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Abstract: Siamese network-based trackers satisfy the balance between performance and efficiency
for visual tracking. However, they do not have enough robustness to handle the challenges of target
occlusion and similar objects. In order to improve the robustness of the tracking algorithm, this paper
proposes visual tracking with FPN based on Transformer and response map enhancement. In this
paper, a feature pyramid structure based on Transformer is designed to encode robust target-specific
appearance features, as well as the response map enhanced module to improve the tracker’s ability to
distinguish object and background. Extensive experiments and ablation experiments are conducted
on many challenging benchmarks such as UAV123, GOT-10K, LaSOT and OTB100. These results show
that the tracking algorithm we proposed in this paper can effectively improve the tracking robustness
against the challenges of target occlusion and similar object, and thus improve the precision rate and
success rate of the tracking algorithm.

Keywords: visual object tracking; transformer; response map enhancement; Siamese network

1. Introduction

As an important computer vision task, object tracking is widely applied in the fields
of UAV application [1], industrial production and manufacturing [2], automatic driving [3]
and so on. Specifically, object tracking refers to the process of estimating the visual target
trajectory when only an initial state of the target (in a video frame) is available. However,
state-of-the-art visual trackers are still unable to handle serious real-world challenges such
as severe variations in target appearance, similar object and occlusion. These challenges
can reduce the accuracy and robustness of tracking, which may lead to tracking failures.

The mainstream models can be classified into correlation filter-based trackers and
Siamese-based trackers. The main purpose of the correlation filter is to estimate the optimal
image filter, which can maximize its response to the region of the target when the search
area is entered; however, the accuracy and robustness of the tracking task still needs to
be improved. Recently, due to the superior feature extraction ability of deep learning, the
accuracy of object tracking has made great progress and Siamese network-based trackers
have attracted extensive attention in the field of visual tracking.

Siamese-based networks are composed of two independent feature extraction net-
works. Given the pairs of target and search regions, these two-stream networks compute
the same function to produce a similarity map. Then, the search region with the highest
similarity to the target template is found by matching the response map to complete the
tracking. In early Siamese-based trackers such as SINT [4], the Siamese network was trained
to search for the candidate region most similar to the initial object appearance. The recent
SiamFC [5] introduces the cross-correlation layer as a fusion tensor and highly improves
the accuracy. However, SiamFC lacks a bounding box regression and is required to carry
out a multi-scale test, which makes it less elegant. SiamRPN [6] adds the region proposal
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extraction sub-network to the Siamese network. By training both the classification branch
and regression branch for visual tracking, SiamRPN avoids the time-consuming step of
extracting multi-scale feature maps for the object scale invariance. However, the feature
expression ability of SiamRPN is still limited due to the feature extraction ability of the
shallow network. SiamRPN++ [7] introduced a deeper network, such as ResNet-50, by
improving the sampling method [8], but it also finds it difficult to deal with similar object
and target occlusion using only the deep feature. In deep learning, low-level features can
better represent spatial information such as color, texture and edge and corner points, which
is conducive to target location, the determination of boundary box size and aspect ratio,
while high-level features pay more attention to semantic information such as categories
and attributes, which is more conducive to foreground and background differentiation.
The effective fusion of high-level and low-level features can improve tracking accuracy
and robustness.

In view of the above, this paper proposes a target tracking algorithm with a response
map enhancement module based on the Transformer feature pyramid (TR-Siam). As shown
in Figure 1, the framework mainly consists of four simple sub-networks: feature extraction
sub-network, feature fusion sub-network, similarity match sub-network and prediction
head. The Transformer-based feature pyramid (TFN) is a key feature of the feature fusion
sub-network. TFN can efficiently fuse shallow and deep features to achieve feature en-
hancement. In addition, the response map enhancement module is introduced into the
similarity match sub-network to improve the algorithm’s foreground and background
recognition abilities. Experiments show that the proposed TR-Siam has better robustness in
dealing with complex scenes such as similar object, occlusion and viewpoint change. Our
main contributions are:

1. We propose an object tracking algorithm based on Transformer feature pyramid
and add a response map enhancement module. Compared with other trackers, the
accuracy and robustness of our tracker are greatly improved when dealing with the
challenges of similar object and occlusion.

