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Abstract: Studying how to use the coupling characteristics of net aberration fields induced by
different perturbation parameters to realize the wave aberration compensation correction of perturbed
telescopes is of great significance for the development of active optics. Based on nodal aberration
theory, this paper studies the wave aberration compensation correction method of an unobscured
off-axis three-mirror telescope. Specifically, first of all, it theoretically analyzes the coupling effects
and compensation relationships of net aberration fields induced by different perturbation parameters
of the telescope. Furthermore, it establishes wave aberration correction models with the secondary
mirror as the compensator and the third mirror as the compensator for the telescope, respectively. In
the end, it verifies the two compensation correction models by simulations. The results show that
the tolerance of the secondary mirror compensation correction mode (SMCM) to the perturbation
parameter threshold is significantly better than that of the third mirror compensation correction
model (TMCM). When the introduced perturbation parameter threshold is small, the correction
accuracy of the two models for the wave aberrations is equivalent, and both reach the order of 10−3λ

(RMS, λ = 632.8 nm). When the perturbation parameter threshold is increased, the correction accuracy
of SMCM can still be maintained at the order of 10−3λ but the correction accuracy of TMCM would
decrease by an order of magnitude.

Keywords: astronomical telescope; active optics; nodal aberration theory; aberration compensation;
misalignments; figure errors

1. Introduction

Owning to the aperture obscuration caused by secondary mirrors (SM) and their
supporting structure, on-axis reflective astronomical telescopes [1,2] not only lose light
energy but also reduce the modulation transfer function (MTF) value at medium and low
frequencies, so that the observation performances of optical systems are limited. On the
basis of the on-axis reflective structure, the optical path structure with a field of view (FOV)
off-axis, pupil off-axis, or a combination of the two is proposed to solve this problem [3–5].
Off-axis astronomical telescopes have the characteristics that their stray light is easy to
control, their scattering property is low, and filled the pupil for wavefront sensing; these
characteristics cause them to have a small and sharp diffraction pattern and high spatial
resolution [6]. Compared with on-axis astronomical telescopes, when off-axis astronomical
telescopes are in orbit, due to their special optical path structure, the slight perturbation
caused by factors such as gravity, thermal stress, and mechanical oscillation will affect their
imaging quality more easily. This brings challenges for active optical systems to complete
wavefront correction in orbit.

The correction process of telescope perturbation parameters (rigid-body alignment er-
rors and figure errors) is an important link in the active optical system [7,8]. The correction
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results of perturbation parameters can be divided into restoration correction and compen-
sation correction, according to different ideas of wave aberration correction. Restoration
correction is obtained according to the idea of restoring the telescope to the nominal design,
which requires the active optical system to be able to adjust all optical elements to achieve
wave aberration correction. Compensation correction is obtained according to the idea
of mutual compensation of optical elements, which requires the active optical system to
adjust some of the optical elements to achieve wave aberration correction. However, in
practical engineering, if the idea of restoration correction is followed, it is necessary to equip
all optical components with corresponding multi-degree-of-freedom platforms (position
and orientation adjustment) and force actuators (mirror surface figure adjustment). This
approach is relatively expensive for space-based optical systems that have strict weight and
volume constraints, both in construction cost and the structural stability of maintaining
the system [9]. In addition, the correction efficiency (real-time) of an active optical system
would be influenced by too many adjustment devices [10]. Therefore, studying the corre-
sponding compensation correction methods is necessary to reduce the complexity of the
active optical system and improve the correction efficiency.

For pupil-offset off-axis telescopes with designed tilts and decenters, discussed in
this paper [11,12], the influence of different optical elements on wave aberrations has
a strong coupling effect, which makes aberration compensation of this type of optical
system easier to achieve. To correct the wave aberration of telescopes, the corresponding
adjustment values (perturbation parameters) of optical elements should be determined.
At present, the methods for solving these adjustment values mainly consist of traditional
numerical methods and analytical methods based on nodal aberration theory (NAT). The
numerical methods [13–16] do not consider field dependence of net aberrations induced
by perturbation parameters when constructing a solution model for a specific optical
system, and cannot analyze the coupling effect between different aberration fields from
an analytical point of view, which makes it difficult to reasonably use this coupling effect
to construct an optimal compensation correction model. The analytical methods based
on NAT [17–23] are devoted to analyzing aberration field characteristics of perturbed
optical systems, and deriving the complex functional relationship between perturbation
parameters and aberration fields, which is of great significance for analyzing coupling
between different perturbation parameters and constructing the corresponding optimal
compensation correction model. In recent years, research on using NAT to quantitatively
calculate perturbation parameters, to realize wave aberration correction of optical systems,
has been reported. For instance, based on the idea of system restoration, Sebag et al. [24].
formulated the corresponding perturbation parameters solution scheme for the Large
Synoptic Survey Telescope (LSST) by using NAT. In addition, Gu et al. [25,26] quantitatively
calculated the perturbation parameters of both an on-axis three-mirror and an unobscured
off-axis two-mirror telescope by using NAT. In addition, Schiesser et al. [27] designed
and aligned an all-spherical unobscured four-mirror image relay for an ultra-broadband
subpetawatt laser by using NAT. Moreover, Zhang [28] and Wang [11] studied the solution
method of perturbation parameters for unobscured off-axis three-mirror telescopes based
on NAT. The main purpose of these works was to restore perturbed optical systems to
nominal design to the maximum extent by analytical solution.

