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Abstract— Traditional active disturbance rejection control
(ADRC) is not adequately capable to deal with current dis-
turbances, including periodic harmonics of permanent magnet
synchronous motor (PMSM). Thus, an improved ADRC with
a cascade extended state observer (CESO) based on quasi-
generalized integrator (QGI) is proposed to attenuate the periodic
and aperiodic disturbances in the current loop. In the proposed
strategy, a CESO with two cascaded levels is designed to enhance
the estimation accuracy of aperiodic disturbances and decrease
the steady-state observation error of periodic harmonics. The
QGI is embedded into the second cascade level of CESO to
improve its estimation accuracy of harmonic disturbances. With
the periodic harmonics accurately estimated, the subsequent
improved ADRC based on feedback control law can effectively
enhance the rejection of such disturbances. The theoretical
analysis is comprehensively conducted to investigate the distur-
bances estimation performance, stability, disturbances rejection
capability, and robustness, while the parameter tuning strategy is
studied based on the control bandwidth. Finally, the effectiveness
and superiority of the proposed scheme are verified on a PMSM
bench through the experiments.

Index Terms— Active disturbance rejection control (ADRC),
cascade extended state observer (CESO), current disturbances
attenuation, quasi-generalized integrator (QGI).

I. INTRODUCTION

PERMANENT magnet synchronous motor (PMSM) has
gained widespread popularity in various industrial
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applications due to its high efficiency, high torque density,
and high precision, such as electric vehicles, large-aperture
telescopes, and other fields [1], [2], [3]. The performance of
a PMSM, which commonly adopts the field-oriented control
(FOC) scheme featuring a double closed-loop structure [4],
is heavily influenced by the current loop [5]. However, the
current disturbances have negative effects on the dynamic-
and steady-state performance of the PMSM. Therefore, the
attenuation of current disturbances is crucial to realize high-
performance PMSM operation.

Usually, PMSM current disturbances can be divided into
two types. The first is aperiodic disturbance, which includes
dq-axis coupling terms, internal parameter perturbations, and
other external uncertainties. The other is periodic disturbance,
which consists of flux harmonics and voltage harmonics
introduced by the inverter nonlinearity [6], [7]. To attenuate
the current disturbance, particularly torque ripple caused by
periodic disturbance, two methods are commonly employed.
One technique that can significantly improve the performance
is optimizing the motor structural design, such as skewing the
slot [8] and improving winding distribution [9]. However, this
procedure results in complicated and costly manufacturing.

An alternative effective approach is an active control
strategy, such as model predictive control [10], sliding
mode control [11], and active disturbance rejection control
(ADRC) [12]. Among these algorithms, ADRC has been
extensively recognized in PMSM speed regulation [13] and
disturbance suppression [14] due to the key idea of “dis-
turbance observation and compensation” with less model
information. However, the extended state observer (ESO),
which is the core of ADRC, cannot asymptotically converge
for the observation error of periodic harmonics [15]. Therefore,
it is significant to investigate the methods of improving ADRC
to attenuate periodic current harmonics.

Typically, the methods to enhance the capability of ADRC
to attenuate periodic disturbance can be classified into three
categories. One is to increase the bandwidth of the observer,
which will reduce the estimation error and improve the
dynamic response. To this end, many bandwidth adjust-
ment strategies have been proposed by scholars, such as
deep reinforcement learning for bandwidth optimization [16],
bandwidth autotune mechanism based on particle swarm
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algorithm [17], and adaptive bandwidth [18]. The second
category is to change the structure of ADRC, especially the
reconstruction of the observer, for instance, increasing the
order of ESO in the vertical direction to track sinusoidal dis-
turbances, which is known as generalized ESO (GESO) [19],
and increasing the number of levels of ESO in the horizon-
tal direction to improve disturbance estimation performance,
which is referred to as cascaded ESO (CESO) [20], [21].
It should be pointed out that the next cascaded level of CESO
in [20] and [21] utilizes the observation information of the
previous level, which leads to a delay in the observation
output of the subsequent levels. To address this issue, the
next cascaded level directly exploits the system output infor-
mation in this article, which improves the efficiency of the
CESO algorithm. However, the above two types of methods
are inevitably limited by controlled bandwidth or computing
power, which results in the inability to completely attenuate
periodic disturbance.

Accordingly, the introduction of an auxiliary component
as the third method is the mainstream of current research.
Among them, the generalized integrator (GI) is based on
internal model control, which can extract the periodic dis-
turbance of specific frequency [22]. Guo et al. [23] employed
the GI-based ESO to deal with fast sinusoidal disturbances in
grid-connected converters. In [24], a class nonlinear GI-ESO
is designed for a phase-locked loop to suppress harmonic
disturbances. Zuo et al. [25] achieved smooth speed control
of PMSM using adaptive GI-ESO to avoid system instability.
However, when the harmonic frequency shifts, the periodic
disturbance of PMSM cannot be effectively attenuated by the
above methods. Compared with GI, quasi-GI (QGI) introduces
a cutoff frequency, which not only inherits the high gain of
GI but also reduces the influence of frequency offset [26].
Wang et al. [27] adopted a combination of quasi-resonant and
ADRC to eliminate speed fluctuation caused by current sam-
pling error. However, the quasi-resonant embedded into the
control law cannot improve the estimation performance of the
observer for periodic disturbances.