2. Feature pyramid based on Transformer proposed in this paper establishes global
information interaction, efficiently integrates feature information of low and high
layers, and effectively improves tracking performance; the proposed response map
enhancement module makes full use of the context information of the response map,
which improves the ability of the model to distinguish the object from the background,
and effectively improve the ability to deal with the interference of similar targets and
other complex environments.

3. Extensive experiments and ablation experiments are conducted on many challenge
benchmarks, these prove our proposed method has competitive performance, not
only in accuracy but also in speed. When different backbone networks are selected,
the frame rate of the algorithm in this paper can reach 45-130FPS, meeting the
real-time requirements.
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limited performance in processing objects with significant appearance change due to their 
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in accuracy and efficiency. In this paper, the anchor-free framework is adopted and Si-
amCAR is used as our baseline algorithm. 

The feature fusion network is a common strategy in visual tracking [18]. To solve the 
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fuses the HOG features and deep features of the image [21]. These feature fusion methods, 
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iation and small object tracking. However, limited by the receptive field, the above fusion 
method simply fuses the information of each location with the surroundings, and fails to 
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Transformer can overcome receptive field limitations and focus on global infor-
mation [22]. Inspired by Transformer, HIFT combines Transformer with the feature fusion 
network [23], which directly fuses different levels of the feature map, but the Transformer 
encoder and decoder structure is still complex and limited by its adoption of the AlexNet 
feature extraction network [24]; the tracking accuracy and efficiency still need to be im-
proved. Based on DETR [25], our proposed method designs efficient multi-head attention 

Figure 1. This is the schematic diagram of TR-Siam. The I stands for cross-correlation operation.
Template contains target of interest. Search area is centered on the template position and three times
the size of the template in the detection frame.

2. Related Work

In recent years, a large number of excellent trackers have proposed many advanced
suggestions. The trackers based on correlation filter use multi-level features, template
updating and deeper feature extraction to further improve MOSSE and KCF [9–14], which
effectively improve the accuracy and robustness of target tracking.

Based on SiamFC, SiamRPN adopts anchors for region proposal to make use of the
deep feature maps and avoid repeated computation, which has great speed performance.
Subsequent studies have improved SiamRPN from the aspects of feature extraction, pro-
portion of positive and negative samples, feature enhancement and so on [15,16]. However,
the anchor-based trackers are very sensitive to relative hyper-parameters such as size,
number and aspect ratio of anchor boxes. Moreover, anchor-based trackers possess limited
performance in processing objects with significant appearance change due to their fixed
hyper-parameters. Inspired by FCOS, SiamCAR [17] uses an anchor-free framework to
reduce the number of hyper-parameters and maintain an excellent performance, both in
accuracy and efficiency. In this paper, the anchor-free framework is adopted and SiamCAR
is used as our baseline algorithm.

The feature fusion network is a common strategy in visual tracking [18]. To solve the
scale variation problem in tracking, the fusion of different deep features are used to exploit
complementary spatial and semantic information in SiamFPN [19,20]. SiamHOG fuses the
HOG features and deep features of the image [21]. These feature fusion methods, to some
extent, improve the tracker’s performance when dealing with the target scale variation and
small object tracking. However, limited by the receptive field, the above fusion method
simply fuses the information of each location with the surroundings, and fails to make
effective use of the global context information.

Transformer can overcome receptive field limitations and focus on global informa-
tion [22]. Inspired by Transformer, HIFT combines Transformer with the feature fusion
network [23], which directly fuses different levels of the feature map, but the Transformer
encoder and decoder structure is still complex and limited by its adoption of the AlexNet
feature extraction network [24]; the tracking accuracy and efficiency still need to be im-
proved. Based on DETR [25], our proposed method designs efficient multi-head attention
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layers that are embedded into the feature pyramid through the cross attention between
different feature layers to enhance the object features. This then improves its performance
when facing challenges such as severe variations in target appearance, similar object and
occlusion. In this way, we improve the robustness of the object tracking.

