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Abstract   Insulating polymers (commodity plastics in particular) are a major category of polymeric materials widely used in our daily life, but

they  exhibit  abysmal  electrical  conductivity.  Instead,  conjugated  polymers  are  gaining  tremendous  interest  due  to  their  excellent  electrical

properties and versatile applications in organic electronics. In this perspective, we provide a concise account of the added value in organic solar

cells, as brought by the combined use of conjugated and insulating polymers. The challenging tasks and prospective directions are given to the

potential  benefits  of  employing  insulating  polymer  additives,  which  spans  from  common  commodity  plastics  to  high-temperature  resistant

resins and thermoplastic elastomers.  Particularly,  the inert polymers can improve many important properties such as mechanical and thermal

robustness but not sacrifice optoelectronic performance.
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INTRODUCTION

As  fossil  fuels—coal,  oil,  and  natural  gas  are  getting  less,
energy and environmental problems are becoming more and
more  serious,  and  the  development  of  new  clean  energy  is
always  a  hot  topic  in  the  research  field.  Solar  cells  have
attracted  much  attention  because  they  can  convert  solar
energy into electricity. Traditional inorganic solar cells such as
silicon  are  limited  by  the  preparation  complexity  of
monocrystalline  silicon  and  high  cost.  Organic  solar  cells,
using  organic  and  polymer  conjugated  materials  as  active
layers,[1−7] can be prepared by simple methods such as solution
processing,  which  has  great  potential  for  commercial
application  in  modern  greenhouses,  buildings,  internet  of
things and so on.[1,8−15] At  present,  the top efficiency of  single-
junction organic solar cells has reached over 19%[16−18] and the
best  operation  lifetime  of  a  polymer:small  molecule  blend  has
surpassed 30 years.[19] However,  the present high-performance
organic  solar  cells  also  face  some  issues  such  as  poor
strechability,[20−22] costly  photovoltaic  materials,[23] and
insufficient operation lifetimes[24−27] under heat or light.

Insulating  polymers  exhibit  intrinsically  low  charge  carrier
concentration  and  poor  electrical  conductivity,  which  are
considered detrimental to the optoelectronic performance of

organic  electronics.  Many  of  the  pioneering  reports[28−30] of
blending  insulating  polymers  with  polymer  semiconductors
in  organic  thin-film  transistors  and  organic  photovoltaics
(OPVs),  however,  appears  to  challenge  this  thought.
Strikingly,  the  addition  of  up  to  ~50  wt%  electronically  inert
components to the organic semiconducting system does not
significantly  degrade  the  OPV  performance.[28] Importantly,
the  combination  of  insulating  polymers  with  organic  photo-
voltaic materials can significantly reduce the production cost
of OPVs, as these insulating polymers are much cheaper than
organic  photovoltaic  materials.  In  recent  years,  a  growing
number of studies devoted efforts to this direction and have
achieved  new  successes.  The  library  of  insulating  compo-
nents for OPVs has been enriched over recent years. It is pos-
sible  to  gain  a  deeper  understanding  of  the  structure-pro-
perty  relationships  in  these  multi-component  blend  systems
from  the  viewpoint  of  polymer  physics.  Though  a  few
reviews[28,31] summarized  the  applications  of  commodity
plastics in OPVs, a more general perspective covering all kinds
of  insulating  polymers  (beyond  commodity  plastics)  has  not
been  established  yet.  Moreover,  the  prior  reviews  concen-
trated  heavily  on  the  polymer:fullerene  systems,  while  the
most  recent  nonfullerene systems (for  instance,  PM6:Y-series
acceptors)  were  not  much  covered.  Thus,  a  timely  guide  on
selecting the third component with abysmal electrical proper-
ties for the high-performance OPVs is particularly needed.