Therefore, this article proposes an improved ADRC based
on QGI-CESO to achieve high-performance current control
for PMSM drives. To mitigate the steady-state estimation
error of the observer in the presence of periodic disturbance,
the improved ADRC employs a CESO with two cascaded
levels. The input of the latter cascade level directly adopts the
system output information instead of the estimated value of
the previous level, which improves the estimation efficiency
compared with [21]. In addition, the QGI is embedded into
the second cascade level of CESO to enhance its capability to
estimate current harmonics. Meanwhile, a control law based
on feedback control is used to compensate and attenuate the
estimated current disturbances. Finally, the disturbance estima-
tion, stability, disturbance rejection, robustness performance,
and parameter tuning are systematically analyzed.

The rest of this article is arranged as follows. Section II
presents the dynamic model and analyzes the current distur-
bances in PMSM. Section III proposes an improved ADRC
based on QGI-CESO for attenuating periodic and aperiodic
current disturbances. In Section IV, the performance of the

proposed scheme is also comprehensively explored. The exper-
imental tests are performed to verify the superiority of the
improved ADRC in Section V. Finally, the conclusion is
summarized in Section VI.

II. MATHEMATICAL MODEL AND DISTURBANCES
ANALYSIS OF PMSM

A. Modeling of PMSM Dynamics

In general, under the condition of ignoring iron core satu-
ration, eddy currents, and hysteresis losses, the stator model
of the PMSM in the dq synchronous rotating reference frame
can be presented as

didc

dt
= −

Rs

Ld
idc +

ωe Lq

Ld
iqc +

1
Ld

udv

diqc

dt
= −

Rs

Lq
iqc −

ωe Ld

Lq
idc −

ωeψ f

Lq
+

1
Lq

uqv

(1)

where idc and udv are the stator current and output voltage
of the d-axis, respectively; iqc and uqv are the stator current
and output voltage of the q-axis, respectively; Rs is the
stator resistance; ωe is the electrical angular speed; ψ f is the
rotor flux; and Ld and Lq represent the stator inductances
of the d- and q-axes, respectively. For the surface-mounted
PMSM adopted in the subsequent experiments, it satisfies
Ld = Lq = Ls .

B. Current Loop Model With Disturbances

In actual operation, the PMSM inevitably suffers from
various disturbances, which deteriorate the current loop perfor-
mance. Specifically, these disturbances can be classified into
two categories, i.e., aperiodic and periodic disturbances.

1) Aperiodic Disturbances: The aperiodic disturbances
consist of dq-axis coupling terms fd(q)co, known disturbances
fd(q)kn , parameter perturbations fd(q)pa , and other external
uncertainties fd(q)ex . According to (1), the aperiodic distur-
bances fd(q)ap of the dq-axis can be expressed as

fdap = fdco + fdkn + fdpa + fdex

fdco = ωeiqc

fdkn = −
Rs0

Ls0
idc

fdpa =

(
−1Ld

didc

dt
−1Rs idc + ωe1Lq iqc

)/
Ls0

(2)

fqap = fqco + fqkn + fqpa + fqex

fqco = −ωeidc

fqkn = −
Rs0

Ls0
iqc −

ωe

Ls0
ψ f 0

fqpa =

(
−1Lq

diqc

dt

−1Rs iqc − ωe1Ld idc − ωe1ψ f

)/
Ls0

(3)

where 1Ld = Ld − Ls0, 1Lq = Lq − Ls0, 1Rs = Rs −

Rs0, and 1ψ f = ψ f − ψ f 0. Ls0, Rs0, and ψ f 0 represent the
corresponding nominal parameters.
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2) Periodic Disturbances: The periodic disturbances are
mainly composed of flux harmonics and voltage harmonics.

Ideally, the permanent magnet flux waveform is supposed to
be sinusoidal. However, the manufacturing errors and magnetic
saturation cause air-gap magnetic field distortion, which makes
the 6kth harmonics appear in the flux. In the dq-axis, the flux
harmonics can be shown as follows:

ψdh =

∞∑
k=1

ψd6kh cos(6kωet)

ψqh =

∞∑
k=1

ψq6kh sin(6kωet)
(4)

where ψdh and ψqh represent the dq-axis flux harmonics
and ψd6kh and ψq6kh denote the dq-axis magnitudes of flux
harmonics of the corresponding orders.

To avoid the breakdown of the dc link, a delay time is
added to the pulsewidth modulation, which ensures that two
switches of the same phase of the inverter cannot operate
simultaneously. Unfortunately, the dead time will deteriorate
output voltage and current, which creates voltage harmonics.
According to [6], the voltage harmonics in the dq-axis can be
expressed as

udh =
4TdUdc

πTs

∞∑
k=1

[
12k

36k2 − 1
sin(6kωet)

]

uqh =
4TdUdc

πTs

{
−1 +

∞∑
k=1

[
2

36k2 − 1
cos(6kωet)

]} (5)

where udh and uqh are the dq-axis voltage harmonics, respec-
tively; and Td , Ts , and Udc are the dead time, discrete control
period, and dc-bus voltage, respectively.

According to (1), (4), and (5), the current periodic distur-
bance fd(q)p of the dq-axis can be presented as

fdp =
1

Ls0
(udh + ωeψdh)

fqp =
1

Ls0
(uqh − ωeψqh).