After the backbone models, we can obtain two feature maps of the target template
and search region. Siamese-based trackers perform cross-correlation on the feature map of
search region with the feature map of target exemplar as the kernel. In this way, we can
obtain the response map and send it to the classification and regression branch for visual
tracking. However, for the tracker, the template branch and the search branch are always
independent, so the template information in the response map always comes from the
ground truth of the first frame. So, the tracking may fail when the appearance of an object
changes. In this paper, the response map enhancement module is added to enhance the
response map by calculating the statistical information of the response map. Specifically, we
obtain the context information of the response map to adjust itself. In this way, the useful
information between the target template and search area is strengthened and implicitly
updates the template to some extent.

3. Proposed Method

In this section, we mainly introduce the details of the TFN module and RmE module,
and how to combine them with the Siamese network. TR-Siam proposed in this paper
consists of four modules: feature extraction sub-network, feature fusion sub-network,
similarity match sub-network and prediction head, as shown in Figure 1.

3.1. Overall Overview

Our proposed method, TR-Siam, selected ResNet-50 as the backbone for feature
extraction. We selected the last three Resblock outputs (Feat3, Feat4, Feat5) of the backbone
and sent it to the Transformer-based feature pyramid, which is used to realize the feature
fusion of multiple layers. This allowed us to obtain the feature maps of the target exemplar
and the search area, which have both location details and semantic information. After that,
by performing the cross-correlation on the feature map of the search region with the feature
map of the target template as a kernel, we obtained response map R. Then, the response
map enhancement module proposed was used to enhance the response map to improve
the tracker’s discrimination ability to distinguish the target from the background. Finally,
it was sent to the prediction head to obtain the tracking results.

3.2. Transformer Feature Pyramid

It is generally considered that feature extraction is the key step in visual tracking.
During feature extraction, the high-level feature map obtained by convolution and pooling
provided a better representation of semantic information. However, for similar objects, the
semantic information is similar and difficult to distinguish. In the case of occlusion and
small object, the object has small amounts of pixels information, so it is difficult to track
well. Feature fusion can effectively combine the advantages of low-level and high-level
features: low-level features contain rich spatial information such as color, texture and edge
and corner points, which is conducive to locate small and similar objects, but they lack se-
mantic information. On the other hand, high-level features pay more attention to semantic
information such as categories and attributes, which is more conducive to foreground and
background differentiation. The effective fusion of high-level and low-level features can
improve a tracker’s ability to deal with challenges such as similar objects, object deforma-
tion and scale change. Existing feature fusion methods are mainly feature pyramid, which
simply concatenates high-level and low-level feature maps, or uses different level features
to accomplish different tasks. However, this method only uses a simple combination of
features without global interaction, which is a fundamental limitation.

Based on the limitations of above methods, this paper adopts Transformer-based
feature pyramid structure for feature fusion, establishes the connection of global context,
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and gives full play to the advantages of feature fusion. We modified the Transformer
structure proposed in the literature [25]; specifically, we removed steps of position coding
in the traditional Transformer and used zero-padding with its own location information for
object tracking. This allowed us to obtain a lighter Transformer-based structure and better
accomplish feature fusing. The module is shown in Figure 2.
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Figure 2. Schematic diagram of the proposed TFE block. The module consists of three parts: Multi-
Head Attention, Layer Norm and MLP.