As for analytical compensation correction of perturbed optical systems, some existing
research mainly focused on the compensation methods of a single optical element. For
example, Ju et al. [29] discussed how to use SM lateral misalignments to compensate for
primary mirror (PM) astigmatic figure errors in an off-axis two-mirror telescope. Zhang
et al. [30] and Wen et al. [31] studied how to use SM lateral misalignments to compensate
for third-mirror (TM) lateral misalignments and for PM astigmatic figure errors in off-axis
three-mirror telescopes, respectively. In addition, the compensation correction methods
proposed in these studies did not consider the axial misalignments [32], PM coma figure
errors, and PM spherical aberration figure errors. In order to compensate and correct
telescopes with multiple perturbed optical elements at the same time, considering the axial
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misalignments, PM coma figure errors, and PM spherical aberration figure errors, some
new work is conducted in this paper. The paper mainly includes the following aspects:
Section 2 describes the optical design parameters of an unobscured off-axis three-mirror
telescope and theoretically analyzes the coupling effects and compensation relationships of
net aberration fields induced by different perturbation parameters of the system. Section 3
describes the construction process of the compensation correction models for the off-axis
three-mirror telescope. In Section 4, the simulation verification experiments are carried out.
We conclude in Section 5.

2. Principle
2.1. Optical Path Structure and Design Parameters of an Unobscured Off-Axis Three-Mirror Telescope

Taking an unobscured off-axis three-mirror anastigmatic (TMA) telescope, with an
aperture stop (located on the PM) of 0.5 m and an F-number of 12 used as an example, this
paper aims to study its compensation correction method. The telescope is designed for the
verification of key technology of space-based optical surveys. This type of off-axis optical
system can be obtained by shifting the entrance pupil of an on-axis parent system with
the same design parameters (e.g., radius, conic constants) and larger aperture. The optical
path structure of the off-axis TMA telescope and the pupil transformation relationship
with its on-axis parent system are both shown in Figure 1. In addition, the SM and TM of
the optical system introduce tilts and decenters in the design process for the purpose of
maximizing the balance of off-axis FOV aberrations and increasing the effective FOV of the
telescope. The specific optical design parameters are given in Appendix A. The effective
FOV of the telescope is 1◦ × 1◦ (the central FOV is offset by −0.5◦ in the y direction), and
the average RMS wavefront error of full FOV is only 0.0417 λ (λ = 632.8 nm). The spectral
range of the telescope is 255–1000 nm. One of its operating bands at 632.8 nm is selected
as the evaluation unit of image quality in this paper. Evidently, it is a diffraction-limited
system with competent imaging performance.
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Figure 1. The optical path structure of the off-axis TMA telescope and pupil transformation relation-
ship with its on-axis parent system.

2.2. Coupling Effect and Compensation Relationship of Net Aberration Fields Induced by Different
Perturbation Parameters

According to NAT, when an optical system is perturbed, new aberrations will not be
produced but the field dependence of aberrations (such as the linear dependence of the
field, and the quadratic dependence of the field) will be changed [23,33]. However, different
perturbation parameters often induce the same type of net aberration fields, that is, there
are coupling effects among different perturbation parameters. They either compensate and
offset each other to make the image quality better or accumulate and superimpose each
other to make the image quality worse. This section aims to determine the compensation
correction strategy for the off-axis TMA telescope described in the previous section by
analyzing the coupling effect and compensation relationship between the net aberration
fields induced by perturbation parameters. The wave aberration function of perturbed
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pupil-offset off-axis optical systems with designed tilts and decenters can be expressed
as [11]

Wo f f−axis = ∑
j
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where k = 2p + m, l = 2n + m, j is the optical surface number; Wklm represents the
aberration coefficient for a particular aberration type; ∆Wklm represents the net change

of Wklm induced by axial misalignments of optical surfaces;
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vector of the pupil center of the off-axis system relative its on-axis parent system; r and R
denote the pupil radius of the off-axis system and its on-axis parent system, respectively.