(6)

Based on the above disturbances analysis, the current loop
model considering aperiodic and periodic disturbances can be
reconstructed as {

didc/dt = b0udv + fd

diqc/dt = b0uqv + fq
(7)

where fd = fdap + fdp and fq = fqap + fqp represent the total
disturbances of the dq-axis, respectively, and b0 = 1/Ls0 is
the control gain.

According to (7), it can be seen that the model form of the
dq-axis containing disturbances is the same. Therefore, the
q-axis is used as a case in the subsequent design and analysis,
and the same steps can be used for the d-axis as well.

III. PROPOSED IMPROVED ADRC BASED ON QGI-CESO

The accurate real-time estimation of the lumped disturbance
by the ESO is closely related to the performance of ADRC.
Accordingly, an improved ADRC is proposed for the current

loop. First, the conventional ESO is presented and analyzed
to illustrate its limitation. Then, a QGI-CESO is proposed to
observe the periodic and aperiodic disturbances. Finally, the
control law is designed based on the feedback control.

A. Limitation of ESO

As discussed in (7), let x1 = iqc, x2 = fq , and u = uqv; a
q-axis extended state-space model can be presented as{

ẋ = Ax + Bu + Eϕ
y = Cx

(8)

where ϕ represents the first derivative of fq and

x =

[
x1
x2

]
, A =

[
0 1
0 0

]
, B =

[
b0
0

]
, E =

[
0
1

]
, C =

[
1 0

]
.

Then, an ESO of the q-axis can be designed as{
ż = Az + Bu + β(y − ŷ)
ŷ = C z

(9)

where z =
[
z1 z2

]T is the state vector and it is the estimated
value of x; β =

[
β1 β2

]T is the gain of the ESO. The
bandwidth parameterization strategy [28] is adopted to choose
β1 and β2, which gives

βi =
2!

(2 − i)!i !
ωi

o, i = 1, 2 (10)

where ωo is the bandwidth of the ESO. According to (9), the
transfer function between the estimated disturbance z2 and the
actual disturbance x2 can be derived as

G f 1(s) =
Z2(s)
X2(s)

=
ω2

o

(s + ωo)
2 . (11)

Then, the disturbance estimation error is

Ge1(s) =
Z2(s)− X2(s)

X2(s)
= −

s(s + 2ωo)

(s + ωo)
2 . (12)

Assume that periodic harmonic disturbance x2 =

H sin(ωh t) and its frequency-domain expression is X2(s) =

(Hωh/(s2
+ ω2

h)). Then, the disturbance estimation error in
the time domain can be obtained as

e1(t) = L−1[Ge1(s)X2(s)] = −
2Hωhω

3
o

(ω2
o + ω2

h)
2 cos(ωh t)

−
Hω2

h(3ω
2
o + ω2

h)

(ω2
o + ω2

h)
2 sin(ωh t)+ H pe(t)e−ωot (13)

where L−1 represents the inverse Laplace transform, ωh

is the frequency of the periodic harmonic, and pe(t) =

((ω2
oωh(2ωo + t))/((ω2

o + ω2
h)

2
)) is a function with respect

to t . It can be found from (13) that in the case of limited
ωo, the disturbance estimation error of the conventional ESO
to periodic harmonic cannot completely converge to zero.

In addition, the Bode plots of Ge1(s) and G f 1(s) under
different ωo are shown in Fig. 1. It can be found that
increasing the bandwidth can enhance the capability of dis-
turbance estimation, but the observations are more sensitive to
noise, which should be avoided. Consequently, the observation
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Fig. 1. Bode plots of Ge1(s) and G f 1(s) under different ωo.

bandwidth is limited by noise so that various disturbances are
not sufficiently capable to be estimated by the conventional
ESO.

B. Design of QGI-CESO

In order to exactly observe the periodic harmonics and
effectively improve the estimation capability of the aperiodic
disturbances, a QGI-CESO with two cascaded levels is pro-
posed here. The QGI-CESO1 represents the first cascade layer,
which is constructed as

e11 = z11 − x1

ż11 = b0u + z12 − β11e11

ż12 = −β12e11.

(14)

A QGI is introduced in the QGI-CESO2, which is estab-
lished as 

e21 = z21 − x1

ż21 = b0u + z12 + z22 − β21e21

ż22 = β22ḋac − β22e21

ḋac = −2ωcdac + 2krωce21 + m
ṁ = −ω2

hdac

(15)

where β11, β12, β21, and β22 represent the observer gains,
z11 and z21 are the observations of x1 by the two cascaded
levels, z12 and z22 are the partial observations of the lumped
disturbance x2 by the two cascaded levels, dac represents the
extracted current harmonic, m is the intermediate variable, kr

is the generalized integral gain, and ωc is the cutoff frequency
of QGI.

The bandwidth parameterization strategy is also employed
to choose the observer gains, which gives

β1i = β2i =
2!

(2 − i)!i !
ωi

o, i = 1, 2. (16)

From (15), it can be seen that z22 is the further estimation
of the disturbance based on z12, that is, the observation of
residual aperiodic disturbance and current harmonic. It should
be pointed out that when QGI-CESO2 has no effect, there is
only the first cascade level in the QGI-CESO, which is the
same as the conventional ESO. When kr = 0, the QGI cannot
work properly, which means that the QGI-CESO is equivalent
to the CESO. It should be noteworthy that the second cascade
level of CESO studied in this article is to track the system
output x1, but the second cascade level in [20] and [21] is
to track the observation output z11 of the first cascade level.