The MLP in this figure is the full connected layer, which is used to integrate the feature
sequence information. Layer Norm standardizes samples one by one to make the input’s
distribution stable and avoid the problem of gradient disappearance. The proposed method
calculates the input features through the multi-head attention mechanism as follows:

Attention (Q, K, V) = Softmax (Q·KT√
dk
)·V

MultiHead(Q, K, V) = Concat(H1, H2, . . . , HN)WO

Hi = Attention (QWQ
i , KWK

i , VWV
i )

(1)

In this formula, where Q, K, V represent query, key and value; dk represents the
number of channels, i.e., sequence length; N = 8 represents the number of attention heads;
WQ

i , WK
i , WV

i , WO represent the weight coefficient obtained by network training. This
module calculates the similarity between Q and K, multiplies V by the normalized weight,
and realizes the feature enhancement of V. As shown in Figure 3, multiple Transformer
based feature enhancement modules are used to realize the feature fusion pyramid.

Firstly, we use convolution to flatten the features of each layer into sequence infor-
mation and take the middle layer Feat4 as the query of hierarchical feature fusion. Then,
feature fusion is carried out with the upper and lower layers Feat3 and Feat5 to generate
three groups of combinations with different feature information. At last, the results are sent
to a TFE module to enhance self-attention, so as to obtain the final semantic features that
integrate the underlying spatial information and deep semantic information. The above
process can be expressed by the following formula.

F3′ = TFE(Feat4 , Feat3, Feat3); F4′ = TFE(Feat4 , Feat4, Feat4); F5′ = TFE(Feat4 , Feat5, Feat5)

F′ = F3′ + F4′ + F5′

F_final = TFE
(
F′, F′, F′

) (2)
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Compared with the traditional FPN, the Transform can help overcome the limitations
of the receptive field. Our proposed method can calculate the correlation between all
positions of the input feature sequence, and enhance the target features by using the cross
attention between different feature layers to establish the global interaction. In this fusion
mode, by transmitting the semantic information to the multi-layer feature map, this paper
not only fuses the deep and shallow features, but also adaptively realizes the interactive
fusion of key feature information. Therefore, features obtained by TR-Siam are more
significant, which can effectively enhance the robustness of the algorithm to deal with the
interference and occlusion of similar targets.
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3.3. Similarity Match Network

Cross correlation operation refers to the process of obtaining the feature response map
by correlation operation with the search area and the template as the kernel. Inspired by
reference [7], this paper introduces deep-wise cross correlation. Deep-wise cross correlation
takes the search area as the input and the template as the kernel to obtain the response
map channel by channel. It can greatly reduce the amount of parameters and ensure the
tracking accuracy is not affected.

The tracking algorithm determines the positive and negative samples in the image
and locates the target through the response map. By enhancing the rich feature information
in the response map, the tracking accuracy can be improved. Therefore, we designed the
response map enhancement module. As shown in Figure 4.
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The proposed RmE method adjusts the response map by calculating its own mean
and variance. After obtaining response map with the size of 8*256*25*25, we adjusted the
response map through encoder and decoder. In the encoder, in order to reduce the amount
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of computation, we used 1 × 1 convolution to adjust the response map and adjust the
channel size from 256 to 64. In the decoder, we adjust the mean and variance of response
maps in the same batch by batch normalization and restored the number of channels
through 1 × 1 convolution. Because the targets of the same batch are same in the training
process, the batch normalization of the response maps enables more target information to
be obtained. The output is then averaged. The result was used as the weight of convolution
kernel, and channel 0 of each data was used as the bias of the convolution kernel. Through
this special convolution method, we adjusted the original response map to allow it to obtain
global context information and enhance the discrimination ability of this network, so as to
deal with similar object interference and significant appearance changes of the target.

4. Results

This section introduces the results of our method on UAV123, GOT-10K, LaSOT
and OTB100 benchmarks [26–30]. To prove the effectiveness of the proposed blocks,
we conducted ablation experiments and analyzed the effects of the TFN and RmE block.
Additionally, we compared our method with baseline tracker SiamCAR and other advanced
algorithms such as SiamRPN++, DaSiamRPN, SiamRPN and ATOM [31]. We visualized
the heat maps and tracking results and analyzed the performance of TR-Siam in some
challenging sequences such as Similar object and Occlusion.