To  fill  the  above  knowledge  gap,  we  provide  an  updated
status  and  critically  assess  the  recent  advances  of  high-per-
formance  OPVs  enabled  by  incorporating  insulating  poly-
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mers over a span of ten years. These insulating polymers span
from  common  commodity  plastics  widely  used  in  our  daily
life  to  high-temperature  resistant  resins  and  thermoplastic
elastomers  in  many  industries  like  aerospace  and  automo-
biles.  Attratively,  they  can  improve  many  important  proper-
ties  of  OPVs  such  as  flexibility  and  thermal  stability  but  not
sacrifice their optoelectronic performance. According to their
different  functions,  insulating  polymers  can  be  mainly  di-
vided  into  three  categories,  namely,  commodity  plastics,
high-temperature  resistant  resins  and  elastomers.  Commo-
dity plastics can be produced in large quantities and at a very
low  price,  but  they  usually  do  not  have  special  functions.
High-temperature  resistant  resins  mainly  refer  to  polyesters
containing  aromatic  rings  and  ether  bonds  in  the  backbone
which  have  good  high-temperature  resistance,  are  expected
to improve the thermal  stability  of  solar  cells.  Elastomers are
polymers  with  viscoelasticity  and  with  weak  intermolecular
forces, having good mechanical properties, low elastic modu-
lus and high elongation at break, which can be used as aids to
improve  the  flexibility  of  the  devices.  The  representative  ex-
amples of these electronically inert polymers are summarized
in Fig. 1.

COMMODITY PLASTICS

Nowadays,  commodity  plastics  such  as  polyethylene  (PE),
polypropylene  (PP),  and  polystyrene  (PS)  are  cheap  and  have
permeated  almost  everywhere  in  our  daily  life.  Using
commodity  plastics  in  OPVs  can  greatly  cut  the  cost  of  the
device which is beneficial to commercial applications. The most
notable example is the organic semiconductor:insulator ternary
blend  constructed  by  Ferenczi et  al.  in  2011.[29] They  applied  a
common  insulator  of  high-density  PE  to  the  benchmark
P3HT:PC61BM. The introduction of high-density PE up to 50 wt%

did  not  significantly  degrade  the  electronic  properties  of  the
P3HT:PC61BM  system,  but  greatly  cut  down  on  the  amount  of
P3HT  and  PC61BM  materials  used  in  this  ternary  system.  As  a
result,  the  cost  of  device  processing  can  be  reduced  without
sacrificing  the  device  performance.  They  unveiled  the
occurrence  of  this  phenomenon,  which  was  ascribed  to  the
forming of percolating network with lower fractions of organic
semiconductors.

In  addition to the cost  of  the active layer,  film thickness  is
also  an  important  factor  affecting  the  printing  scalability  of
OPVs and commercial application.[32] Generally, the thickness
of the active layer in top-notch OPVs is about 100 nm, which
is  not  compatible  with  large-area  printing  processes.  Never-
theless, larger thickness often results in severe charge recom-
bination  and  reduced  efficiency.  Thus,  the  development  of
high-performance  OPVs  with  thick  active  layers  is  an  inevi-
table  requirement  for  industrailization.  To  address  this  issue,
Hao et  al.[33] found  that  the  addition  of  PP  can  increase  the
device efficiency for much thick active layers (PBDB-T:PC71BM
and PTB7:PC71BM). What’s more, the ternary blends with thick
films  are  beneficial  to  achieve  better  photocurrent  and  re-
quire  less  rigorous  printing  setups  than  thin  films.  PBDB-
T:PC71BM:PP  (2  wt%)  ternary  system  obtained  the  highest
power conversion efficiency (PCE) of 7.46% at a film thickness
of 280 nm. PTB7:PC71BM:PP (4 wt%) devices exhibited higher
PCE  at  the  same  thickness  than  those  without  PP  (Fig.  2a).
Grazing-incidence wide-angle X-ray scattering (GIWAXS) data
showed  that  the  addition  of  PP  improved  the  crystallinity  of
PBDB-T with high crystallinity in the blend film, which is bene-
ficial  to  charge  transport  (Fig.  2b).  As  shown  in Fig.  2(c),  the
presence of PP can be analogous to fixing PBDB-T molecules
to  form  more  ordered  crystalline  structure,  and  the  self-ag-
gregation of PC71BM would also be reduced. However,  it  has
little  reverse  effect  on  PTB7  with  low  crystallinity,  which  can

PAC

Commodity Plastics High-Temperature Resistant Resins Elastomers

PE PP PS
PAEs

SEBS

PDPS

PMMA PEO PVDF SBS

O O

O

O O

O O O
R Si Si Si Si

HO H H
H a b c a b c d

F

F

n

n n n

n n
n n

n m

Insulating Polymers
(plastics, elastomers, etc.)

