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Automatic segmentation of skin lesions from dermoscopy is of great

significance for the early diagnosis of skin cancer. However, due to the

complexity and fuzzy boundary of skin lesions, automatic segmentation of

skin lesions is a challenging task. In this paper, we present a novel skin lesion

segmentation network based on HarDNet (SL-HarDNet). We adopt HarDNet as

the backbone, which can learn more robust feature representation.

Furthermore, we introduce three powerful modules, including: cascaded

fusion module (CFM), spatial channel attention module (SCAM) and feature

aggregation module (FAM). Among them, CFM combines the features of

different levels and effectively aggregates the semantic and location

information of skin lesions. SCAM realizes the capture of key spatial

information. The cross-level features are effectively fused through FAM, and

the obtained high-level semantic position information features are reintegrated

with the features from CFM to improve the segmentation performance of the

model. We apply the challenge dataset ISIC-2016&PH2 and ISIC-2018, and

extensively evaluate and compare the state-of-the-art skin lesion segmentation

methods. Experiments show that our SL-HarDNet performance is always

superior to other segmentation methods and achieves the latest performance.
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1 Introduction

Skin cancer has become the highest incidence of cancer in the world (Fitzmaurice

et al., 2018). In the United States, there are 5.4 million new skin cancer cases each year

(Rogers et al., 2015). Melanoma is the most dangerous skin cancer (Mermelstein and

Riesenberg, 1992). In 2020, there are about 100,350 new cases of melanoma in the

United States, and the number of deaths is more than 6500 (Mathur et al., 2020). The 5-

year survival rate of patients with advanced malignant melanoma is only 15%, while the

final cure rate of patients with early stage is 95% (Barker and Postow, 2014). Therefore, the

determination of melanoma lesion area and the diagnosis of benign and malignant, early

and late stages play an important role in the treatment of melanoma patients.

At present, dermatologists mainly diagnose by referring to patients’ dermoscopy

images. Dermatoscopy is one of the important means to improve the diagnostic accuracy

and reduce the death of skin cancer (Kittler et al., 2002). During the diagnosis, the doctor
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visually analyzes the lesion area in the dermoscopy image. They

consume a lot of time and energy in the process of repeatedly

viewing dermoscopy images (Weese and Lorenz, 2016), and

prone to missed diagnosis or misdiagnosis. Therefore, it is

necessary to design an automatic and accurate segmentation

algorithm for dermoscopy images to help dermatologists solve

the above problems and improve the accuracy and efficiency of

skin lesion diagnosis.

The automatic segmentation task of dermoscopy images is

used to detect the location and boundary of skin lesions.

However, due to the following three reasons, segmentation is

challenging: 1) The low contrast between the lesion area and the

surrounding skin of the image results in blurred boundary of the

lesion (see Figures 1A–D), 2) the skin lesion area gets an

occlusion by hair and bubbles (see Figures 1E,F), 3) the skin

lesion area is characterized by diversity, irregular shape and

uneven color distribution (see Figures 1G,H).

Many efforts are devoted to overcoming these challenges. In

the early stage, traditional methods based on various manual

features are employed. However, the unique performance of skin

lesions cannot be captured by hand-made features, resulting in

poor segmentation performance of skin lesions when large

changes occur. In recent years, with the continuous

development of convolutional neural networks, this problem

has been solved to some extent (Yu et al., 2016; Yuan et al.,

2017). However, due to the lack of global context modeling, these

models are insufficient to address the challenge of skin lesion

segmentation. In order to solve the above problems, this paper

contributes three aspects:

1) We propose a novel dermoscopy image segmentation model,

termed SL-HarDNet. We adopt HarDNet as the backbone

network of the model to extract more powerful and key

features.

2) According to the backbone network, we design three

components. Specifically, Cascaded Fusion Module (CFM)

effectively extracts high-level semantic features and spatial

location information of skin lesions through internal Feature

Pyramid Module (FPM) and progressive methods.

Meanwhile, Spatial Channel Attention Module (SCAM)

enhances the extraction of channel and spatial

information, which obtains the details of skin lesions and

effectively reduces the error information in low-level features.

Feature Aggregation Module (FAM) focuses on local

information and global semantic information of the

lesion area.

3) Finally, we conduct extensive experiments on ISIC-2016 &

PH2 and ISIC-2018 datasets to evaluate the performance of

our SL-HarDNet. Compared with the state-of-the-art model

for skin lesion segmentation, our model has superior

performance. This shows that our model has more

prominent segmentation performance for skin lesions with

different sizes, irregular, hair occlusion and blurred

boundaries.

2 Related work

2.1 Traditional methods

In the early studies of dermoscopy images, the segmentation

of lesions is mainly based on the classical digital image method.

Usually, it can be divided into four categories: threshold method,

region method, boundary method and active contour method.