4.1. Experimental Details

In the experiment, we used the pre-training parameters provided by SiamCAR to
initialize TR-Siam. Training data includes COCO [32], GOT-10K, VID. In training process,
the model is trained by SGD, the batch size is set to 32 and the sample size is 400,000 per
epoch, 20 epochs in total. In the first five epoch, the warmup is used, for which the initial
learning rate is 0.001, and is raised 0.001 per-epoch. The overall training time is 50 h. We
tested TR-Siam on AMD3600X and NVIDIA RTX3060ti.

4.2. Algorithm Comparison
4.2.1. UAV123 Benchmark

UAV123 contains 123 image sequences, which were collected by a low altitude un-
manned aerial vehicle. This benchmark had obvious characteristics, including tiny targets,
similar objects, occlusion and so on. Success and Precision plots were used to evaluate the
performance of the trackers. Precision plots refer to the percentage of the number of frames
whose CLE is less than 20 pixels in the total frames. The formulas are as follows.

CLE =
√(

xpr − xgt
)2

+
(
ypr − ygt

)2

f =

{
1, CLE < 20
0, CLE ≥ 20

Precision = ∑N
i=1 f
N

(3)

(xpr, ypr) and (xgt, ygt) refers to the center position coordinates of the prediction box and
ground truth. Success rate means the percentage of the number of frames whose overlap
S is larger than 0.5 in the total frames. Overlap shows the IOU of the prediction box and
ground truth of each frame. The result takes the average value of the whole frames. The
formulas are as follows.

S = IOU |Rpr∩Rgt|
|Rpr∪Rgt|

f =

{
1, IOU ≥ 0.5
0, IOU < 0.5

Success rate = ∑N
i=1 f
N

(4)

The Success plots and Precision plots of the one-pass evaluation are shown in Figure 5.
TR-Siam is observed to achieve a success rate of 0.635 and precision plot of 0.832. Addition-
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ally, compared to HIFT, which also employs feature pyramid by Transformer, our proposed
method achieved a substantial gain of 4.6% and 4.4% in terms of the success score and
precision plots.
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• Attribute-Based Evaluation

The performance of the five attributes is shown in Figure 6, demonstrating that our
method obtained the best performance among the comparison methods. On the one
hand, as for success rate, our method achieved better results, including Similar Object
(0.579), Partial Occlusion (0.542), Full Occlusion (0.398), Aspect Ratio Change (0.595) and
Viewpoint Change (0.651) On the other hand, as for the precision plot, we also attained
better a performance in all challenges. Compared to the baseline tracker SiamCAR, our
proposed method achieved significant performance gain in Similar Object and Partial
Occlusion challenges with 5.4%, 3.9% in precision plot and 3.5%, 2.8% in success rate. In
summary, the attribute-based evaluation proves our method can improve the performance
when concerning similar object and occlusion.

In order to further demonstrate the improvement range of this algorithm, we visually
display the accuracy of different algorithms under various attributes through radar charts.
Figure 7 reports an attribute-based evaluation of state-of-the-art algorithms, illustrating
that the TR-Siam performs much better than other competing trackers on all attributes.
Especially, TR-Siam greatly improved the two key attributes of similar object interference
and partial occlusion.
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4.2.2. LaSOT Benchmark

The LaSOT data set is the most widely known benchmark for long-term tracking,
consisting of 1550 sequences, which has more appearance changes, especially regarding
long-term accumulation. This benchmark was selected to evaluate the robustness of trackers
in long-term tracking. Success, Precision and Normalized precision are used to evaluate
the performance of trackers. Normalized precision represents the average value of the
overlap between prediction box and ground truth. Table 1 reveals that the proposed tracker
achieves the highest target, demonstrating that the TFN and RmE module is an effective
scheme for long-term tracking.

Table 1. Results on LaSOT benchmark. Red fonts indicate the top tracker ↑. Indicates that the larger
the parameter value, the better the tracker performance.