In our previous work [11], based on Equation (1), we derived the functions of third-
order net astigmatic fringe Zernike coefficients (C5/C6), third-order net coma fringe Zernike
coefficients (C7/C8), and third-order net spherical aberration fringe Zernike coefficient (C9)
induced by axial and lateral misalignments. To facilitate the description of the proposed
compensation correction principle, their field dependence is further clearly expressed in
this section, as shown in the following equations.
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C9 =

[
M4

6
∆W040

]
C

. (4)

In Equations (2)–(4), the subscripts C, L, and Q represent the field-constant depen-
dence, field-linear dependence, and field-quadratic dependence of different aberration
types, respectively; the subscripts x and y denote the x-component and y-components of
a vector, respectively, Wklm = ∑

j
(Wklm)j, ∆Wklm = ∑

j

(
∆Wklm

)
j, and M = r

R . In addition,

because the aperture of PM in astronomical telescopes is usually relatively large, it is prone
to figure errors due to factors such as gravity, support stress, and thermal stress. In this
paper, third-order astigmatic figure errors, third-order coma figure errors, and third-order
spherical aberration figure errors of PM are specifically considered. When PM is used as
the stop surface, the beams emitted from different FOVs entering the optical system have
the same footprint on PM and completely cover PM. At that time, it can be considered that
the aberration contribution of PM to different FOVs is the same, that is, the figure errors
of PM will only introduce field-constant aberrations [22,26]. In consequence, we can add
the field-constant aberrations induced by PM figure errors to the field-constant aberrations
induced by misalignments. According to the relationship between optical path difference
and figure error, Equations (2)–(4) can be modified as

C5 = C5,C + (n′ − n)(FIGURE)C5,C + C5,L + C5,Q

C6 = C6,C + (n′ − n)(FIGURE)C6,C + C6,L + C6,Q

}
, (5)

C7 = C7,C + (n′ − n)(FIGURE)C7,C + C7,L

C8 = C8,C + (n′ − n)(FIGURE)C8,C + C8,L

}
, (6)

C9 = C9,C +
(
n′ − n

)
(FIGURE)C9,C, (7)

where n′ and n, respectively, represent the refractive index of the space where the incident
light and the reflected light are located (it could be noted that n = 1, n′ = −1 for odd
reflections and n = −1, n′ = 1 for even reflections); (FIGURE)C5,C and (FIGURE)C6,C repre-
sent field-constant astigmatism induced by PM astigmatic figure errors; (FIGURE)C7,C and
(FIGURE)C8,C represent field-constant coma induced by PM coma figure errors; (FIGURE)C9,C
represents the field-constant spherical aberration induced by PM spherical aberration
figure errors.

In principle, only the same type of aberration fields can compensate for each other [33].
It can be seen from Equations (5)–(7) that misalignments and PM figure errors of the off-
axis optical systems simultaneously introduce field-constant astigmatism, field-constant
coma, and field-constant spherical aberration; this indicates that there are coupling effects
between the aberration fields induced by misalignments and aberration fields induced
by PM figure errors in the off-axis optical systems, and the possibility of mutual compen-
sation exists. However, aberration compensation in the true sense includes not only the
aberration fields induced by the target perturbation parameters (referring to PM figure
errors) that need to be compensated for but also other types of aberration fields induced
by compensation perturbation parameters (referring to misalignments), which need to be
compensated at the same time. For instance, while using the field-constant aberrations
induced by misalignments to compensate for the field-constant aberrations induced by
PM figure errors, it can be seen from Equations (5)–(7) that misalignments will inevitably
introduce additional field-linear aberrations and field-quadratic aberrations; these two
types of aberration fields cannot be ignored in wide-field off-axis telescopes. To solve this
problem, compensation perturbation parameters can be decomposed into different compo-
nents, so that the different components can compensate for each other, thereby hopefully
compensating for the extra-induced aberration fields. In fact, it is possible and relatively
easy to decompose compensation perturbation parameters into different compensators
according to different mirrors, that is, compensation between misalignments of different
mirrors. This is mainly because misalignments of different mirrors will introduce the same
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type of aberration fields, and no additional type of aberration fields will be introduced after
compensation is done between different mirrors. Taking the off-axis three-mirror telescope
as an example, when PM is used as the coordinate reference, the compensation parameters
can be decomposed into two components, one of which is the misalignments of SM and the
other is the misalignments of TM. The misalignments of SM will introduce field-constant
aberrations, field-linear aberrations, and field-quadratic aberrations, and so does the mis-
alignments of TM. Among them, field-constant aberrations induced by the misalignments
of SM and TM can be used to compensate for field-constant aberrations induced by PM
figure errors, while the additional field-linear aberrations and field-quadratic aberrations
induced by the misalignments of SM and TM can compensate each other. Based on this
analysis, we propose the following mechanism of aberration field compensation for an
off-axis three-mirror telescope.

Taking SM to compensate misalignments of TM and figure errors of PM as an example,
we can adjust SM to introduce appropriate field-constant aberrations (astigmatism, coma,
spherical aberration), field-linear aberrations (astigmatism, coma) and field-quadratic
aberrations (astigmatism). Among them, the introduced field-constant aberrations can
be used to compensate for the field-constant aberrations caused by TM misalignments of
PM figure errors. Meanwhile, the introduced field-linear aberrations and field-quadratic
aberrations can be used to compensate for the field-linear aberrations and field-quadratic
aberrations caused by TM misalignments.