Donor Acceptor

Cast a thin �lm 
(~hundreds nm) 

Active layer

Organic solar cells

R R R
S

S

S

S S SS
S

n

F

F

O O

R

S
S

S
S

R
R

R
R

CN
CNO

ONC
NC

F
F

F
F

Fig. 1    Schematic of OPVs featuring insulating polymers and chemical structures of insulating polymers used in the OPV community.
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explain  the  different  trends  of  efficiency  change  caused  by
the  film  thickness  between  the  two  systems.  As  to  non-
fullerene  OPVs,  Hao et  al.[34] further  incorporated  PP  to
PM6:Y6 system and observed the same phenomenon of thick-
ness-insensitive PCE in the thickness range of 150-300 nm by
reducing  the  trap  state  density  (Fig.  2d).  The  comparison  of
images in Fig. 2(e) shows that, for 280 nm blend films, the ad-
dition  of  PP  can  improve  the  proportion  of  face-on  crystalli-
nites. They concluded that PP can repel small Y6 molecules to
enhance their intermolecular interaction and packing order as
illustrated  in Fig.  2(f),  which  are  more  favorable  for  charge
transport. Consequently, the short-circuit current density (Jsc)
of  the  device  was  significantly  improved  in  different  thick-
nesses with 1 wt% PP.

There are many other common plastics such as poly(ethyl-
ene  glycol)  (PEG),[35] polymethylmethacrylate  (PMMA),[36−38]

and poly(vinylidene difluoride) (PVDF)[39] that can be used as
third insulation additives for  OPVs.  For  example,  Yan et  al.[40]

introduced  PS  and  a  series  of  widely  accessible  nonconju-
gated  insulting  polymers  as  additives  into  the  fullerene-free
active  layer  PBDB-T:ITIC.  Incorporating  5  wt%  PS  into  the
photovoltaic  layer  greatly  improved  the  device  efficiency  by
16%. Other polymer insulators also led to efficiency enhance-
ments at optimum amounts. The significant performance im-
provements can be attributed to the enhanced crystallinity of
PBDB-T,  carrier  mobility,  and  lifetime  induced  by  the  insula-
tors. They found that the glass transition temperature (Tg) and
side  chain  size  are  two  crucial  factors  to  optimize  the  opto-
electronic properties of  OPVs.  Insulating polymer can exhibit
positive  effect  on  device  performance  when  the  annealing
temperature higher than Tg. Larger side chain size helps fill in
the  interspace  and  optimize  the  molecular  packing  to  lower
traps and defects in active layers. Different from the above ex-
amples,  Yang et  al.[41,42] introduced  the  block  copolymers  of
PS  and  other  polymers  into  polymer:non-fullerene  systems,

and also achieved the regulation of the morphology and the
efficiency of the correspondng OPV devices.

In a word, the incorporation of commodity plastics can not
only greatly reduce the cost of the active layer materials, but
also adjust  the morphology of  the film and improve its  crys-
tallization,  which  is  conducive  to  realize  comparable  charge
transport  and PCE in a  thicker  film.  However,  the addition of
various commodity plastics  may have different  effects  on di-
verse blends, as many factors, such as Tg and molecular struc-
ture, can affect the role of commodity plastics as additives.

HIGH-TEMPERATURE RESISTANT RESINS

The  commercialization  of  organic  solar  cells  requires  excellent
environmental  stability,  except  for  high  efficiency.  High-
temperature  resistant  resins  are  proved  to  be  effective  for  the
stable operation of organic thin-film transistors.[43] They possess
high Tg, which are expected to boost device stability under heat
stress.[44] Recently, our group reported the introduction of such
insulating polymer, for instance, polyacenaphthylene (PAC) with
high Tg over  200 °C and excellent  transparency to PTB7-Th:EH-
IDTBR  system,[45] and  a  high  lifetime  of  up  to  800  h  were
realized.  It  was  found  that  PAC  and  EH-IDTBR  have  great
compatibility  that  can  form  networks  to  largely  maintain  EH-
IDTBR  morphology  as  the  temperature  increases,  which  does
not result in a negative impact on charge transport (Fig. 3a). The
average  efficiency  of  the  blend  with  10  wt%  PAC  was  slightly
lower than that of the reference system without additive, while
the value was much more stable after long-time annealing up to
>800 h, as illustrated in Fig.  3(b).  This high lifetime was among
the best values reported for OPVs operating at 150 °C.