Fig. 2. Structure diagram of the improved ADRC based on QGI-CESO.

In this way, the delay of the latter cascade level is avoided and
the estimation efficiency is improved. The CESO investigated
in this article can further estimate aperiodic disturbances, and
the QGI is embedded into the second cascade level, enabling
the observer to estimate periodic harmonics without using high
bandwidth.

C. Control Law Based on Feedback Control

The q-axis reference current is defined as i ref
qc , and the q-axis

current tracking error is constructed as eqc = i ref
qc − iqc; then,

ėqc = i̇ ref
qc − i̇qc = i̇ ref

qc − b0uqv − fq . (17)

According to (15) and (16), the total disturbance fq can be
estimated by QGI-CESO as

f̂ q = x̂2 = z12 + z22. (18)

From the feedback control law, we can get

ėqc = −kpqeqc (19)

where kpq is the control bandwidth of the q-axis. Then,
substituting (18) and (19) into (17), the estimated disturbances
are employed to implement the control law, which can be
expressed as

uqv =
i̇ ref

qc + kpq
(
i ref
qc − iqc

)
− (z12 + z22)

b0
. (20)

Accordingly, the block diagram of the improved ADRC
based on QGI-CESO is presented in Fig. 2.

IV. PERFORMANCE ANALYSIS

A. Disturbances Estimation Analysis of QGI-CESO

As the core of improved ADRC in this article, the capability
of QGI-CESO to estimate and track periodic and aperiodic
disturbances directly determines the performance of the sys-
tem. Therefore, it is necessary to analyze the disturbances
estimation performance of the proposed QGI-ESO.

According to (14) and (15), when kr = 0, the transfer
function of CESO disturbance estimation can be derived as

G f 2(s) =
Z12(s)+ Z22(s)

X2(s)
=

2ω2
os2

+ 4ω3
os + ω4

o

(s + ωo)
4 . (21)

From (21), the transfer function of the disturbance estima-
tion error of CESO can be obtained as

Ge2(s) =
Z12(s)+ Z22(s)− X2(s)

X2(s)
= −

s2(s + 2ωo)
2

(s + ωo)
4 . (22)
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Fig. 3. Steady-state estimation errors of periodic harmonic disturbance. (a) Conventional ESO. (b) CESO. (c) QGI-CESO.

Fig. 4. Bode diagrams of Ge1(s), Ge2(s), and Ge3(s) with different parameters. (a) ωh = 400, kr = 10, ωc = 2, and ωo = [150, 200, 250].
(b) ωo = 200, kr = 10, ωc = 2, and ωh = [200, 400, 800]. (c) ωo = 200, ωh = 400, ωc = 2, and kr = [5, 10, 15]. (d) ωo = 200, ωh = 400, kr = 10,
and ωc = [1, 2, 4].

Similarly, when QGI-CESO is working properly, the transfer
function of the disturbance estimation error of QGI-CESO can
be deduced as

Ge3(s) =
Z12(s)+ Z22(s)− X2(s)

X2(s)
= −

s2(s + 2ωo)
2

1(s)
(23)

where 1(s) represents the characteristic polynomial, which is
expressed as

1(s) = s4
+

[
Q(s)ω2

o + 4ωo
]
s3

+
[
2Q(s)ω3

o + 6ω2
o

]
s2

+
[
Q(s)ω4

o + 4ω3
o

]
s + ω4

o (24)

where Q(s) = (2krωcs/(s2
+ 2ωcs + ω2

h)) is the frequency-
domain expression of QGI.

According to (12), (22), and (23), if x2 is a constant
disturbance, then the estimation errors of the three observers
can all converge to zero; if x2 is a ramp disturbance, the
estimation of conventional ESO will lead to a steady-state
error, while both the estimation errors of CESO and QGI-
CESO can converge to zero; if x2 = H sin(ωh t) is a periodic
harmonic and assume H = 1, then the steady-state estimation
errors |Ge1( jωh)|, |Ge2( jωh)|, and |Ge3( jωh)| for periodic
harmonic disturbance are shown in Fig. 3. It can be found
that with the increase in ωo and the decrease in ωh , the
estimation errors of conventional ESO and CESO for periodic
harmonic always exist and decrease. The estimation error of
the proposed QGI-CESO for periodic harmonic can quickly
converge to zero, and it is not closely related to ωo.

To further intuitively illustrate the impact of undetermined
parameters on disturbances estimation, the Bode diagrams of
Ge1(s), Ge2(s), and Ge3(s) for different ωo, ωh , kr , and ωc

values are shown in Fig. 4. The curve styles for QGI-CESO,
CESO, and ESO are solid, dashed, and dotted, respectively.
It can be noted that the CESO-based methods have better
low-frequency disturbance estimation capability than the con-
ventional ESO, and the high-frequency characteristics of the
three observers are consistent. Furthermore, the QGI-CESO
is able to achieve amplitude drop at the specific harmonic
frequency to efficiently estimate the harmonic. Therefore, the
proposed QGI-CESO has a better estimation performance for
low-frequency aperiodic disturbance and frequency-specific
periodic disturbance.