In the following two sections, based on the above aberration field compensation
mechanism, the optical compensation of misaligned TM and deformed PM by adjusting
SM will be discussed; moreover, the optical compensation of misaligned SM and deformed
PM by adjusting TM will also be discussed.

3. Compensation Correction Models for the Off-Axis TMA Telescope

To start with, we take SM as the compensator as an example to construct its corre-
sponding compensation correction model, and the target objects to be compensated are TM
misalignments and PM figure errors. Here, PM is chosen as the coordinate reference. To
this end, Equations (5)–(7) can be modified as

CSM
5,C + CSM

5,L + CSM
5,Q = C5 − CTM

5,C − CTM
5,L − CTM

5,Q − (n′ − n)(FIGURE)C5,C

CSM
6,C + CSM

6,L + CSM
6,Q = C6 − CTM

6,C − CTM
6,L − CTM

6,Q − (n′ − n)(FIGURE)C6,C

}
, (8)

CSM
7,C + CSM

7,L = C7 − CTM
7,C − CTM

7,L − (n′ − n)(FIGURE)C7,C

CSM
8,C + CSM

8,L = C8 − CTM
8,C − CTM

8,L − (n′ − n)(FIGURE)C8,C

}
, (9)

CSM
9,C = C9 − CTM

9,C −
(
n′ − n

)
(FIGURE)C9,C. (10)

In Equations (8) and (9), the terms containing superscripts SM and TM, respectively,
represent the contribution of SM misalignments and TM misalignments to the aberration
fields, and their numerical values can be solved by Equations (2)–(4). After the system
being corrected, the net aberration fields induced by perturbation parameters is zero, so
C5∼9 = 0 in Equations (8) and (9). We aim to calculate the compensation adjustments of
SM when the misalignments of TM and figure errors of PM are known. To achieve that,
Equations (8)–(10) need to satisfy the aberration field compensation mechanism described
in the previous section, as shown in the following equations:

CSM
5,C = −

[
CTM

5,C + (n′ − n)(FIGURE)C5,C

]
CSM

5,L = −CTM
5,L

CSM
5,Q = −CTM

5,Q

CSM
6,C = −

[
CTM

6,C + (n′ − n)(FIGURE)C6,C

]
CSM

6,L = −CTM
6,L

CSM
6,Q = −CTM

6,Q


, (11)
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CSM
7,C = −

[
CTM

7,C + (n′ − n)(FIGURE)C7,C

]
CSM

7,L = −CTM
7,L

CSM
8,C = −

[
CTM

8,C + (n′ − n)(FIGURE)C8,C

]
CSM

8,L = −CTM
8,L

, (12)

CSM
9,C = −

[
CTM

9,C +
(
n′ − n

)
(FIGURE)C9,C

]
. (13)

Based on Equations (11)–(13), some aberration coefficients of the q-th FOV points
related to the compensation adjustments of SM can be obtained (hereinafter referred to as
correlation coefficients), as shown in the following equations:

CSM
5,C = f (q)1 (xSM, ySM, θSM, φSM, zSM), (14)

CSM
5,L = f (q)2 (xSM, ySM, θSM, φSM, zSM), (15)

CSM
5,Q = f (q)3 (xSM, ySM, θSM, φSM, zSM), (16)

CSM
6,C = f (q)4 (xSM, ySM, θSM, φSM, zSM), (17)

CSM
6,L = f (q)5 (xSM, ySM, θSM, φSM, zSM), (18)

CSM
6,Q = f (q)6 (xSM, ySM, θSM, φSM, zSM), (19)

CSM
7,C = f (q)7 (xSM, ySM, θSM, φSM, zSM), (20)

CSM
7,L = f (q)8 (xSM, ySM, θSM, φSM, zSM), (21)

CSM
8,C = f (q)9 (xSM, ySM, θSM, φSM, zSM), (22)

CSM
8,L = f (q)10 (xSM, ySM, θSM, φSM, zSM), (23)

CSM
9,C = f (q)11 (xSM, ySM, θSM, φSM, zSM). (24)

In Equations (14)–(24), xSM and ySM represent the linear compensation adjustments
of SM in the x- and y-axis, respectively; θSM and φSM represent the angular compensation
adjustments of SM about the x- and y-axis, respectively; zSM represent the axial compensa-
tion adjustments of SM in z-axis; f (q)i (i = 1, 2 · · · , 11) represents the functional relationship
between the correlation coefficients and the compensation adjustments of SM, which is
a complex nonlinear equation system. Considering that the values of misalignments in
active optics are very small (Generally, linear misalignments are on the level of microm-
eters, and angular misalignments are on the level of arcseconds [30]). Therefore, using
the power series expansion and selecting only the first-order term of the power series,
f (q)i (i = 1, 2 · · · , 11) can be approximately replaced by a linear system of equations:

f (q)i = f (q)0i +
∂ f (q)i

∂(xSM)
xSM +

∂ f (q)i
∂(ySM)

ySM +
∂ f (q)i

∂(θSM)
θSM +

∂ f (q)i
∂(φSM)