When the color and texture characteristics of the lesion area in

the dermoscopy images are significantly different from those of

the surrounding skin, the segmentation methods based on

threshold can achieve good segmentation results. The

FIGURE 1
Typical skin lesion segmentation images: (A–D) the contrast between the lesion and the surrounding skin is low, (E–F) occlusion by hair and
bubbles, (G–H) characterized by diversity.
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commonly used threshold-based segmentation algorithms

include local threshold (Ma et al., 2010), Otsu threshold

(Zhou et al., 2015) and Gaussian mixture (Greggio et al.,

2012). Alcón et al. (2009) proposed a threshold processing

scheme for skin lesion images, which proves that Otsu

threshold method could over-segment skin lesion areas.

Region-based image segmentation methods can directly adopt

similarity to segment the lesion area, which is simple and effective

in suppressing noise interference. Among them, region growing

(Javadpour and Mohammadi, 2016), region splitting and

merging (Hancer et al., 2017) are the most commonly used

methods. The boundary method can identify and locate the

sharp discontinuous points in the image, which is conducive

to the identification of image artifacts (Sakamoto et al., 2017).

The common boundary methods are Prewitt filter (Chaple et al.,

2015), Sobel filter (Kalra and Chhokar, 2016), Canny operator

(Nikolic et al., 2016) and so on. These methods usually have the

disadvantages of easy noise interference, large amount of

calculation and poor local boundary segmentation. The

segmentation method based on active contour is to represent

the lesion boundary by continuous curve, and then defines the

energy function, which transforms the image segmentation

problem into the minimum problem of solving the energy

functional. Although this method obtains continuous

boundary contour, the calculation process is complex, time

consuming and sensitive to noise (Xie and Bovik, 2013). In

summary, the robustness of the early skin lesion segmentation

methods based on digital image processing needs to be improved,

and it is difficult to adapt to highly variable samples in practical

applications. In particular, it is unable to effectively deal with the

problem of irregular lesions and low contrast in dermoscopy

images. Early segmentation algorithms are difficult to achieve

satisfactory segmentation results.

2.2 Deep learning methods

In recent years, since Hinton and Salakhutdinov (2006)

proposed the concept of deep learning, deep learning based

on convolutional neural network (CNN) has achieved great

success in image segmentation, image classification and target

detection. Similarly, CNN has changed the development of

dermoscopy image segmentation and recognition, realizing

end-to-end training and prediction. The specificity, sensitivity

and accuracy of skin lesion segmentation and classification are

higher than those of medical professionals.

Long et al. (2015) proposed the full convolution neural

network (FCN), which replaces the full connection layer with

the convolution layer, so that the improved network has the

ability of pixel-by-pixel prediction and solved the problem of

semantic segmentation. Ronneberger et al. (2015) proposed a

U-Net framework for the segmentation of medical images with

small samples, which is outstanding in the medical image

segmentation tasks and has become the mainstream medical

image segmentation algorithm. U-Net and U-Net improved are

also widely applied in skin lesion segmentation. TernausNet

(Iglovikov and Shvets, 2018) uses pre-trained VGG (Szegedy

et al., 2015) as coding block to improve the U-Net, which

improves the accuracy of segmentation, but this method

ignores the segmentation efficiency. To solve this problem,

Chaurasia and Culurciello (2017) proposed the LinkNet,

which adopts the residual block as the encoder, greatly

reducing the number of parameters and improving the

segmentation efficiency. Alom et al. (2018) presented a

recurrent residual convolution neural network, which is based

on recurrent residual layer of cyclic convolution to accumulate

features and obtain good segmentation results. The above

methods significantly enhance the extraction of skin lesion

features by the segmentation network, but cannot obtain

sufficient global information to achieve higher segmentation

accuracy and cannot deal with fuzzy boundaries. Koohbanani

et al. (2018) realized the overall prediction of skin lesions by

combining multi-scale convolution with multiple different depth

models. However, due to the integration of multiple models,

resulting in a sharp increase in the number of parameters,

network convergence time is greatly extended.

In the process of skin lesion segmentation, accurate feature

extraction is the key to achieve high-precision segmentation. A

large number of studies focus on the design of feature extractor.

Among them, Al-Masni et al. (2018) proposed a full-resolution

segmentation model for the irregular and ambiguous boundary

of skin lesions, which improves the segmentation accuracy. Xie F.

et al. (2020) proposed a convolution neural network

segmentation method based on attention mechanism, which

obtains the detailed features of lesions by fusing multi-branch

outputs, but the fuzzy boundary of skin lesions is still difficult to

identify. In addition to using standard convolution and depth

separable convolution, deconvolution is also used in skin lesion

segmentation tasks. Yuan and Lo (2017) introduced

deconvolution method in the color space of dermoscopy

image, and achieved certain results in lesion segmentation.

However, it should be noted that deconvolution operations

require high computational costs, greatly increasing the

consumption of computing resources, and still fail to

effectively address the problem of fuzzy boundaries (Fan et al.,

2019). Vision transformer is also widely used in the segmentation

of skin lesions (Dosovitskiy et al., 2020), and has achieved good

segmentation results (Wang et al., 2021; Cao et al., 2022).

