Each randomly cut patch used for training was
horizontally flipped and rotated at different angles. These patches were downsampled into
LR HSI of size 32× 32× 102 according to different scale factors by bicubic interpolation,
which was used as the input to the network.

The experiment details are the same as in Part A.
Table 3 shows all the experimental results. It can be observed that the 3D version of the

model still takes more time for each epoch, compared with the 2D version. Among three
objective metrics, the PSNR and SSIM of the images reconstructed by the 3D version are
lower than those of the 2D version, but the SAM are significantly superior. Specifically, in
the comparison of FCNN models, no matter what scale factor is used, the PSNR and SSIM
of the test results of the 2D version are higher than those of 3D version to varying degrees,
but their SAM values are 0.018, 0.035 and 0.2 larger than those of 3D model, respectively. In
the comparison of the ERCSR model, except that the SSIM of the 2D model is lower than
that of the 3D model at 3× SR, the results of the 2D model in PSNR and SSIM are better
than those of the 3D model in other cases. In 2× SR, the SAM values of the 2D model are
slightly better than those of the 3D model, but they are 0.261 and 0.437 larger than latter in
the 3× and 4× cases, respectively. In FCNN and ERCSR model comparisons, the results of
the objective metrics of the test images show the same trend as in the Part 1 experiments,
which once again proved the effectiveness of 3D convolution in improving spectral fidelity.

Table 3. Average Quantitative Comparisons on Pavia Centre Dataset by Factor 2, 3 and 4.

Scale Factor Model PSNR ↑ SSIM ↑ SAM ↓ Running Time/Epoch

2× FCNN-2D 36.026 0.9614 4.841 30
FCNN-3D 34.296 0.9481 4.823 206.74

3× FCNN-2D 31.184 0.8909 6.076 43.72
FCNN-3D 30.258 0.8695 6.039 413.2

4× FCNN-2D 28.015 0.7896 7.578 115.56
FCNN-3D 27.865 0.7793 7.378 800.12

2× ERCSR-2D 34.602 0.9524 5.081 13.95
ERCSR-3D 33.856 0.9452 5.166 104.99

3× ERCSR-2D 30.58 0.8788 6.507 16.13
ERCSR-3D 30.405 0.8803 6.246 121.8

4× ERCSR-2D 28.419 0.8049 7.763 21.96
ERCSR-3D 28.275 0.7979 7.326 150.32

The data highlighted in red in the table is the better data.

The visualization results of 4× SR are shown in Figure 12. Overall, the reconstructed
results of the 3D model exhibit more slight color distortion. By observing the red box area,
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we can find that the 2D version of the model can better restore the shape of the real object.
Figure 13 reflects the spectral fidelity in the 4× SR case. The 3D model reconstructs the
spectral curve significantly closer to the original spectral curve, which also indicates that
3D convolution can better recover spectral information.
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From the above experimental phenomena, it can be seen that 3D convolution can
indeed effectively improve the spectral fidelity of the reconstructed images, but it also
introduces a high computational effort. In future research, scholars can consider decompos-
ing the structure of 3D convolution into an ensemble of multiple simple structures with
high orthogonality, and ensure that there are special structures within the ensemble for
the spectral dimension, so as to minimize the computational cost. The discussion on 3D
convolution versus 2D convolution still needs more efforts from researchers.

4.5.4. Brief Summary

Other than the above three mainstream strategies, scholars have also tackled the
HSI SR problem from other perspectives. The lightweight network proposed by Zhu,
et al. [124] captures high-frequency details in each band by learning the residual images.
To improve the spatial resolution while paying more attention to the spectral information,
Arun, et al. [125] proposed the Conv–Deconv framework based on 3D convolution and
imposed additional constraints on the network through end element similarity. Chen,
et al. [126] first learned the mapping relationship from LR MSI to LR HSI through the
constructed self-supervised network SSRN, and then transplanted this relationship into HR
MSI and HR HSI mapping. CNN-based models can only mine information and correlations
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under limited sensory fields. To better focus on global information, Hu, et al. [127] made
the first attempt to use the transformer structure to solve the HSI SR problem and showed
excellent performance. In addition, there are still many typical works that have contributed
greatly to the progress in this research area [128–132].

Finally, we will summarize the structural features of a part of the classical models,
where the concerns include residual learning, recursive learning, multi-path learning, at-
tention mechanism, dense connections, 2D/3D convolution, and the respective optimizers
used. The results are shown in Table 4. In terms of the choice of upsampling framework,
early works tended to use a front-end upsampling framework based on bicubic interpo-
lation. As the field has evolved, back-end upsampling has become the dominant choice
and transposed convolution is the most popular among scholars. This is due to the fact
that back-end upsampling uses a learnable upsampling layer, which can fully utilize the
learning capability of the model and improve the generalization of the model. Furthermore,
the high dimensionality of hyperspectral data brings overwhelming computational effort,
and therefore, researchers prefer to put the process of learning the mapping relationship of
LR-HR image pairs into the low-dimensional space before upsampling the LR. From the
aspect of network design, residual learning has become an indispensable part of current
network, due to its ability to prevent model degradation and to allow researchers to con-
struct deeper and more complex networks in order to extract deeper features. Aside from
residual learning, attention mechanisms are also gaining importance for their ability to
process information from different channels in a more targeted manner. Due to the special
need of spectral fidelity in HSI SR, researchers must pay extra attention to the spectral
dimension when designing the network, so many scholars have designed various attention
modules to better exploit the spectral information. In terms of the choice between 2D
and 3D convolution, starting from 3D-FCNN using a single 3D convolution, more and
more scholars tend to combine the two convolution modes. 2D and 3D convolution focus
on mining spatial and spectral information, respectively, and the spectral information is
especially important for HSI SR, but the computational load brought by 3D convolution
cannot be ignored. Therefore, more and more scholars have been working on the possi-
bility of combining the two convolutional modes. In terms of the key characteristics of
each model, from the simple use of recursive structure in the early days to the proposed
various modules, the construction of the model is developing towards a more suitable and
targeted direction.