φSM +
∂ f (q)i

∂(zSM)
zSM, (25)

where f (q)0i is a constant related to the structural parameters and Gaussian parameters of

the system; ∂ f (q)i
∂()

represents the first-order partial derivative of the correlation coefficients
to the adjustments of each dimension of SM. By selecting some FOV points that can cover
the full FOV, the overdetermined linear equation system formed by Equation (25) can be
used to calculate the compensation adjustments of SM. It should be noted that f (q)0i and
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∂ f (q)i
∂()

are obtained by fitting based on the principle of multiple linear regression [11]. The
specific fitting method is as follows:

1. Making each dimension of SM randomly generate N groups of perturbations accord-
ing to a standard uniform distribution within a certain range. Meanwhile, bringing
the generated N groups of perturbations into Equations (2)–(4), so that N groups of
sample data can be obtained:(

xSM,t, ySM,t, θSM,t, φSM,t, zSM,t; f (q)i,t

)
= t = 1, 2, · · · , N (26)

2. Integrating this batch of sample data into the structural form shown in Equation (25),
so the following equations could be obtained:

f (q)i,1 = f0i +
∂ f (q)i

∂(xSM)
xSM,1 +

∂ f (q)i
∂(ySM)

ySM,1 +
∂ f (q)i

∂(θSM)
θSM,1 +

∂ f (q)i
∂(φSM)

φSM,1 +
∂ f (q)i

∂(zSM)
zSM,1

f (q)i,2 = f0i +
∂ f (q)i

∂(xSM)
xSM,2 +

∂ f (q)i
∂(ySM)

ySM,2 +
∂ f (q)i

∂(θSM)
θSM,2 +

∂ f (q)i
∂(φSM)

φSM,2 +
∂ f (q)i

∂(zSM)
zSM,2

...

f (q)i,N = f0i +
∂ f (q)i

∂(xSM)
xSM,N +

∂ f (q)i
∂(ySM)

ySM,N +
∂ f (q)i

∂(θSM)
θSM,N +

∂ f (q)i
∂(φSM)

φSM,N +
∂ f (q)i

∂(zSM)
zSM,N


. (27)

Equation (27) is the mathematical model of the constructed multiple linear regression.

3. Writing Equation (27) in the form of a matrix so as to get

α = βχ, (28)

where
α =

(
f (q)i,1 f (q)i,2 · · · f (q)i,N

)T
, (29)

β =


1 xSM,1 ySM,1 θSM,1 φSM,1 zSM,1
1 xSM,2 ySM,2 θSM,2 φSM,2 zSM,2
...

...
...

...
...

...
1 xSM,N ySM,N θSM,N φSM,N zSM,N

, (30)

χ =

(
f (q)0i

∂ f (q)i
∂(xSM)

∂ f (q)i
∂(ySM)

∂ f (q)i
∂(θSM)

∂ f (q)i
∂(φSM)

∂ f (q)i
∂(zSM)

)T
. (31)

Finally, using the least squares method to estimate χ, we can get

χ =
(

βT β
)−1

βTα, (32)

where the superscript T represents the matrix transpose operation; the superscript −1
represents the matrix inversion operation.

In the above, a correction model for compensating TM misalignments and PM figure
errors is constructed by using SM as the compensator. When using TM as the compensator
to construct a correction model for compensating SM misalignments and PM figure errors,
it is only necessary to modify Equations (8)–(10) as the following equations:

CTM
5,C + CTM

5,L + CTM
5,Q = C5 − CSM

5,C − CSM
5,L − CSM

5,Q − (n′ − n)(FIGURE)C5,C

CTM
6,C + CTM

6,L + CTM
6,Q = C6 − CSM

6,C − CSM
6,L − CSM

6,Q − (n′ − n)(FIGURE)C6,C

}
, (33)

CTM
7,C + CTM

7,L = C7 − CSM
7,C − CSM

7,L − (n′ − n)(FIGURE)C7,C

CTM
8,C + CTM

8,L = C8 − CSM
8,C − CSM

8,L − (n′ − n)(FIGURE)C8,C

}
, (34)

CTM
9,C = C9 − CSM

9,C −
(
n′ − n

)
(FIGURE)C9,C. (35)
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The calculation method of the compensation adjustments required for the TM is similar
to the calculation method of the SM, and will not be repeated here.

4. Verification of Compensation Correction Models
4.1. A Specific Compensation Correction Case

In this section, the off-axis TMA telescope described in Section 2 will be used to verify
the constructed compensation correction models. The specific steps of the simulation
experiment using the SM as the compensator to compensate for TM misalignments and
PM figure errors are as follows:

1. In the optical design model of the off-axis three-mirror telescope (ZEMAX software
is used for modeling in this paper), the perturbation parameters (TM misalignments
and PM figure errors) shown in Table 1 are introduced randomly.

