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a b s t r a c t 

To balance the accuracy and speed of phase reconstruction, two-step phase-shifting algorithms (TS-PSAs) have 
been developed. TS-PSAs can be divided into two types, one is TS-PSAs with background removal (TS-PSAs-BR), 
and the other is TS-PSAs with no background removal (TS-PSAs-NBR). We select 6 well-reputed TS-PSAs-BR 
and 4 TS-PSAs-NBR proposed by the authors of this paper for performance comparison. In order to remove 
the background, the Hilbert-Huang Transform (HHT) and mean intensity subtraction are used respectively. We 
compare 10 TS-PSAs with different fringe types, different levels of noise, different phase shifts, different fringe 
numbers and computational time in the simulations, and the experiments are also performed to compare them. 
Finally, we rank TS-PSAs according to their comparative results, and Euclidean matrix norm of sum and difference 
map and fast least-squares algorithm (EMNSD&FLSA) provides the best overall performance, it can achieve high 
accuracy and high efficiency. 
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. Introduction 

The level of optical metrology determines the level of optical manu-
acturing technology, and the phase-shifting interferometry (PSI) as an
asy, high-speed and accurate optical testing tool is usually used during
r after optical fabrication [1–5] . Both accuracy and efficiency are im-
ortant to PSI. Outstanding phase-shifting algorithms (PSAs) can reduce
he requirements on the interferometer hardware and environment, and
urther improve the accuracy and speed of PSI. 

Traditional PSAs with known phase shifts (such as the three-step
lgorithm, Carré algorithm, the family of averaging algorithms, Hariha-
an algorithm, etc.) are easily affected by the miscalibration of piezo-
ransducer and environmental errors [6] . In order to save time, many
ingle-step PSAs were developed [7–12] . Nevertheless, the sign of phase
s difficult to judge by only one interferogram, this may be the main rea-
on impeding the development of this kind of PSA. Although many PSAs
ave solved this problem, their cost is more computational time, which
iolates the original intention of fast phase reconstruction. In some high-
recision events, accurate phase reconstruction is of interest. Hence,
any scientists researched the multi-step PSAs with more than three

nterferograms, such as the advanced iterative algorithm (AIA) [13] ,
rincipal component analysis method (PCA) [14–18] , advanced Gram-
chmidt orthonormalization algorithm (GS3) [19] , Euclidean distance
ethod (ED) [20] , Euclidean matrix norm algorithm (EMN) [21] , VU
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actorization method (VU) [22] , volume enclosed by a surface method
VES) [23–25] , etc. However, all of them have different limitations, it’s
ifficult to reconstruct the phase with high accuracy and efficiency si-
ultaneously. Comparatively, two-step random PSAs can avoid the ef-

ect of phase shift error, solve the sign ambiguity problem of the single-
tep PSAs, and balance the accuracy and speed [26–52] . 

Whereas two-step PSAs (TS-PSAs) also face the challenge, the num-
er of unknowns is more than the number of interferograms. One way
o reduce the number of unknowns is to remove the background. Many
S-PSAs with background removal (TS-PSAs-BR) have been developed.
n [29] , the authors reported a two-step Gram-Schmidt orthonormal-
zation method (GS) which can calculate the phase directly using two
nterferograms without the phase shift estimation, it’s fast and easy to
erform, so it’s widely used in two-step PSI. In [30] , a TS-PSA was pro-
osed to determine the phase shift by the ratio of extreme values of the
nterference (EVI). When the interferograms are of poor quality, EVI
ay perform poorly. A simple method to calculate the phase shift and
hase using orthogonality of diamond diagonal vectors (DDV) was pro-
osed [34] . In this approach, there are so many approximations that the
ccuracy is affected. A straightforward and fast two-step PSA was pro-
osed, which obtains the phase shift by calculating the quotient of inner
roducts of phase-shifting interferograms (QIP), but its accuracy is not
ery high due to the approximation in inner products calculation [35] .
n [44] , the authors obtained the phase shift by solving a quartic poly-
east Electric Power University, Jilin 132012, China. 
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omial equation (QPE). Although the cosine of phase shift can be easily
xtracted by [35] and [44] , the range of phase shift is limited between 0
o 𝜋. In [45] , the authors proposed a random TS-PSA to reconstruct the
hase using the phase shift corresponding to the minimum coefficient
f variation (CVM) of the modulation amplitude. 

Background removal methods can be divided into 2 types. One
s the filtering algorithm that only filters the background, such as
aussian high-pass filtering [ 30 , 34 , 35 , 45 ], mean intensity subtrac-

ion [ 31 , 53 ], etc. The other is the filtering algorithm that simultane-
usly filters background and noise, such as Hilbert-Huang Transform
HHT) [ 32 , 45 , 46 , 54 , 55 ] and some fringe pattern normalization meth-
ds [ 56 , 57 ]. In general, the first type costs less time, but the noise will
ffect the accuracy of phase reconstruction. Although the second type
an filter the noise, it takes more time, and the filtering error will also
ffect the accuracy. Different background removal methods have differ-
nt effects on phase reconstruction, hence we will evaluate TS-PSAs-BR
ith different background removal methods. 