B. Stability Analysis

According to (8) and (14), the estimation error of QGI-
CESO1 can be derived as{

ė11 = ż11 − ẋ1 = e12 − β11e11

ė12 = ż12 − ẋ2 = −β12e11 − ϕ.
(25)

Let ηi = e1i/ω
i−1
o , i = 1, 2, and then, (25) can be

rewritten as

η̇ = ωo Hη + ϕK
/
ωo (26)

where

η =

[
η1
η2

]
, H =

[
−2 1
−1 0

]
, K =

[
0

−1

]
.

Both eigenvalues of H are −1, so H is Hurwitz stable.
Then, there exists a unique positive definite matrix P such
that

H T P + P H = −I (27)
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where P =

[
(1/2) −(1/2)

−(1/2) (3/2)

]
. Select the Lyapunov function

as V (η) = ηT Pη, and then,

V̇ (η) = η̇T Pη + ηT P η̇ = −ωo∥η∥
2
+ 2ω−1

o ηT P Kϕ. (28)
Since ϕ is globally Lipschitz in terms of x, that is, there

exists a constant ξ such that ϕ ≤ ξ∥x − z1i∥ for all x, z1i ,
one has

2ω−1
o ηT P Kϕ ≤ 2ζω−1

o ηT P K∥x − z1i∥. (29)
When ωo ≥ 1, one has ω−1

o ∥x − z1i∥ = ω−1
o ∥e1i∥ ≤ ∥η∥.

Thus, we have

2ω−1
o ηT P Kϕ ≤ δ∥η∥

2 (30)
where δ = ∥P Kξ∥2

+ 1. Substituting (30) into (28), we can
get

V̇ (η) ≤ −(ωo − δ)∥η∥
2 (31)

that is, V̇ (η) < 0 if ωo > δ. Similarly, let e2i = z2i − xi as the
estimation error of the QGI-CESO2, and the same derivation
as (31) can be obtained. Therefore, we get

lim
t→∞

e1i = 0, lim
t→∞

e2i = 0, i = 1, 2. (32)

According to the above analysis, it can be found that the
Lyapunov asymptotic stability theorem holds. Thus, QGI-
CESO is convergent. Assume that the q-axis current reference
i ref
qc and its derivatives are bounded; then, according to (20),

the closed-loop tracking error eqc can be derived as

ėqc = Ae
(
i ref
qc − iqc

)
+ Azez (33)

where Ae = −kpq , Az =
[
−kpq −1

]
, and ez =[

e11 e12 + e22
]T . Since kpq is chosen such that the char-

acteristic polynomial s + kpq is Hurwitz, Ae is Hur-
witz. limt→∞ ∥Azez∥ = 0 can be obtained from (32),
so limt→∞ eqc = 0. According to the Lyapunov method, it can
be seen that the improved ADRC is asymptotically stable in
the engineering sense.

C. Disturbances Rejection Capability of the Improved ADRC

In order to analyze the disturbances rejection performance
of the entire current closed-loop system, the improved ADRC
with QGI-CESO of the q-axis is equivalent to a two-degree-
of-freedom form [29]. According to (20), the q-axis control
law can be presented in the frequency domain as

Uqv(s) =
s I ref

qc (s)+kpq
[
I ref
qc (s)− Iqc(s)

]
−[Z12(s)+Z22(s)]

b0
.

(34)

According to (14) and (15), the transfer functions from
b0uqv to i ref

qc and iqc are derived as

b0Uqv(s)
I ref
qc (s)

=
1112(kpq + s)

1112 − ω2
o12 − [Q(s)s + 1]

(
11ω2

o − ω4
o

)
(35)

b0Uqv(s)
Iqc(s)

= −
kpq1112+ω

2
o12s+

[
Q(s)s2

+s
](
11ω

2
o−ω4

o

)
1112−ω2

o12 − [Q(s)s + 1]
(
11ω2

o − ω4
o

)
(36)

where 11 = (s + ωo)
2 and 12 = s2

+[ω2
o Q(s)+ 2ωo]s +ω2

o.

Fig. 5. Equivalent structure block diagram of the improved ADRC.

Then, we obtain an equivalent structure block diagram of
the improved ADRC presented in Fig. 5, where the reference
current filter

F(s) =
1112(kpq + s)

kpq1112 + ω2
o12s +

[
Q(s)s2 + s

](
11ω2

o − ω4
o

)
(37)

and the equivalent feedback compensator

C(s) =
kpq1112 + ω2

o12s +
[
Q(s)s2

+ s
](
11ω

2
o − ω4

o

)
b0

{
1112 − ω2

o12 − [Q(s)s + 1]
(
11ω2

o − ω4
o

)} .
(38)

Supposing that the current reference input i ref
qc is zero, the

disturbance rejection transfer function from fq to iqc from
Fig. 5 can be derived as

Gd(s) =
Iqc(s)
Fq(s)

=
1
/

s

1 + b0C(s)
/

s

=

(
11 − ω2

o

)
12 −

[
Q(s)s2

+ s
](
11ω

2
o − ω4

o

)
(kpq + s)1112

. (39)

Fig. 6 presents the Bode diagrams of Gd(s) for different
ωo, ωh , kr , and kp values under ωc = 2. The curve styles
for the improved ADRC, cascaded ADRC (CADRC), and
ADRC are solid, dashed, and dotted, respectively. It can
be noted that the high-frequency characteristics of the three
methods are consistent, but the CADRC-based methods have
better low-frequency disturbance rejection performance than
the conventional ADRC. From Fig. 6(a), it can be known
that increasing ωo can enhance the antidisturbance ability,
including harmonic suppression. Besides, it can be seen from
Fig. 6(b) that the improved ADRC has excellent frequency-
selective performance. From Fig. 6(c), increasing kr can
enhance the harmonic suppression rejection ability but has no
influence on low-frequency disturbance, and the suppression
ability of both harmonic and low-frequency disturbance is
enhanced by increasing kp from Fig. 6(d). Therefore, the
improved ADRC exhibits greater superiority to attenuate
current disturbances in PMSM. However, kr and kp cannot
increase infinitely. Excessively increasing kr may amplify the
signal near the periodic disturbance frequency, which will
make the system tend to be unstable [30]. Besides, kp is related
to the bandwidth of the current loop, which also limits its
value.