2. The dynamic data linking function of MATLAB and ZEMAX is used to calculate the
full-field distributions of the Fringe Zernike astigmatism(C5/6), the Fringe Zernike
coma(C7/8), and the Fringe Zernike spherical aberration(C9) before and after pertur-
bation of the telescope, they are calculated with 12 × 12 equally spaced FOV points in
1◦ × 1◦ and shown in Figure 2a,b, Figure 3a,b, Figure 4a,b, respectively.

3. By using the SM compensation correction model constructed in Section 3, the linear
compensation adjustments, angle compensation adjustments, and axial compensation
adjustments required by SM can be calculated, as shown in Table 2.

4. The calculated compensation adjustments are introduced into the perturbed tele-
scope and the full-field distributions of the Fringe Zernike astigmatism(C5/6), the
Fringe Zernike coma(C7/8), and the Fringe Zernike spherical aberration(C9) after
compensation adjustment of the telescope are calculated, as shown in Figures 2c, 3c
and 4c.

5. In addition, in order to evaluate the compensation correction accuracy more clearly,
Figure 5a–c show the full-field distributions of C5/6, C7/8, and C9 differences before
perturbation and after compensation adjustment of the telescope, respectively.

Table 1. The introduced figure errors of PM and misalignments of TM.

(FIGURE)C5,C (FIGURE)C6,C (FIGURE)C7,C (FIGURE)C8,C (FIGURE)C9,C

−0.07λ 0.08λ 0.04λ 0.06λ 0.08λ

xTM yTM θTM φTM zSM

−0.03 mm 0.07 mm 0.006◦ −0.004◦ 0.05 mm

Table 2. The calculated compensation adjustments for SM.

xSM ySM θTM φTM zSM

0.1019 mm 0.0485 mm −0.0012◦ 0.0019◦ 0.0233 mm
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(a) before perturbation, (b) after perturbation, and (c) after compensation correction.

Appl. Sci. 2022, 12, 10716 13 of 20 
 

 
Figure 4. Distribution of Fringe Zernike spherical aberration (C9) in the full-field of the off-axis TMA 
telescope: (a) before perturbation, (b) after perturbation, and (c) after compensation correction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Distribution of Fringe Zernike spherical aberration (C9) in the full-field of the off-axis TMA
telescope: (a) before perturbation, (b) after perturbation, and (c) after compensation correction.

Appl. Sci. 2022, 12, 10716 14 of 20 
 

 

 

 

 

 

 
Figure 5. The full-field distribution of (a) C5/6, (b) C7/8, and (c) C9 differences before perturbation 
and after compensation adjustment of the off-axis TMA telescope. 

By comparing Figure 2a and Figure 2b, Figure 3a and Figure 3b, and Figure 4a and 
Figure 4b, respectively, it can be seen that the full-field distribution of astigmatism, coma, 
and spherical aberration of the system changes obviously compared with the design state 
(it should be noted that the numerical scale of each sub-figure is different) after introduc-
ing the misalignments and figure errors. Specifically, the full-field distribution of astig-
matism and coma changes not only in amplitude but also in shape; however, the change 
of the full-field distribution of spherical aberration is only reflected in the amplitude, and 
the shape of its full-field distribution does not change. As analyzed in Section 2, the main 
reason for this phenomenon is that the misalignments and PM astigmatic figure errors 
will introduce field-constant astigmatism, field-linear astigmatism, and field-quadratic 
astigmatism, and the coupling of these three types of aberration fields will change the 
shape of the full-field distribution of astigmatism. Likewise, the coupling effect of field-
constant coma and field-linear coma induced by misalignments and PM coma figure er-
rors causes the shape of the full-field distribution of the coma to change. However, the 
misalignments and PM spherical aberration figure errors only introduce field-constant 
spherical aberration, which makes the shape of the full field-of-view distribution of the 
spherical aberration unchanged. 

By comparing Figure 2a and Figure 2c, Figure 3a and Figure 3c, and Figure 4a and 
Figure 4c, respectively, it can be seen that the full-field distribution of astigmatism, coma, 
and spherical aberration of the telescope after compensation correction are close to the 
design state in terms of both amplitude and shape. It can be seen from Figure 5 that the 
correction accuracy of astigmatism and coma of the telescope in the full field-of-view 
reached the order of 310− , and the correction accuracy of spherical aberration reached the 
order of 410− . This indicates that the aberrations induced by TM misalignments and the 
PM figure errors are well compensated and corrected by adjusting SM. 