Tracker Precision ↑ Normalized Precision ↑ Success ↑
SINT [4] 0.295 0.354 0.314
ECO [14] 0.310 0.338 0.324

SiamFC [5] 0.339 0.420 0.336
MDNet [33] 0.373 0.460 0.397

SiamMask [34] 0.469 0.552 0.467
SiamRPN++ [7] 0.491 0.569 0.495

ATOM [31] 0.497 0.605 0.499
SiamCAR [18] 0.507 0.600 0.507

Ours 0.527 0.606 0.528

4.2.3. GOT-10K Benchmark

GOT-10K is a challenging large-scale benchmark. To test the generalization of the
tracking algorithm, there is no class overlap between the training subset and testing subset.
GOT-10K employs Average Overlap (AO), Success Rate (SR 0.5, 0.75 mean threshold) and
Frames Per Second (FPS) as the measurement. If FPS > 30, the algorithm meets real-time
property. We evaluated TR-Siam on GOT-10K and compared it with other state-of-the-
art trackers.
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As demonstrated in Table 2, the proposed method achieved the best performance
among all comparison algorithms. TR-Siam achieved a 2.7% higher performance on AO
and 3.8% on SR0.75 compared with the baseline tracker SiamCAR. Additionally, the FPS is
45, which meets the real-time property in 1080P resolution ratio.

Table 2. The evaluation on GOT-10K.TOP-2 results are highlighted in red and blue, respectively.

Tracker AO SR0.5 SR0.75 FPS

KCF [12] 0.203 0.177 0.065 94.66
ECO [14] 0.316 0.309 0.111 2.62

SiamFC [5] 0.374 0.404 0.144 25.81
THOR [35] 0.447 0.538 0.204 1.00

SiamRPN [6] 0.483 0.581 0.270 97.55
SiamFC++ [35] 0.493 0.577 0.323 160
SiamRPN++ [7] 0.518 0.618 0.325 35

ATOM [31] 0.556 0.634 0.402 30
SiamCAR [18] 0.569 0.670 0.415 50

Ours 0.582 0.683 0.457 45

4.3. Visual Comparison of Tracking Results

In order to intuitively show the tracking results, and illustrate the performance im-
provement in dealing similar object, occlusion and viewpoint change, we chose four image
sequences from the UAV123 dataset and OTB100 dataset, which have the above challenges,
compared with the baseline tracker SiamCAR and the other two state-of-the-art tracking
algorithms.

Car1: The Car1 sequence is a video sequence with similar object interference and
occlusion. First, similar object interference is shown. During 376–516 frames, disturbed by
a car nearby, scale chaos appeared in the baseline tracker SiamCAR and the other algorithm.
Particularly, in the 452 and 489 frame, the tracking box of DaSiamRPN and SiamRPN++
contained a similar object. Especially, after 516 frames, SiamRPN++ tracking appeared
to drift.

Car1: Next, the role of occlusion is shown. SiamRPN++ drifted due to previous errors.
The car began to be occluded at frame 749 until it was fully occluded at frame 781 and
finally reappeared in frame 818. Only our proposed method could still locate and track the
target effectively without being affected by occlusion.

Car7: In Car7 sequence, similar object interference occurs simultaneously in the process
of occlusion. In frames 55–238, when the car is blocked and similar vehicles appear nearby,
a scale error occurred in the baseline tracker SiamCAR and the other methods deviated
from the target. After frame 316, when the target reappeared, the coincidence between
TR-Siam and ground truth was still very high.

Box: As shown in Figure 8d, the main difficulty of the Box video sequence is that the
Box is partially or completely occluded. In frames 302 to 315, when the target is partially
occluded by the vernier caliper, all comparison algorithms can effectively track the target.
However, as the difficulty increased, the box was placed behind the vernier caliper in frames
447 to 489 and was completely occluded. The comparison algorithm cannot track the target.
Only our proposed algorithm can track the target robustly. It can be seen that the algorithm
can still track the target robustly and accurately when the target is completely occluded.