D. Parameter Robustness Analysis

In the actual operation of PMSM, the inductance and
resistance may deviate from the nominal value. Thus, it is
necessary to evaluate the robustness of improved ADRC for
parameter variations.
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Fig. 6. Bode diagrams of Gd (s) with different parameters under ωc = 2. (a) ωh = 400, kr = 10, kp = 100, and ωo = [150, 200, 250].
(b) ωo = 200, kr = 10, kp = 100, and ωh = [200, 400, 800]. (c) ωo = 200, ωh = 400, kp = 100, and kr = [5, 10, 15]. (d) ωo = 200, ωh = 400, kr = 10, and
kp = [50, 100, 200].

Fig. 7. Amplitudes and phases at the frequency of periodic disturbance with
mismatched parameters.

Assuming that the total disturbance fq of the q-axis is
zero, then the current closed-loop transfer function can be
expressed as

Gcl(s) =
Iqc(s)
I ref
qc (s)

=
F(s)C(s)

1
/

P(s)+ C(s)
(40)

where P(s) = 1/(Lss + Rs) represents the simplified current
plant of PMSM. Let εL = Ls/Ls0 and εR = Rs/Rs0, and
substitute s = jωh into (40); the closed-loop transfer function
at the frequency of periodic disturbance can be obtained as

Gcl( jωh) =
11( jωh)12( jωh)(kpq + jωh)

b0(εL Ls0 jωh + εR Rs0)λ1( jωh)+ λ2( jωh)
(41)

where
λ1( jωh) =

[
11( jωh)− ω2

o

]
12( jωh)

+
[
Q( jωh)+ 1

][
11( jωh)ω

2
o − ω4

o

]
λ2( jωh) =

[
kpq11( jωh)+ ω2

o jωh
]
12( jωh)

+
[

jωh − ω2
h Q( jωh)

][
11( jωh)ω

2
o − ω4

o

]
.

(42)

According to (42), Fig. 7 shows the magnitudes and phases
at the frequency of periodic disturbance of the current closed-
loop transfer function based on the improved ADRC in the
company of variations of inductance and resistance. The actual
model values change from 50% to 200% of the nominal
values, that is, εL and εR vary from 0.5 to 2, respectively.

Fig. 8. Bandwidth of the current loop and observer with ωn and ωo vary.

The magnitudes on the frequency of periodic disturbance vary
from −0.03 to 0.001 dB, which are very approximate to 0 dB.
Furthermore, the phases vary from −0.1◦ to 0.05 ◦, which are
also extremely approximated to 0 ◦. We can conclude that the
closed-loop system for current control remains unity-gain and
zero-phase responses even in the case of parameter mismatch
in the PMSM. Therefore, the improved ADRC possesses
remarkable robustness toward parameter variations.

E. Parameter Tuning

The proposed method has some parameters that need to be
tuned, including kp, ωo, kr , ωc, and ωh . Therefore, this section
attempts to explore the relationship between parameters and
provide certain guidelines for parameter tuning to facilitate
engineering applications.

In order to ensure that the observer reaches a steady state
before the control system, it is required that the observer
bandwidth is greater than the current loop bandwidth. The
current closed-loop transfer function is shown in (40), and the
frequency value of its amplitude–frequency curve at −3 dB is
the current loop bandwidth. Besides, the observer bandwidth
is ωo. According to [28], there is a common rule of thumb as{

kp = ω2
n

ωo ≈ (5 ∼ 10)ωn
(43)

where ωn is the desired closed-loop natural frequency. Accord-
ingly, Fig. 8 shows the bandwidth of the current loop and
observer with ωn and ωo varying. It can be seen that
when ωn is too large, the current loop bandwidth is higher
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Fig. 9. Schematic of the FOC-based PMSM with the improved ADRC.

than the observer bandwidth, which should be avoided.
Thus, ωo = 10ωn is selected in this article. Then, as long
as the current loop bandwidth is chosen, kp and ωo will be
selected.

According to the analysis of Section II-B, it can be known
that the low-order harmonics are the dominant components
of periodic disturbances. Thus, as shown in Fig. 9, the 6th
and 12th harmonics are mainly suppressed in this article. The
harmonic frequencies ωh6 and ωh12 are set to 6ωe and 12ωe,
respectively, which vary with the electrical angular speed.

According to the previous Bode diagram analysis and [27],
the cutoff frequency ωc is to enhance the robustness to
harmonic frequency deviation and is usually selected from
0.1% to 15% ωh . From Fig. 6, it can be seen that the
proposed method can achieve excellent harmonic rejection
when kr = 5 ∼ 15. Because the harmonic amplitude decreases
with the increase in the harmonic order from the analysis
of Section II-B, let kr6 = 2kr12 and ωc6 = 2ωc12 to couple
their relationship in this article. In addition, since kp can
enhance the suppression of aperiodic and periodic disturbance
and kr can enhance the rejection of periodic disturbance, kr

is chosen not to exceed ωn to avoid excessive amplification
of the signal around the periodic disturbance frequency in this
article. Therefore, the current loop bandwidth determines ωn ,
and ωn determines the upper limit of kr .