However, these methods do not effectively consider the

boundary and global information of skin lesions, resulting in

insufficient segmentation performance in extreme cases.

In summary, the segmentation methods of dermoscopy

image based on deep neural network have remarkable effects,

but there are still many challenges in deep modeling. Most of the

existing dermoscopy segmentation models have insufficient

feature information extraction and less edge information
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retained in the segmentation results. Therefore, for the

segmentation of dermoscopy images, we design a new lesion

segmentation framework based on HarDNet (Chao et al., 2019),

which can accurately locate the boundary of skin lesions even in

extreme cases.

3 Methods

3.1 Overall architecture

The proposed SL-HarDNet is mainly composed of four parts:

HarDNet backbone network, cascaded fusion module (CFM),

spatial channel attention module (SCAM), feature aggregation

module (FAM). Figure 2 summarizes the overall structure of the

SL-HarDNet. Specifically, HarDNet is improved by DenseNet

(Huang et al., 2017) dense block, which has efficient reasoning

speed and high precision segmentation performance. CFM

aggregates different scale features by progressive method, and

effectively obtains semantic information from skin lesions in

HarDNet. SCAM enhances spatial and channel information

extraction and modeling. FAM efficiently fuses semantic

information from CFM and spatial information from SCAM.

The input image size is I ∈ RH×W×3. Firstly, four different

scale features Xl{ }4l�1 are extracted from HarDNet backbone

network. Here, X1 represents the lowest feature and X4

represents the deepest feature (Xl ∈ R
H

2l+1×
W
2l+1×Cl ;

Cl ∈ 128, 320, 640, 1024{ }). Then, X2, X3 and X4 are processed

by 1 × 1 convolution, and the number of channels is reduced to

32. The processed feature (X2
′, X3

′ and X4
′) is input into CFM to

complete the effective fusion of multi-scale features, and the

feature map O1 ∈ R
H
8×

W
8 ×32 is generated. Meanwhile, after the

lowest feature X1 is processed by SCAM, the feature map

O2 ∈ R
H
4×

W
4 ×128 is obtained. Then, O1 and O2 are aligned and

input into FAM for feature aggregation to obtain feature

O ∈ R
H
8×

W
8 ×32 containing semantic location information. Then,

O and O1 are processed by 1 × 1 convolution layer, and the

processed features are O′ and O1
′ respectively. Finally, the

obtained O′ and O1
′ are further fused and the 1 × 1

convolution layer is processed to obtain the feature T as the

final segmentation feature map. During training, the loss

function mainly consists of two parts, one is the loss between

the segmentation result O′ and Ground Truth to optimize the

segmentation result of skin lesions. The other part is the loss

between the result O1
′ generated by CFM and Ground Truth,

which is used to supervise CFM.

3.2 HarDNet encoder

Dermoscopy images are inevitably disturbed by hair, bubbles,

blood vessels and light. At present, the segmentation of skin

lesions usually adopts the strategy of deep supervision. The

multi-scale feature information (Abraham and Khan, 2019)

and cascade architecture (Xie Y. et al., 2020; Jin et al., 2021)

are introduced into the network to achieve more precise

segmentation results. HarDNet is improved by DenseNet, and

the dense connection of the DenseNet leads to a large amount of

FIGURE 2
Framework of our SL-HarDNet, which consists of four parts: HarDNet backbone network, cascaded fusion module (CFM), spatial channel
attention module (SCAM), feature aggregation module (FAM). HarDNet backbone is used as the encoder. CFM aggregates different scale features.
SCAM obtains key location information. FAM fuses high-level and low-level features.
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memory occupation and an increase in computation. HarDNet

reduces the connection between most layers on the basis of

DenseNet to improve the inference speed, and increases the

channel width of the key layer to compensate for the loss of

accuracy. Furthermore, HarDNet has the advantages of feature

reuse and deep supervision, so this paper chooses HarDNet as the

backbone of feature extraction. Precisely, HarDNet68 (Chao

et al., 2019) is used as the backbone network. HarDNet68 is

mainly composed of five 8-layer harmonic dense blocks

(HarDBlk). Among them, the output feature sizes of the

second and third HarDBlk × 8 are the same, and the fourth

and fifth HarDBlk × 8 output feature map scale is halved in turn.

There is a 1 × 1 convolution behind each HarDBlk × 8 to adjust

the number of channels. In order to make full use of the

information at different scales, this paper extracts multi-scale

features from the first, third, fourth and fifth HarDBlk × 8 of

HarDNet68, and the corresponding features (i.e.X1, X2, X3 and

X4) are obtained by 1 × 1 convolution.