Microscopic  images  of  the  ternary  blend  incorporating  10
wt%  PAC  system  were  similar  to  that  of  the  binary  system
even upon annealing at 150 °C for 24 h. The endothermic and
exothermic peaks gradually weakened and even disappeared
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in  differential  scanning  calorimetric  curves  with  the  increase
of  the  PAC  content.  Further  time-depenent  GIWAXS  charac-
terizations  also  demonstrated  that  the  presence  of  PAC  can
suppress the degree of crystallization of EH-IDTBR. Moreover,
PAC  also  enabled  the  stability  improvement  of  the  star
donor:acceptor system PM6:Y6 under heating.

Alternatively, Bao and Yang et al.[22] proposed the use of an
insulating polymer  matrix  based on high-temperature  resist-
ant resins.  As shown in Fig. 1,  poly(aryl ether) (PAE) resin has
an  aromatic  backbone  similar  to  some  organic  photovoltaic
materials  but  without  any  side  chains,  resulting  in  excellent
tolerance  to  heat.  Incorporating  PAEF  with  high Tg not  only
enhanced the thermal stability of the PM6:Y6 system but also
improved  the  flexibility  to  4.4-fold  elongation  at  a  break  of
~25%. In this ternary mixed system, tunneling effect was ob-
served which can suppress the recombination of free carriers
and  not  damage  the  charge  transfer  largely  to  the  main-
tained initial  efficiency.  In  addition,  adding PAEF as  support-
ing  matrices  can  effectively  restrain  the  movement  of  the
chain of  donor  and acceptor  to  maintain  the microstructure,
leading to the improvement of flexibility.

On the basis of this study, they further investigated a series
of  high-temperature resistant  PAEs,[46] giving an in-depth in-
sight into how charges tunnel  through the resins.  OPVs with
five  different Tg of  PAEs  all  exhibited  tunneling  effects  com-
pared to PMMA, which sufficiently blocked charge transfer in
the  active  layers.  To  further  understand  this  phenomenon,
they fabricated the layer-by-layer OPVs based on an architec-
ture of PM6/PAEs/Y6, and found that the PAEs between PM6
and  Y6  layers  with  thin  thickness  can  facilitate  charge  trans-

port and inhibit charge recombination. However, if the thick-
ness increases to a certain extent, it will have the opposite ef-
fect (Fig. 3c). Furthermore, they added the PAEs to the PM6 or
Y6  domains  with  similar  architecture  and  found  the  same
phenomenon.  Thus,  PAEs  mixed  matrices  must  keep  thin  to
act as tunneling effect in blends.

This  section  mainly  introduced  polyester  containing  aro-
matic  ring  and  ether  bond  in  the  backbone  that  have  high
temperature  resistance  and  can  withstand  continuous
thermal  treatment  at  high  temperature.  As  an  additive,  the
resin  can  greatly  improve  the  thermal  stability  of  the  OPVs.
Moreover, the introduction of these well-known high tempe-
rature  resistance  resins  can  form  tunneling  effect  in  the
blends to promote charge transfer and inhibit charge recom-
bination.  Therefore,  these  insulating  components  can  im-
prove the thermal stability of the OPV device without sacrifi-
cing  its  performance,  and  simultaneously  maintain  high  PCE
after many hours of heating at 150 °C.