V. EXPERIMENT VERIFICATION

To investigate the superiority of the improved ADRC strat-
egy, a series of experiments is implemented according to
the block diagram based on FOC with the improved ADRC
method presented in Fig. 9. The experimental test bench is
shown in Fig. 10, and the nominal parameters of PMSM
are summarized in Table I. The DSP-TMS320F28335 is
utilized to execute the control methodology, and the FPGA-
EP3C40F324 is employed to perform computations related to
SVPWM operation and analog-to-digital (AD) conversion. The
switching frequency of the inverter is 10 kHz, and the sampling
frequencies of the speed and current loop are 1 and 10 kHz,
respectively. In addition, the current harmonics primarily dete-
riorate the performance of PMSM at low speed [6], [7], [14],
so the reference speed ωref

m is set as 50 r/min.
In the following experiments, the proportional integral (PI)

controller is adopted for speed outer loop, and the conventional

Fig. 10. PMSM experimental bench.

TABLE I
PARAMETERS OF THE PMSM

ADRC, CADRC, and the proposed method are carried out for
the current inner loop to compare their control performance.
For a fair comparison, the current loop bandwidth is set
to 150 Hz to configure the parameters of three different
control strategies. According to Section IV-E, the control gain
kpq = kpd = 144 and the observer bandwidth ωo = 120 rad/s,
i.e., β11 = β21 = 240 and β12 = β22 = 1202. Besides, the
parameters of QGIs with kr6 = 10, kr12 = 5, ωc6 = 4, and
ωc12 = 2 are employed.

To demonstrate the transient- and steady-state performance
of the three control schemes, Figs. 11 and 12 present the
experiments under 2-N·m torque and rated torque, respectively.
The experimental results from top to bottom include the d-axis
current, zoom-in q-axis steady-state current, the q-axis current,
zoom-in A-phase loading current, A-phase current, and the fast
Fourier transform (FFT) analysis of q-axis steady-state current.
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Fig. 11. Experimental results of transient and steady state of dq-axis and A-phase current waveforms and FFT analysis of q-axis steady-state current of
three different control strategies under 2-N·m load. (a) ADRC. (b) CADRC. (c) Improved ADRC.

Fig. 12. Experimental results of transient and steady state of dq-axis and A-phase current waveforms and FFT analysis of q-axis steady-state current of
three different control strategies under rated load. (a) ADRC. (b) CADRC. (c) Improved ADRC.

Using the traditional ADRC method, it can be seen from
Fig. 11(a) that there are obvious fluctuations in the d-axis
and q-axis, and the fluctuations of the d-axis and q-axis

steady-state currents are 0.404 and 0.333 A, respectively.
Moreover, the transient response time of the q-axis current
is 1.551 s. Besides, there is visible distortion in the phase
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TABLE II
COMPARISON OF HARMONIC AMPLITUDE UNDER 2-N·M LOAD

Fig. 13. Performance comparison of three different control structures for
current disturbance under rated load.

A current, and its total harmonic distortion (THD) is 6.46%,
which means that it has harmonic components. The FFT
analysis of the q-axis current also shows that the 6th and
12th harmonics in the current are more prominent, which is
consistent with the analysis in Section II-B. From Fig. 11(b),
compared with ADRC, the CADRC with CESO can weaken
the current ripple to a certain extent, and the steady-state
current ripples of the dq-axis are 0.397 and 0.311 A; the
transient response time of the q-axis current is also faster. The
THD is also reduced to 6.07%, but the current distortion is still
distinct. According to Table II, the FFT amplitude of the 6th
harmonic decreases from 3.47% to 3.02%, and the amplitude
of the 12th harmonic decreases from 1.42% to 1.24%. With
the improved ADRC based on QGI-CESO, it can be found
that from Fig. 11(c), the periodic disturbances are effectively
eliminated. The dq-axis steady-state current ripples are further
decreased to 0.205 and 0.166 A. The transient response time
of the proposed method is close to that of CADRC. Besides,
the THD of phase A current is reduced to 1.75%, and the
FFT amplitudes of the 6th and 12th harmonics are 0.04% and
0.21%, respectively, which are tolerable for high-performance
operation.

The experimental tests under rated load in Fig. 12 is similar
to that under 2 N·m in Fig. 11. Compared with ADRC and
CADRC, the dq-axis current fluctuations of the improved
ADRC are significantly reduced, and the THD of the A-phase
current is also reduced from 5.61% to 1.66%. Fig. 13 shows
the performance comparison of three different controllers at
rated torque. It can be seen intuitively that the proposed
strategy has smoother dq-axis current, and smaller harmonics
amplitudes and THD compared with the other two methods.

In addition, Fig. 14 shows the THD of phase A current for
three different controllers with different loads. In the case of
no load, the proposed scheme reduces the THD from 9.07%

Fig. 14. THD of A-phase current for three different controllers under different
loads.