Table 4. Some Representative Models for HSI SR.

Method Uf. Um. Res. Rec. Mul. Att. Den. 2D 3D Keywords

3D-FCNN [18] Front. Bic.
√

3D Convolution
GDRRN [56] Front. Bic.

√ √ √
Recursive Blocks

HSRGAN [61] Back. Sub.
√ √ √

Generative Adversarial Network
SSPSR [64] Pro. Sub.

√ √ √ √
Spatial–Spectral Prior

MCNet [62] Back. Dec.
√ √ √ √

Mixed 2D/3D Convolution
BASR [77] Back. Dec.

√ √ √
Band Attention

ERCSR [60] Back. Dec.
√ √ √ Split Adjacent Spatial and Spectral

Convolution
SGARDN [79] Back. Dec.

√ √ √ √ √
Group Convolution

Interactformer [74] Back. Dec.
√ √ √ √

Transformer
GELIN [71] Back. Dec.

√ √ √
Neighboring-Group Integration

DRPSR [132] Pro. Bil.
√ √ √

Deep Resonant Prior

“Uf.”, “Um.”, “Res.”, “Rec.”, “Mul.”, “Att.”, “Den.” represent upsampling frameworks, upsampling methods, resid-
ual learning, recursive learning, multi-path learning, attention mechanism, and dense connections, respectively.

4.6. Future Directions

The foregoing presentation revolves around some components of DL-based HSI SR
models. Although the current HSI SR techniques have achieved great success, there are
still specific issues that need to be addressed. Hence, this section aims to identify these



Remote Sens. 2023, 15, 2853 30 of 36

problems and outline the trends of future development of this research. We hope that
this review will not only generate a better understanding of the HSI SR technique among
relevant researchers, but also facilitate future technical research in this field.

Spectral Fidelity. The advantage of HSIs over natural images is that they are rich
in spectral information. It is reasonable to focus more on improving the spectral fidelity
of reconstructed images. Firstly, starting from the loss function is a good choice. When
constructing the loss function, more information about the spectral dimension should be
taken into account, and SAM can be combined to make further constraints on the training
of the network. Secondly, when constructing the network, the role of the channel attention
mechanism can be fully utilized to strengthen the correlation between channels. In addition,
the exploration of 2D convolution and 3D convolution has become increasingly mature. It is
obvious that 3D convolution is indeed an effective means of improving spectral fidelity, but
the high computational effort it involves should not be underestimated. Thus, a valuable
research point is also that of how to construct networks with 3D convolution in a more
rational way.

Large-scale SR. HSI SR techniques based on deep learning have been developed
and have achieved outstanding results, but there is still a lack of models with superior
performance or effective solution ideas for SR tasks with large scaling factors, at this stage.
Learning from the field of natural image SR, using a progressive upsampling structure may
be a feasible solution.

Single-image Unsupervised SR. The lack of a large amount of hyperspectral data is a
major pain point in HSI SR research today, and the mainstream DL-based research tools can
be divided into single-image-based supervised algorithms and multi-image-fusion-based
unsupervised algorithms. On the one hand, supervised algorithms are characterized by the
need for large amounts of training data to better perform the algorithms; on the other hand,
fusion-based algorithms require highly registered image pairs, and such MSI-HSI pairs are
more difficult resources to obtain. To solve this challenge faced today, unsupervised SR
algorithms based on a single image are a feasible direction, and are bound to be a popular
direction for future development.

Model Lightweighting. HSIs usually have hundreds of bands, and processing HSIs
involves a greater computational effort than processing natural images. Although many
high-precision models have been produced, their excessive number of parameters and
computational cost make it difficult to arrange these models for application in real scenarios.
Researchers should seek to construct smaller-scale networks without sacrificing too much
performance in the future.

Thorough Evaluation Metrics. Only by setting more explicit targets in advance can
we better validate and modify the program. At present, the most commonly used evaluation
metrics are PSNR, SSIM and SAM, but the reality is that objective evaluation metrics often
conflict with subjective perception, to some extent. Therefore, it is necessary for researchers
to find more thorough evaluation metrics in order to optimize the program in a more
targeted manner and to compare the performance of the models in a fair and reasonable
manner, using the same criteria.

Deep Theoretical Understanding. The no-paraphrase function has been a major
drawback of DL based algorithms, compared with most traditional algorithms. The learning
process is considered to be a black box, and many scholars believe that the power of deep
learning lies in the ability of networks to learn deep representations of images, but so far
we still do not understand these representations well. Without clear theoretical guidance,
our attempts become blind and inefficient. We should not only pay attention to whether
deep networks are effective, but also focus on the deep reasons and underlying logic. More
in-depth theoretical exploration is bound to lead to greater progress and development in
this field.
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5. Conclusions

In this paper, we present a comprehensive review of the current state of research
on DL-based SR techniques for HSI. Fundamental aspects of HSI SR are first introduced,
and then traditional HSI SR approaches are concisely reviewed. A detailed description
of the current research status of DL-based methods follows. In addition, to compare the
respective advantages and limitations of 2D convolution and 3D convolution in HSI SR
models, two sets of comparative experiments are designed based on the CAVE dataset
and the Pavia Centre dataset. The excellent performance of 3D convolution in preserving
spectral information is confirmed. Finally, we provide some promising and practical
directions and ideas for future research on HSI SR reconstruction techniques. The core
meaning of this review is to provide better academic understanding and research ideas for
future researchers.
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