ELASTOMERS

An  elastomer  is  a  polymer  with  viscoelasticity  and  with  weak
intermolecular forces, generally low Young's modulus and high
fracture  strain  compared  with  other  polymers.  Thermoplastic
elastomers are a diverse family of rubber-like materials that can
be  readily  processed  like  thermoplastic  polymers.  Considering
that  the  present  high-performance  conjugated  polymers  and
small  molecule  acceptors  are  very  brittle,[47−50] thermoplastic
elastomers may serve as elastic aids to OPVs. Very recently, our
group put forward a facile strategy to introduce a commercially
available  thermoplastic  elastomer  (i.e.,  polystyrene-block-
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poly(ethylene-ran-butylene)-block-polystyrene,  SEBS)  into
multiple  cases  of  high-efficiency  polymer:small  molecule
blends.[51] Based  on  GIWAXS  characterizations  (Fig.  4a)  and
mechanical  tests  (Fig.  4b),  SEBS  is  amorphous  in  thin  film  and
shows  a  high  fracture  strain  of  >1000%.  As  shown  in Fig.  4(c),
the  device  efficiency  of  PM6:N3  first  increased  and  then
declined with the increase of SEBS weight fraction, but the crack
onset  strain  (COS)  increased  all  along.  As  observed  in
microscopic  images,  there  are  larger  aggregations  and  higher
film roughness when the amount of SEBS is increased (Fig. 4d).
The  incorporation  of  10  wt%  of  SEBS  resulted  in  higher
efficiency  and  stretchability  in  a  benchmark  polymer:
nonfullerene  small  molecule  blend  PM6:N3,  because  SEBS
possesses  great  stretchability.  They  further  tested  the  utility  of
SEBS  in  other  two  well-known  blend  systems(PBQx-TF:eC9-2Cl
and  PBDB-T:ITIC)  and  confirmed  the  broad  applicability.  The
crack  onset  strain  is  greatly  improved  in  both  systems.
Interestingly,  the  elastic  modulus  of  the  ternary  system
(polymer:small  molecule:SEBS)  can  be  nicely  predicted  with  a

classcial polymer composite model, i.e., Coran-Patel model (Fig.
4e).

Shortly  afterwards,  the  Anthopoulos′ group  also  applied
SEBS  to  two  fullerene-based  systems  (P3HT:PC61BM  and
PCE10:PC71BM)  and  a  non-fullerene  system  (PM6:IT-4F),  re-
spectively.[52] Atomic force microscopy (AFM) test shows that
the  addition  of  SEBS  can  promote  the  phase  separation.  As
shown in Fig.  4(f),  the elastic modulus decreases to less than
40%  of  the  initial  value  when  the  amount  of  SEBS  is  below
25% for  all  blends  and the PCE of  the  device  remains  within
70%  of  the  original  value  (Fig.  4g).  In  2022,  Li et  al.[53] intro-
duced  another  elastomer  styrene-butadiene-styrene  (SBS)  to
a  high-efficiency  polymer:nonfullerene small  molecule  blend
PM6:BTP-BO-4Cl.  Due  to  the  poor  miscibility  of  the  additive
and  the  photovoltaic  system,  PS  and  SBS  form  self-aggrega-
tion, resulting in defects. As a result, charge recombination is
enhanced  and  electron  transport  is  hindered  with  the  addi-
tion of  SBS.  PS shows better  compatibility  with PM6:BTP-BO-
4Cl compared to SBS and they speculated that PS has a larger
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(Reproduced with permission from Refs. [51, 52]; Copyright (2021, 2022) Wiley, The Royal Society of Chemistry).

Wang, J. J. and Ye, L. / Chinese J. Polym. Sci. 2022, 40, 861–869 865

https://doi.org/10.1007/s10118-022-2762-9

https://doi.org/10.1007/s10118-022-2762-9


proportion  of  hard  part  to  achieve  better  miscibility  with  π-
conjugated polymers, which provides ideas for selecting suit-
able insulating polymer additives.

All-polymer  systems  can  also  benefit  from  this  facile  elas-
tomer strategy. Silicone rubber is also an elastomer. The back-
bone  is  composed  of  silicon  atoms  and  oxygen  atoms  alter-
nately (―Si―O―Si―) and highly saturated. Si―O bond has
good  flexibility,  and  the  intramolecular  and  intermolecular
forces  are  weak,  which  rends  it  low  elastic  modulus  and
elongation  at  break.  For  instance,  Yang et  al.[47] grafted  PS
onto poly(dimethylsiloxane) (PDMS) and synthesized poly(di-
methylsiloxane-co-methyl  phenethylsiloxane)  (PDPS)  with
high viscosity as an additive into the TQ-F:N2200 all-polymer
system.  AFM  and  transmission  electron  microscope  (TEM)
showed that the blends with 10 wt% PDPS had the appropri-
ate  phase  separation  to  form  the  polymer  networks,  which
not  only  enhance the mechanical  strength but  also  facilitate
the  charge  transport.  With  the  increase  of  PDPS  content  in
the  blends,  the  geminate  recombination  loss  increased  and
the Jsc value decreased gradually, while the value of the open-
circuit  voltage (Voc)  is  barely changed. It  is  worth noting that
the addition of 10% PDPS provided a decent fill factor (FF) of
~66%,  while  the Jsc just  decreased  slightly,  compared  with
that of 0% PDPS. A high PCE of 6.87% was generated and 90%
of  the  initial  PCE  was  even  maintained  after  100  bending
cycles with a bending radius of 3 mm.