3.3 Cascaded Fusion Module

Skin lesions usually show irregular shapes. In order to better

extract the semantic feature information, we adopt the effective

feature extraction structure Cascaded Fusion Module (CFM), as

shown in Figure 3A. In particular, we introduce Feature Pyramid

Module (FPM) to encode multi-scale features (see Figure 3B), which

combines dilated convolution and reverse bottleneck convolution to

extract key features more effectively. FPM is a module based on

dilated reverse bottleneck convolution, which is composed of 1 × 1

convolution layer and Depthwise Dilated Convolutions Module

(DDCM) (see Figure 3C), and applies residual connection.

Here, X2
′, X3

′ and X4
′ are input into CFM respectively. X1

contains rich color, shape and other feature information, lack of

semantic information, provides detailed spatial information. X2
′, X3

′

and X4
′ include abundant semantic information and provide

advanced features. We define FPM as FPM(·), DDCM denotes

DDCM(·),F 3×3(·) is 3 × 3 convolution layer with padding set to 1,

and adopt batch normalization (Ioffe and Szegedy, 2015) and ReLU

(Glorot et al., 2011). CFM ismainly composed of two cascaded parts,

as follows:

1) In the first cascade, the deepest feature X4
′ is up-sampled

2 times to the same size asX3
′, and then the results are introduced

into the corresponding FPM(·) to obtainX1
4 andX

2
4, respectively.

Then X1
4 and X3

′ are multiplied, and the obtained results are

concatenate with X2
4. Finally, the fused feature map X3

4 is

obtained by the 3 × 3 convolution layer F 3×3(·). The process

can be summarized as follows:

X3
4 � F 3×3(Concat(FPM(X4

′) ⊙ X3
′, FPM(X4

′))) (1)

Where “⊙” represents Hadamard product, and Concat(·)
represents concatenate operation along the channel dimension.

FIGURE 3
Architecture of Cascaded Fusion Module (CFM) (A), which consists of Feature Pyramid Module (FPM) (B), and FPM contains Depthwise Dilated
Convolutions Module (DDCM) (C) to extract key features effectively. Dconv: Dilated Convolution.
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2) The treatment in the second part is similar to that in the

first part. First, we upsampleX3′ andX3
4 2 times, andX4′ 4 times

upsample so that they have the same size as X2′. Then, the key
features X1

3 and X4
4 are extracted by using the corresponding

FPM(·), and X1
3, X

4
4 and X2′ are multiplied to concatenate the

obtained mapping with the X5
4 obtained by the corresponding

FPM(·) processing. Finally, we introduce the concatenate feature
mapping into the 3 × 3 convolution layer (i.e.F 3×3(·)) to reduce

the dimension, and finally get O1 ∈ R
H
8×

W
8 ×32, which is the output

of CFM. The process is as follows:

O1 � F 3×3(Concat(FPM(X3
′) ⊙ FPM(X4

′) ⊙ X2
′, FPM(X3

4)))
(2)

It should be noted that the feature (Ui ∈ X2′, X3′, X4′{ };
i ∈ 1, 2, 3{ }) is treated more deeply in FPM. Firstly, the input

(Ui ∈ X2′, X3′, X4′{ }; i ∈ 1, 2, 3{ }) of FPM is processed by 1 × 1

convolution layer F 1×1(·), and then the obtained results are

equally divided into four chunk features (U1
i , U

2
i , U

3
i and U4

i )

along the channel. Then, the first chunk feature U1
i is

processed by DDCM(·) to obtain feature U′1i . The second,

third and fourth chunk features ( (U2
i , U3

i and U4
i )) are

combined with the previous chunk processed features

(i.e.U′1i , U′2i and U′3i ), and then introduced into the

corresponding DDCM(·) to obtain U′2i , U′
3
i and U′4i . Then,

the feature U′ki (k ∈ 1, 2, 3, 4{ }) is concatenated, and the

obtained result uses the 1 × 1 convolution layer F 1×1(·) to

restore the number of channels. Finally, the obtained

results are combined with the initial input of FPM to

obtain the final output Ui′. The operation procedure of

FPM is as follows:

Uk
i � Chunk F 1×1 Ui( )( ) , k ∈ 1, 2, 3, 4{ } (3)

U′1i � DDCM U1
i( ) (4)

U′ji � DDCM U′ j−1( )
i + Uj

i( ) , j ∈ 2, 3, 4{ } (5)

Ui′ � Concat F 1×1 U′ki( )( ) + Ui (6)

DDCM increases the receptive field and reduces the

computational complexity without reducing the resolution of

the feature map. The operation DDCM(·) of DDCM can be

expressed as:

DDCM x( ) � FD
3 × 3 FD×1 F 1×D x( )( )( ) (7)

Where Chunk(·) denotes the splitting operation along the

channel dimension. x ∈ U1
i , U′

2
i , U′

3
i , U′

4
i{ }. F 1×D(·) is defined

as 1 × D convolution layer with padding set to (0, d)
(d ∈ 0, 1, 2, 3{ }). FD×1(·) represents D × 1 convolution layer

with padding set to (d, 0). Similarly, FD
3 × 3(·) is 3 × 3 dilated

convolution layer with padding set to (D,D) (D ∈ 1, 3, 5, 7{ }). D
represents the expansion rate inFD

3 × 3(·). As shown in Figure 3B,
the expansion rates in DDCM corresponding to branch U′ki
(k ∈ 1, 2, 3, 4{ }) are 1, 3, 5, 7 respectively.