When verifying the TM compensation correction model (TMCM), we introduced the 
same values of misalignments and figure shape errors in SM and PM of the telescope as 
shown in Table 1, and the results of compensation correction are similar to those of the 
SM compensation correction model (SMCM). Since this section verifies the correctness of 
different compensation correction models only under a specific perturbation state, this 
leads to the inability to comprehensively and objectively compare the correction capabil-
ities of these two compensation correction models. Therefore, we will compare these two 
compensation correction models by Monte Carlo analyses in the next section. 
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By comparing Figure 2a and Figure 2b, Figure 3a and Figure 3b, and Figure 4a and
Figure 4b, respectively, it can be seen that the full-field distribution of astigmatism, coma,
and spherical aberration of the system changes obviously compared with the design state (it
should be noted that the numerical scale of each sub-figure is different) after introducing the
misalignments and figure errors. Specifically, the full-field distribution of astigmatism and
coma changes not only in amplitude but also in shape; however, the change of the full-field
distribution of spherical aberration is only reflected in the amplitude, and the shape of
its full-field distribution does not change. As analyzed in Section 2, the main reason for
this phenomenon is that the misalignments and PM astigmatic figure errors will introduce
field-constant astigmatism, field-linear astigmatism, and field-quadratic astigmatism, and
the coupling of these three types of aberration fields will change the shape of the full-field
distribution of astigmatism. Likewise, the coupling effect of field-constant coma and field-
linear coma induced by misalignments and PM coma figure errors causes the shape of the
full-field distribution of the coma to change. However, the misalignments and PM spherical
aberration figure errors only introduce field-constant spherical aberration, which makes
the shape of the full field-of-view distribution of the spherical aberration unchanged.

By comparing Figure 2a and Figure 2c, Figure 3a and Figure 3c, and Figure 4a and
Figure 4c, respectively, it can be seen that the full-field distribution of astigmatism, coma,
and spherical aberration of the telescope after compensation correction are close to the
design state in terms of both amplitude and shape. It can be seen from Figure 5 that
the correction accuracy of astigmatism and coma of the telescope in the full field-of-view
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reached the order of 10−3, and the correction accuracy of spherical aberration reached the
order of 10−4. This indicates that the aberrations induced by TM misalignments and the
PM figure errors are well compensated and corrected by adjusting SM.

When verifying the TM compensation correction model (TMCM), we introduced the
same values of misalignments and figure shape errors in SM and PM of the telescope as
shown in Table 1, and the results of compensation correction are similar to those of the
SM compensation correction model (SMCM). Since this section verifies the correctness of
different compensation correction models only under a specific perturbation state, this leads
to the inability to comprehensively and objectively compare the correction capabilities
of these two compensation correction models. Therefore, we will compare these two
compensation correction models by Monte Carlo analyses in the next section.

4.2. Monte Carlo Analyses and Comparison for Different Compensation Correction Models

In this section, Monte Carlo analyses will be conducted on SMCM and TMCM within
the perturbation ranges of the misalignments, figure errors are shown in Table 3. The
simulation analyses are divided into four cases, including the first case, the second case, the
third case, which has increases in turn in terms of the perturbation ranges, and the fourth
case, which has the same perturbation range as the first but contains a 5% measurement
error. For the Monte Carlo analyses of SMCM, within the given perturbation ranges, 500
sets of perturbation parameters (TM misalignments and PM figure errors) were randomly
generated according to a standard uniform distribution, representing 500 random perturba-
tion systems to be corrected by SMCM. For the Monte Carlo analyses of TMCM, also within
the given perturbation ranges, 500 sets of perturbation parameters (SM misalignments and
PM figure errors) were randomly generated according to the standard uniform distribution,
representing 500 random perturbation systems to be corrected by TMCM. Here we choose
the average RMS wavefront error (WFE) of the full FOV to evaluate the compensation
correction effects of these two models (ignoring the piston, tilt, and defocus terms). After
simulation, the compensation correction results of the SMCM and TMCM are shown in
Figures 6 and 7, respectively. Furthermore, Table 4 shows the root-mean-square deviation
of the average RMS WFE under different cases, and the definition of the root-mean-square
deviation is shown in the following equation:

RMSD =

√
1
n

n

∑
i=1

[(
WFEAverage

)correction
i −

(
WFEAverage

)design
i

]2
(36)

where n is the number of perturbed samples (n = 500);
(
WFEAverage)correction

i is the average

RMS WFE after compensation correction for perturbation sample i;
(
WFEAverage)design

i is
the average RMS WFE in nominal design (0.0417 λ). Equation (36) can be used to evaluate
the correction accuracy of the compensation correction models.

Table 3. Perturbation ranges of misalignments and figure errors.

Linear Misalignment (mm) Angular Misalignment (deg) (FIGURE)C(λ)

Case 1 [−0.1 0.1] [−0.01 0.01] [−0.05 0.05]

Case 2 [−0.2 0.2] [−0.02 0.02] [−0.1 0.1]

Case 3 [−0.3 0.3] [−0.03 0.03] [−0.15 0.15]

Case 4 [−0.1 0.1] [−0.01 0.01] [−0.05 0.05]

With 5% measurement error
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Table 4. The RMSD of SMCM and TMCM in different cases.