Double-cable  conjugated  polymers  can  be  used  as  an  ac-
tive  layer  alone  and  are  of  particular  interest  to  OPV  resear-
chers.[54−56] Recently, Li et al.[57] respectively incorporated SBS
and  PDMS  to  the  double-cable  conjugated  polymer  JP02,  in
which  conjugated  backbones  as  electron  donor  and  naph-
thalene  diimides  as  electron  acceptor  to  investigate  the  im-
pact  of  miscibility  on  the  optoelectronic  performance  of  the
OPVs.  PS was used for  comparison.  The addition of  the insu-
lating polymers  reduced the charge transport  ability  but  im-
proved  the  flexibility  of  JP02  which  has  a  relatively  planar
backbone. They concluded that miscibility is the key factor to
balance  flexibility  and  photovoltaic  performance.  GIWAXS
results illustrated that JP02:PS and JP02:SBS blends exhibited
similar  mixed  orientation  in  films  to  neat  JP02.  However,
JP02:PS has smaller interaction parameters (χ), indicating that
JP02:PS  has  the  best  miscibility  to  avoid  large  self-aggrega-
tion  and  would  form  interpenetrating  networks,  which  are
beneficial to charge transport. The PCE (6.71%) of single com-
ponent  OPVs  based  on  JP02:PS  was  just  slightly  lower  than
7.51% of the control cell based on JP02. Noteworthy, the COS
was  increased  to  4.69%,  which  is  approximately  two-fold  of
neat JP02 with 2.48%.

The facile  elastomer strategy suggests that the elastomers
with  good  mechanical  properties  can  be  simply  added  into
the blend system to endow devices with good flexibility, pro-
posing a new simple strategy to ameliorate the performance
and  the  processing  of  the  OPVs.  When  the  elastomer  is  ad-
ded into the blend system as an additive, the surface morpho-
logy of the film is greatly affected. Good compatibility and ap-
propriate amount are two very important prerequisite.

CONCLUSIONS AND PERSPECTIVES

To  summarize,  we  highlighted  the  synchronous  use  of  cost-

effective  insulating  polymers  and  conjugated  polymers  in
constructing  high-performance  OPVs,  in  particular  those
featuring nonfullerene small molecule acceptors. The efficiency,
stability, and stretchability can be in part or fully optimized. The
surface energies of the individual components need to be well
manipulated  to  achieve  the  desired  phase  structure  and
function.

Moving  forward,  the  molecular  weight  dependence  of
these  insulating  polymers  needs  to  be  systematically  exa-
mined.  As  the  insulating  polymers  reported  in  the  literature
might  not  be  the  best  match  with  organic  photovoltaic  ma-
terials,  many  new  kinds  of  emerging  resins  and  elastomeric
materials can be further explored. We anticipate that the con-
tinually  developed  polymer:small  molecule  systems  and  the
emerging  all-polymer  solar  cells[58−61] based  on  polymerized
small  molecular  acceptors[62−64] and  other  polymer
acceptors[65,66] can  also  benefit  greatly  from  this  smart  ap-
proach.  The  idea  of  incorporating  insulating  polymers  could
be  further  expounded  to  the  organic  photodetectors[67,68]

and  organic/quantum  dot  hybrid  electronics.[69,70] However,
the  mutual  interactions[71] between  different  components
have not yet been fully understood. Thus, more efforts should
be concentrated on this  problem to  precisely  control  the  in-
sulator  distribution in  the  functional  blends  and in  situ stud-
ies  of  molecular  aggregation and phase separation in  conju-
gated polymer/insulator blends for functioal electronics.[72,73]
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