3.4 Spatial channel attention module

Some methods (Zhao et al., 2017; Chen et al., 2018; Zhang

et al., 2018) usually focus on high-level semantic information,

while ignoring the underlying spatial details. Other methods

(Jégou et al., 2017; Lin et al., 2017; Peng et al., 2017) adopt

complex modules to aggregate different features, and use low-

level features to refine the boundary, which solves the problem

of coarse segmentation to some extent. Considering the

channel attention mechanism has the advantages of

increasing the correlation between different channels and

improving the weight of the segmented target. At the same

time, the spatial attention mechanism can correlate key

features in different spaces. Therefore, we introduce the

Spatial Channel Attention Module (SCAM), which is

applied to enhance the extraction of channel and spatial

information and effectively identify the details of skin

lesions, as shown in Figure 4.

Specifically, SCAM is composed of spatial attention

operation SAM(·) and channel attention operation CAM(·),
which can be expressed as:

O2 � SAM X1( ) + CAM X1( ) (8)

Spatial attention operation SAM(·) can be written as follow:

SAM(x) � σ(F 7×7 Concat( (PCavg(x), PCmax(x)))) ⊙ x (9)

Where x represents the input, and σ is the Sigmoid function.

F 7×7(·) denotes the 7 × 7 convolution layer. PCavg(·) and

PCmax(·) represent average pooling function and the

maximum pooling function along the channel, respectively.

Channel attention operation CAM(·) can be formulated as:

CAM x( ) � σ(H1(Pavg x( )) +H2 P max x( )( )) ⊙ x (10)

Where Pavg(·) and Pmax(·) denote adaptive average pooling

function and adaptive maximum pooling function,

respectively. Hi(·) contains a 1 × 1 convolution layer that

reduces the channel dimension by 16 times, and then there is

a ReLU layer and another 1 × 1 convolution layer, so that the

feature is restored to the original number of channels.

3.5 Feature aggregation module

Features from SCAM contain rich details, and the features of

CFM output include high-level semantic information. To make

full use of the correlation information between them, we propose

Feature Aggregation Module (FAM), as shown in Figure 5A.

FAM is mainly composed of graph convolution (GCN) (Lu et al.,

2019), non-local operation (Wang et al., 2018; Te et al., 2020) and

mutual embedding module (MEM) (Liu and Yin, 2019). FAM

effectively introduces the global information through non-local

operation, and adopts the key features extracted by graph
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convolution to construct the feature relationship, which

supplements the structural information of the lesion for the

extracted features. In MEM (see Figure 5B), low-level features

are embedded in context information, and high-level features are

embedded in spatial details, which effectively enhances the fusion

of features.

The high-level semantic feature O1 ∈ R
H
8×

W
8 ×32 and the rich

spatial detail featureO2 ∈ R
H
4×

W
4 ×128 are imported into FAM. First,

FIGURE 4
Architecture of spatial channel Attention module (SCAM).

FIGURE 5
Architecture of Feature Aggregation Module (FAM) (A), which consists of mutual embedding module (MEM) (B) to enhance the fusion of
features, graph convolution (GCN) for reconstructing features.
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the corresponding 1 × 1 convolution layer (i.e.F 1×1(·)) is used to
reduce the dimension, and the resulting features are Q ∈ R

H
8×

W
8 ×16

and P ∈ R
H
8×

W
8 ×16 respectively. The process can be formulated as:

Q � F 1×1 O1( ), P � F 1×1 O1( ) (11)

For spatial detail O2, the number of channels is reduced to

32 by 1 × 1 convolution layer (i.e.F 1×1(·)), and the feature

O2
′ ∈ R

H
4×

W
4 ×32 is obtained. Then, bilinear interpolation is

performed to ensure the same size as O1, and the Softmax

function is adopted along the channel. The second channel

is selected as the attention map, and the obtained feature

is O2
″ ∈ R

H
8×

W
8 ×1. Next, we multiply O2

″ and P. The feature map

V ∈ R16×16×1 is obtained by using adaptive average pooling

and center clipping. In summary, the process can be

expressed as:

V � CP P ⊙ δ F 1×1 O2( )( )( )( ) (12)

Where the CP(·) is adaptive average pooling and clipping

operation. δ is the Softmax function.

We adopt the inner product to associate each element in V

and P, the operation is as follows:

S � δ V ⊗ PT( ) (13)

Where “⊗” denotes the inner product operation. PT is the

transposition of P. S represents the correlation attentional map.