Case 1 Case 2 Case 3 Case 4

SMCM 9.672× 10−4 2.221× 10−3 3.466× 10−3 1.741× 10−3

TMCM 7.400× 10−3 1.979× 10−2 4.024× 10−2 1.558× 10−2

As can be seen from Figure 6, SMCM can obtain convergent correction results for
different cases. Anyway, it can be seen from Table 4 that the correction accuracy of the
SMCM is basically maintained at the order of 10−3 under different cases. In addition, as can
be seen from Figure 7—although TMCM also achieved convergent correction results—by
comparing Figures 6 and 7, it can be found that the correction performance of TMCM is
significantly worse than that of SMCM. This is also verified by the correction accuracy
results of TMCM in Table 4, especially in Case 2, Case 3, and Case 4, the correction accuracy
of TMCM decreases by one order of magnitude compared with that of SMCM. The reason
for this phenomenon may be that in the off-axis TMA telescope, the wave aberrations of
the system are more sensitive to the SM misalignments than the TM misalignments (it
can be seen by comparing the numerical scale of the ordinate in Figures 6 and 7), that is
to say, under the same perturbation range, the contribution of SM misalignments to the
system aberrations is greater than the TM misalignments. This means that the SM is more
capable of compensating for wave aberrations, that is, the perturbation errors (the TM
misalignments and the PM figure errors) that can be tolerated is greater.

5. Conclusions

Based on NAT, this paper studies the wave aberration compensation correction method
of an unobscured off-axis TMA astronomical telescope. Firstly, third-order net astigmatism
(C5/C6), third-order net coma (C7/C8), and third-order net spherical aberration (C9)
induced by different perturbation parameters (misalignments and PM figure errors) in
the unobscured off-axis TMA telescope are expressed analytically according to different
field dependence. Furthermore, from the perspective of the compensation mechanism of
aberration fields, the reason and feasibility that SM misalignments, TM misalignments,
and PM figure errors can compensate each other are analyzed, and the aberration field
compensation relationship shown in Equations (11)–(13) is constructed. It is worth noting
that the misalignments include axial and lateral misalignments, and PM figure errors
consist of third-order astigmatic figure errors, third-order coma figure errors, and third-
order spherical aberration figure errors. On this basis, two aberration compensation
correction models are constructed in this paper, one is to compensate for TM misalignments
and PM figure errors simultaneously by adjusting SM, and the other is to compensate
for SM misalignments and PM figure errors simultaneously by adjusting TM. Finally, the
correctness of the two correction models was verified through a specific case simulation
and Monte Carlo analyses. Our work not only contributes to a deep understanding of the
coupling effect and compensation relationship of net aberration fields induced by different
perturbation parameters but also provides a reference for an active optical compensation
strategy of off-axis reflective telescopes.

Author Contributions: Conceptualization, J.W. and X.H.; methodology, J. W. and X.H.; software, X. H.
and X.Z.; validation, J.W., X.H. and M.M.; formal analysis, J.W.; data curation, X.Z. and Z.C.; writing—
original draft preparation, J.W.; writing—review and editing, X.H. and X.Z.; funding acquisition,
X.H. and Z.C; supervision, X.H.; project administration, X.Z.; visualization, J.W.; resources, Z.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 61875190 and 12003033), and the Natural Science Foundation of Jilin Province (Grant No.
20200201008JC).

Institutional Review Board Statement: Not applicable.



Appl. Sci. 2022, 12, 10716 14 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Data underlying the results presented in this paper are not publicly
available at this time but may be obtained from the authors upon reasonable request.

Acknowledgments: The authors would like to express appreciation to the editors and reviewers for
their valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The optical structure parameters of the off-axis TMA telescope are shown in Table A1.
The aberration coefficients for the spherical base curve and the aspheric departure from the
spherical base curve of each surface are shown in Table A2, which are directly obtained
from the optical simulation software.

Table A1. Optical structure parameters of the off-axis TMA telescope.

Surface Radius (mm) Thickness
(mm)

Conic
Constant

Decenter X
(mm)

Decenter Y
(mm)

Tilt About X
(deg)

Tilt About Y
(deg)

Object Infinity Infinity 0 – – – –

Stop Infinity 0 0 – −460 – –

PM −3600.41 −1551.77 −0.921 0 0 0 0

SM −910.903 1558.771 −4.828 0 −8.241 1 0

TM −1219.413 −1533.43 −0.292 0 −24.122 1.752 0

Image Infinity 0 – – – – –

Table A2. Aberration coefficients for each individual surface (λ = 632.8 nm).

Surface W222 W131 W040

PM(stop)
Base sphere 10.4480 −37.1738 33.0656

Aspheric departure 0 0 −30.4534

SM
Base sphere −5.7486 11.0041 −5.2660

Aspheric departure 11.0197 12.5543 3.5756

TM
Base sphere 12.5832 2.7675 0.1521

Aspheric departure −28.0608 10.9087 −1.0601
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