Fig. 15. Experimental results of steady state of dq-axis and A-phase current
waveforms and FFT analysis of q-axis steady-state current under rated load.
(a) Improved ADRC. (b) GI-ADRC [23].

to 3.62%. The CADRC is slightly better than ADRC since the
former has an enhanced ability to eliminate the low-frequency
disturbance. As the load increases, the THD of the studied
strategy always outperforms the other two control algorithms.
Therefore, the proposed algorithm has better disturbance atten-
uation ability to deal with periodic harmonics.

To illustrate the advantage of the steady-state performance
of the proposed method, it is further compared with GI-ADRC
in [23]. Fig. 15 shows the experimental results comparing
the steady-state performance of the studied method with that
of GI-ADRC in [23] under rated load. It should be clarified
that the parameter settings of the two different controllers
are the same in the comparative experiments. According to
Fig. 15(a) and (b), it can be seen that both control schemes
can effectively attenuate current harmonics and eliminate
current distortion. However, it is evident that the dq-axis
steady-state fluctuations of the GI-ADRC and the THD of the
A-phase current are larger than those of the improved ADRC.
This indicates that the harmonics suppression ability of the
proposed method is better than that of GI-ADRC, which is due
to the further suppression of harmonics based on the cascade
structure with QGI. Therefore, the investigated method is able
to attenuate current harmonics more effectively compared to
GI-ADRC in [23].

In order to verify the robustness of the improved ADRC
method, Fig. 16(a)–(c) shows the steady-state experimental
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Fig. 16. Experimental results of steady state of dq-axis current and A-phase current under rated load with parameter variations. (a) Inductance mismatch.
(b) Resistance mismatch. (c) Flux linkage mismatch.

Fig. 17. Experimental results of q-axis current, A-phase current, and the speed waveforms of dynamic performance for three different control strategies with
the speed and load step. (a) ADRC. (b) CADRC. (c) Improved ADRC.

results under rated load with dq-axis inductance mismatch,
resistance mismatch, and flux linkage mismatch, respectively.
In three sets of experiments, the PMSM is tested using its
nominal parameters initially. Subsequently, the experiments
are conducted using 200% or 50% of the nominal parameters.
It should be pointed out that for the surface-mounted PMSM,
the mismatch of dq-axis inductance may be inconsistent.
According to Fig. 16, the variations in inductance, resistance,
and flux linkage parameters do not significantly affect the rip-
ples of the dq-axis currents, which remain roughly consistent
with those under nominal parameters. In addition, there are
only minor changes in the THD of the A-phase current, and
no discernible waveform distortion is observed. The robust
experimental results are in accordance with the investigation
of Section IV-D. Thus, the improved ADRC can effectively
deal with the current disturbances introduced by the motor
parameter variations, that is, the improved ADRC is robust to
inductance mismatch, resistance mismatch, and flux linkage
mismatch.

Due to the variation of the harmonic frequency ωh in the
proposed method with the speed, it is necessary to further
evaluate the influence of the speed dynamic behavior on the

improved ADRC. Fig. 17 shows the experimental results of
q-axis current, A-phase current, and the speed waveforms for
three different controllers with the speed step from 50 to
100 r/min and the load step of 2 N·m. It can be found
that when the speed changes, both the q-axis current and
the A-phase current will fluctuate, but the three methods can
quickly eliminate the current ripple as the speed tends to a
constant value. Similarly, when a load is applied, the A-phase
current of the three controllers will fluctuate and the speed will
drop by 5.7, 5.6, and 5.6 r/min, but as the q-axis current steps
to a constant value, the corresponding current ripple and speed
error will disappear immediately. In addition, it can be seen
that the q-axis current fluctuations of ADRC, CADRC, and
improved ADRC are 0.315, 0.304, and 0.156 A at 100 r/min,
respectively, and the A-phase current THD is 6.41%, 6.02%,
and 1.74%. Therefore, the investigated scheme significantly
improves the current and maintains the dynamic performance
of conventional ADRC and CADRC simultaneously when the
speed and load are changed.

In order to illustrate the performance of the proposed
method in computational implementation, the comparison of
computational time is presented in Table III. The 32-bit
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TABLE III
COMPUTATION BURDEN COMPARISON

floating-point DSP-TMS320F28335 used has a clock fre-
quency of 150 MHz. Accordingly, the calculation time can
be calculated according to the clock cycles executed by the
algorithms. It can be seen from Table III that the average
computation time of ADRC, CADRC, and the improved
ADRC is 4.887, 7.673, and 9.127 µs, respectively. The shortest
running time is ADRC, followed by CADRC, and the longest
is the proposed method. Fortunately, the average computation
time of the proposed method is much less than the 100-µs
sampling period of the current loop, which is tolerable for
high-performance current control.

VI. CONCLUSION

In this article, an improved ADRC based on QGI-CESO
is developed to attenuate the current disturbances contain-
ing periodic harmonics of PMSM. The proposed method
enhances the capability to suppress low-frequency aperiodic
disturbances and effectively attenuates time-varying peri-
odic harmonics simultaneously, which significantly reduces
steady-state current fluctuations and improves distorted current
waveforms. Meanwhile, the disturbances estimation and rejec-
tion performance, stability, and robustness are theoretically and
comprehensively analyzed. The experimental results demon-
strate that the improved ADRC can suppress the aperiodic
and periodic disturbances simultaneously compared with the
CADRC and the traditional ADRC. It is feasible to readily
apply the proposed approach to other forms of electric drive
technologies.
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