The obtained S and Q are inner products, and the results are

passed into the GCN (Lu et al., 2019) to get G ∈ R16×16×1. We

define GCN as GCN(·). Then, the inner product between G and

ST is calculated. In this way, the graph domain feature is

reconstructed into the original structural feature, and the

operation process can be constructed as follows:

Y � ST ⊗ GCN S ⊗ Q( ) (14)

Meanwhile, the MEM module is used to enhance the

integration of O1 and O2. The MEM operation can be divided

into three parts:

1) The feature O2 containing spatial information is imported

into the 1 × 1 convolution layer, and the result L ∈ R
H
8×

W
8 ×32 is

obtained. Then, feature L uses the average pooling along the

channel and 1 × 1 convolution layer to obtain L′. This process
can be summarized as follows:

L′ � F 1×1 PCavg F 1×1 O2( )( )( ) (15)

2) The high-level semantic feature O1 is operated by 1 × 1

convolution layer to get H ∈ R
H
8×

W
8 ×32. Then, through the

processing of adaptive average pooling and 1 × 1

convolution, the result isH′. The process can be described as:

H′ � F 1×1 Pavg F 1×1 O1( )( )( ) (16)

3) The result of multiplying H′ and L is fused with the result of

multiplying L′ and H, as follows:

R � H′ ⊙ L( ) + H ⊙ L′( ) (17)

Finally, the 1 × 1 convolution kernel is used to adjust the

feature map Y to the same size as O1, and combined with the

feature R ∈ R
H
8×

W
8 ×32 from the MEM, the output is Z ∈ R

H
8×

W
8 ×32.

Summary as follows:

Z � R + F 1×1 Y( ) (18)

3.6 Loss function

In order to achieve fine segmentation, we combine Weighted

Intersection Over Union loss (Loshchilov and Hutter, 2017) and

Weighted Binary Cross Entropy loss (Loshchilov and Hutter,

2017) to focus on the segmentation of uncertain lesion

boundaries and improve segmentation performance.

Combination loss is defined as:

L � IL + BL (19)

Where IL denotes Weighted Intersection Over Union loss and

BL represents Weighted Binary Cross Entropy loss. L is

combination loss. Unlike the standard Intersection Over

Union (IOU) loss, IL focuses on the importance of each pixel

and pays more attention to hard pixel. Compared with the

standard Binary Cross Entropy (BCE) loss, BL assigns higher

weights to hard pixels.

The final loss consists mainly of the loss between O1 and

Ground Truth G, and the loss between O2 and Ground Truth G.

The loss between result O1 and Ground Truth G can be

expressed as:

L1 � IL O1, G( ) + BL O1, G( ) (20)

The loss between result O2 and Ground Truth G can be

written as:

L2 � IL O2, G( ) + BL O2, G( ) (21)

The final loss is as follows:

L � L1 + L2 (22)

4 Experiments

4.1 Datasets

We adopt ISIC-2018 (Codella et al., 2019) and ISIC-2016

(Gutman et al., 2016) & PH2 (Mendonça et al., 2013)

dermoscopy datasets to evaluate our model.
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TABLE 1 Parameter setting during the training stage.

Vertical flip Horizontal flip Random rotation Gauss noise

0.5

Input size Epochs Optimizer Learning Rate(lr) Learning rate policy

512 × 512 200 Adam W 1e − 4 CosineAnnealingLR

TABLE 2 Skin lesion segmentation performance of our SL-HarDNet and several popular segmentation methods on the ISIC-2016&PH2 test set and
ISIC2018 dataset.

Datasets Methods DIC JAC ACC SEN SPE

ISIC-2016&PH2 FCN 0.889 0.811 0.932 0.967 0.922

U-Net++ 0.910 0.844 0.937 0.925 0.960

CA-Net 0.894 0.819 0.936 0.938 0.947

TransFuse 0.914 0.850 0.945 0.972 0.919

TransUNet 0.917 0.853 0.942 0.968 0.915

SL-HarDNet (Ours) 0.927 0.871 0.953 0.975 0.926

ISIC-2018 U-Net 0.848 0.769 0.945 0.881 0.964

DeepLabv3 0.894 0.825 0.962 0.910 0.967

CE-Net 0.906 0.839 0.969 0.916 0.976

UCTransNet 0.910 0.849 0.971 0.920 0.976

BAT 0.911 0.848 0.971 0.925 0.974

SL-HarDNet (Ours) 0.915 0.853 0.972 0.926 0.980

The bold value is to emphasize that this value is optimal.

FIGURE 6
Segmentation resultswith contours on the ISIC-2016&PH2 test set. Ground truth and our segmentation results are shownby green andblue contours.
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1) ISIC-2018 Dataset: The 2018 International Skin Imaging

Collaboration (ISIC) skin lesion segmentation challenge

dataset contains 2594 images and corresponding labels. Image

resolution changes between 720 × 540 and 6708 × 4439. Since

the public test set has not yet been published, this paper applies

5-fold cross validation for fair comparison.