Girl2: As shown in Figure 8e, in the Girl2 video sequence, the difficulty of the video
sequence is that the girl is occluded by similar object. When the target begins to be
occluded by similar targets in 107 frames, all algorithms look for the target. When the
target is completely occluded in frame 111, tracking drift appears in SiamRPN++. From
111 frames to 129 frames, similar objects keep moving far away from the girl, and a tracking
failure occurs in the comparison algorithm. However, the algorithm in this paper can still
track the target correctly after the target reappears. This shows that our proposed algorithm
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can effectively solve the problem of when the target is occluded by a similar object and
ensure the robustness of the algorithm.
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Ground Truth.

4.4. Ablation Experiment

The TFN and RmE blocks are the core components of the proposed tracker. To further
verify the effectiveness of TFN and RmE blocks, we conducted a number of ablation studies.



Appl. Sci. 2022, 12, 6551 13 of 16

The purpose of this was to show the contribution of the module to the performance when
tracker meets similar object interference and occlusion.

4.4.1. Heat Map Experiment

In order to show the difference between the baseline tracker and ours, and further il-
lustrate the performance of the proposed module in dealing with similar object interference
and occlusion, the interested objects of the algorithm are displayed in Figure 9.
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The Bolt sequence is a video sequence with similar object interference and occlusion.
By comparing heat maps, it can be found that our method can clearly distinguish between
target and similar object, while baseline tracking SiamCAR is greatly affected by similar
object interference focus on multiple similar objects. In the Box sequence, the attention of
the baseline tracker SiamCAR begins to drift and it starts to pay attention to other objects
in the area when the target is blocked. Our proposed method is not affected by this and
only focuses on the target. This shows that our method will not experience attention drift
when disturbed by a similar object and become blocked.

4.4.2. Data Experiment

To further verify the effectiveness of each module, we conducted an ablation study
using three benchmarks. The aim of this was to show which module contributes to the
performance of the tracker. As shown in Table 3, the symbol

√
means a particular module

has been used; × is the opposite.
Through the detailed ablation experiments in Table 3, it can be proved that TFN

and RmE block can improve the tracking accuracy of the algorithm. Taking the UAV123
benchmark results as an example, there was a 0.8% improvement when using TFN alone,
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a 1.3% improvement when using RmE alone and a 2.5% improvement when using both
together. Meanwhile, when the template patch and the search patch were, respectively set
to 127× 127× 3 and 255× 255× 3 resolutions, our method had little impact on operation
efficiency because we compromised 5 FPS while improving the accuracy. Furthermore, our
method uses AlexNet shallow backbone and can achieve the same accuracy as ResNet-50
deep backbone, while continuing to run at 130 FPS.

Table 3. A comparison of evaluation results of with or without TFN block and RmE block and
different backbone on multiple datasets. Success represent accuracy on LaSOT; PRE represent
Precision on UAV123 benchmark. AO represents accuracy on GOT-10K; FPS selects the operation
results on GOT-10K data set.

NO. Backbone TFN RmE Success PRE AO FPS

1 AlexNet
√ √

0.485 0.779 0.550 130
2 ResNet-50 × × 0.507 0.797 0.569 50
3 ResNet-50

√
× 0.507 0.806 0.572 47

4 ResNet-50 ×
√

0.519 0.820 0.575 48
5 ResNet-50

√ √
0.527 0.832 0.582 45

5. Conclusions

In the present article, a novel TR-Siam was proposed for solving the problem of
tracking failure caused by similar object interference and occlusion. The TFN module
can fusion deep and shallow features adaptively and efficiently, overcome the limitations
regarding receptive field, achieve global context information fusion, and enhance the spatial
and semantic information features. RmE block adjusts the response map, using statistical
information to enhance the ability to distinguish between a target and background. A
performance comparison of the four challenging benchmarks, including UAV123, GOT-
10K, LaSOT and OTB100, demonstrated that the proposed approach can bring significant
performance improvement. Compared to baseline tracker SiamCAR, the proposed method
can effectively deal with the challenges of similar object and occlusion, and improve
robustness and accuracy, without significantly affecting operation efficiency.
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