2) ISIC-2016&PH2 Dataset: The samples from two different centers

are included to evaluate the accuracy and generalization ability of

skin lesion segmentation. The ISIC-2016 contains 900 training

samples and 379 validation samples, and PH2 dataset contains

200 samples. In this paper, we adopt the ISIC-2016 dataset for

model training and validation, and PH2 dataset for model testing.

4.2 Implementation details

This study is implemented on the Pytorch and applies two

Nvidia Geforce 3090 cards to complete model training. Taking

into account the difference in the size of the dermoscopy image

and the improvement of computational efficiency, the image is

adjusted to 512 × 512. Meanwhile, in order to expand the

training dataset and increase the diversity of data, we carry

out data enhancement, including vertical flip, horizontal flip,

random rotation and gauss noise. During the training, the mini-

batch size is set to 8, the initial learning rate is 1e − 4, learning

rate decay policy is CosineAnnealingLR (Loshchilov and Hutter,

2016), and the optimizer adopts Adam W (Loshchilov and

Hutter, 2017). More details about parameter setting in

training are shown in Table 1. We train the model for

200 epochs and save the optimal segmentation performance

during validation as model parameters.

4.3 Evaluation metrics

We adopt five performance indicators to evaluate the

obtained segmentation results, including the Jaccard index

(JAC), Dice coefficient (DIC), accuracy (ACC), sensitivity

(SEN) and specificity (SPE). JAC is used to measure the

similarity between data samples, which is proportional to the

segmentation accuracy. The larger the JAC value, the higher the

segmentation accuracy. DIC is usually used to evaluate the

segmentation accuracy of the network. The higher the DIC

value, the smaller the difference between the data, and the

more accurate the segmentation. ACC, SEN and SPE are

common statistical measures for evaluating binary

classification performance.

FIGURE 7
Segmentation results with contours on the ISIC-2018 dataset. Ground truth and our segmentation results are shown by green and blue
contours.

TABLE 3 Quantitative results for ablation studies on the ISIC-2016&PH2
test set.

CFM SCAM FAM DIC JAC ACC SEN SPE

0.910 0.842 0.942 0.979 0.919

✓ 0.916 0.851 0.949 0.981 0.924

✓ ✓ 0.919 0.855 0.948 0.978 0.926

✓ ✓ ✓ 0.927 0.871 0.953 0.975 0.926

The bold value is to emphasize that this value is optimal.
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4.4 Comparison with state-of-the-arts

4.4.1 Qualitative analysis
Our models are compared with several popular skin lesion

segmentation models. On the ISIC-2016&PH2 dataset,

competition methods include FCN (Long et al., 2015),

UNet++ (Zhou et al., 2018), CA-Net (Gu et al., 2020),

TransFuse (Zhang et al., 2021) and TransUNet (Chen et al.,

2021). On the ISIC-2018 dataset, U-Net (Ronneberger et al.,

2015), DeepLabv3 (Chen et al., 2017), CE-Net (Gu et al., 2019),

UCTransNet (Wang et al., 2022) and BAT (Wang et al., 2021) are

compared with our model respectively. All models are

experimented in the same environment as our proposed model.

As shown in Table 2, it can be found that our model achieves

the best segmentation performance for the ISIC-2016&PH2 test

set. In particular, compared with the second best TransUNet, our

model increases DIC and JAC by 1% and 1.8%, which proves that

our model has excellent segmentation performance. Moreover,

considering that the PH2 dataset is used as a test set and has not

been introduced into the training of the model, SL-HarDNet still

achieves excellent performance, indicating that our model has

strong generalization ability.

At the same time, our model is further extensively evaluated

through ISIC-2018 dataset. We perform 5-fold cross-validation

on the ISIC-2018 dataset, and Table 2 shows the test results at 1-

fold. In Table 2, our model achieves optimal values on all

evaluation indexes, indicating that our model maintains stable

segmentation performance under different datasets, and has

excellent robustness. The segmentation results are closer to

Ground Truth.

4.4.2 Visualized comparison
From the ISIC-2016&PH2 test set and the ISIC-2018 1-fold

validation dataset, we specially select some dermoscopy lesions

with different sizes, irregular shapes, hair occlusion and blurred

lesion boundaries, and predict and visualize these representative

images, as shown in Figure 6 and Figure 7. The first three

columns in Figure 6 and the first four columns in Figure 7

are small-scale lesions, and the last four columns in Figure 6 and

the last three in Figure 7 are large-scale lesions. It can be found

that SL-HarDNet has a stable and best prediction for lesions with

different sizes and shapes. In Figure 7, the second and third

columns of skin lesions have low contrast to the surrounding

skin, and SL-HarDNet obtains the best boundary segmentation.

For the last two columns in Figure 6 and the last column in

Figure 7 with hair occlusion, our model is still optimal for

FIGURE 8
Visualization of the ablation study results.

TABLE 4 Different loss functions in SL-HarDNet using the ISIC-2018 skin
lesion segmentation.

Methods DIC JAC ACC SEN SPE

IOU 0.909 0.844 0.970 0.932 0.979

BCE 0.908 0.845 0.971 0.910 0.980

Dice 0.912 0.849 0.971 0.919 0.977

Dice + BCE 0.913 0.850 0.970 0.921 0.975

IOU + BCE 0.915 0.853 0.972 0.926 0.980

The bold value is to emphasize that this value is optimal.
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boundary segmentation. The results show that our model can

effectively solve the difficulty of skin lesion segmentation and

obtain the optimal segmentation results.

4.4.3 Ablation study
We conduct extensive ablation experiments on the ISIC-

2016&PH2 test set, and describe in detail the effectiveness of each

component in the overall model. Training, testing, and

hyperparameter settings are consistent with those mentioned

in 4.2. The results are shown in Table 3.

We adopt HarDNet as baseline and remove components

from the complete SL-HarDNet. At the same time, the variant is

compared with the standard version to evaluate the effectiveness

of the module. The standard version is denoted as “SL-HarDNet

(HarDNet + CFM + SCAM + FAM)”, where “CFM”, “SCAM”,

and “FAM” represent the use of components CFM, SCAM, and

FAM, respectively. When baseline is selected, the values of DIC

and JAC are only 91% and 84.2%. After introducing CFM into

the baseline, DIC, JAC and ACC are significantly rose, especially

JAC is increased by 0.9%. Then, after the introduction of SCAM,

DIC is increased to 91.9% and JAC is rose to 85.5%, which are

further improved. After adding FAM, other evaluation indexes

except SEN are reached the optimal value, especially compared

with the baseline, JAC has a 2.9% improvement. It can be found

that with HarDNet as the baseline, FCM, SCAM, and FAM

components are added respectively, which shows obvious

FIGURE 9
Box plots of the typical metrics. i.e., JAC (A) and DIC (B), for different loss function in SL-HarDNet. Themean value of eachmetric is represented
by a green dashed line.

FIGURE 10
Visualize segmentation results obtained by different loss functions. Uncertain and challenging boundaries are marked through red boxes.
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performance improvement on the test set and verifies the

effectiveness of each component. Then, we visualize the

results of ablation studies, as shown in Figure 8. It can be

observed that baseline HarDNet lacks sufficient ability to

obtain fine boundaries. With the introduction of

corresponding components, false detection is effectively

avoided, more attention is paid to the lesion area, and the

boundary is refined. Finally, the SL-HarDNet (HarDNet +

CFM + SCAM + FAM) achieves the best segmentation

performance.

4.5 Combine loss function

On the ISIC-2018 dataset, we evaluate the contribution of the

combined loss functions and compare them with IOU, BCE and

Dice loss functions. As shown in Table 4, IOU is closest to BCE

on DIC and JAC values. Dice is superior to IOU and BCE, which

significantly improves the segmentation performance. Using the

combination of Dice and BCE loss functions, the results of DIC

and JAC are further improved, but the SPE values of Dice and

BCE are reduced. When a combination of IOU and BCE is used,

the values of DIC, JAC and ACC are further increased,

significantly better than other functions. In addition, we use

box plots to analyze the performance of each loss function. As

shown in Figure 9, we find that the first quartile (Q1), median

(Q2), last quartile (Q3), minimum, maximum and mean values of

Dice are larger than BCE and Dice. The combination of Dice and

BCE has been improved in Q2, Q3 and maximum, but Q1,

minimum and mean values are significantly less than Dice.

For the combination of IOU and BCE, all values are

improved, significantly better than other loss functions, which

proves that the combination function is effective. From the above

comparison, the combination of IOU and BCE achieves better

segmentation performance when dealing with class imbalance

problems. Furthermore, in order to verify the effectiveness of

IOU and BCE combination loss, we visualize it on the ISIC-

2016&PH2 test set. As shown in Figure 10, the combination loss

of IOU and BCE obtains the best segmentation result. Especially

for the region with uncertain boundary, the boundary

segmentation is clearer and more complete, and the

segmentation result is closer to Ground Truth.

5 Conclusion

In this paper, we propose a novel skin lesion segmentation

model termed SL-HarDNet, which adopts HarDNet as the

backbone network and can extract strong semantic features.

At the same time, we introduce three components with

excellent performance, namely Cascaded Fusion Module

(CFM), Spatial Channel Attention Module (SCAM) and

Feature Aggregation Module (FAM), which effectively collect

high-level semantic and low-level spatial information, and mine

local and global semantic clues, and finally fuse them to obtain

output. We conduct comparative experiments on the datasets of

two skin lesions to effectively verify the segmentation accuracy

and generalization ability of SL-HarDNet. The results show that

our model is consistently superior to all contrasting models.

Although our model is based on specific applications of skin

lesion segmentation, in future work, we can apply our

components to other medical image segmentation tasks based

on deep learning to improve segmentation performance.
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