To avoid errors in the background removal process, some TS-PSAs
ith no background removal (TS-PSAs-NBR) have been researched.
hese TS-PSAs-NBR can be divided into two types. One is based on
issajous ellipse fitting method (LEF) [47] , the authors of this paper
esigned two TS-PSAs-NBR based on LEF, GS or PCA without any back-
round removal is firstly performed, and then phase extraction is per-
ormed using LEF, which doesn’t require an iterative process, but LEF
akes a certain amount of time [ 48 , 49 ]. The other is based on least-
quares algorithm (LSA), the authors of this paper proposed a Euclidean
atrix norm of sum and difference map and fast least-squares algo-

ithm (EMNSD&FLSA) [50] . EMNSD is firstly used to calculate the ini-
ial phase, and then limited pixels are selected to participate LSA to
btain accurate phase shift, finally, the final phase is reconstructed us-
ng the whole pixels, EMNSD&FLSA is accurate and time-saving. Some-
imes LEF and LSA can be combined, such as Lissajous ellipse fitting and
east-squares iterative technologies (LEF&LSI) [51] . LEF is firstly used
o calculate the iterative initial value, and then LSI is used to calculate
he more accurate phase. The greatest advantage of LEF&LSI is that it
an obtain the background intensity and modulation amplitude of each
nterferogram, therefore, it has high accuracy. However, it takes a lot of
ime since all pixels are taken part in LSI, and LEF also takes a certain
mount of time. 

In this paper, we will review the recent well-reputed and widely-
sed TS-PSAs. In Section 2 , the expressions of two phase-shifting in-
erferograms will be introduced. Then, we will thoroughly explain two
ypes of TS-PSAs —TS-PSAs-BR and TS-PSAs-NBR in Section 3 . TS-PSAs-
R include GS, DDV, EVI, QIP, CVM and QPE, and TS-PSAs-NBR in-
lude GS&LEF, PCA&LEF, LEF&LSI and EMNSD&FLSA. In Section 4 , the
erformance of 10 TS-PSAs will be evaluated and compared by sim-
lations with different levels of noise, different types of fringes, dif-
erent phase shifts, different fringe numbers and computational time.
oreover, both noise and filtering error will affect the performance

f TS-PSAs-BR, so which one has more effect on the phase recon-
truction is worth studying. Gaussian high-pass filtering, mean inten-
ity subtraction and HHT are widely used in background removal,
ence they will be respectively used for performance comparison be-
ore performing TS-PSAs-BR. In Section 5 , the experiments with differ-
nt types of fringes will be performed to further compare 10 TS-PSAs.
inally, TS-PSAs will be ranked, and the applicable situations of differ-
nt TS-PSAs will be given according to the simulation and experimen-
al analysis. In addition, the improvement direction of TS-PSAs will be
iven. 

. Expressions of two phase-shifting interferograms 

Eqs. (1) and (2) represent the intensity of two phase-shifting inter-
erograms. 

 ( 𝑥, 𝑦 ) = 𝑎 ( 𝑥, 𝑦 ) + 𝑏 ( 𝑥, 𝑦 ) cos ( 𝜑 ( 𝑥, 𝑦 ) ) (1) 
1 

2 
 2 ( 𝑥, 𝑦 ) = 𝑎 ( 𝑥, 𝑦 ) + 𝑏 ( 𝑥, 𝑦 ) cos ( 𝜑 ( 𝑥, 𝑦 ) + 𝛿) (2) 

here 𝑎 ( 𝑥, 𝑦 ) and 𝑏 ( 𝑥, 𝑦 ) are the background intensity and modulation am-
litude, 𝜑 ( 𝑥, 𝑦 ) and 𝛿represent the measured phase and unknown phase
hift. The position ( 𝑥, 𝑦 ) is omitted to simplify the following expressions.

. Two-step phase-shifting algorithms (TS-PSAs) 

.1. TS-PSAs with background removal (TS-PSAs-BR) 

.1.1. Gram-Schmidt orthonormalization method (GS) 

GS was proposed by Vargas et al. 𝐼 1 and 𝐼 2 are the interferograms
ith background removed. 

Firstly, 𝐼 1 is normalized as 

 ̂1 = 𝑏 cos ( 𝜑 ) ∕ 

√ √ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝑏 cos ( 𝜑 ) ) 2 (3) 

Then, orthogonalizing 
⌢ 

𝐼 2 with respect to 𝐼 1 , subtracting its projec-
ion as 
 

𝐼 2 = − 𝑏 sin ( 𝜑 ) sin ( 𝛿) (4) 

Finally, obtaining 𝐼 2 by dividing 
⌢ 

𝐼 2 by its norm. 

 ̂2 = − 𝑏 sin ( 𝜑 ) ∕ 

√ √ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝑏 sin ( 𝜑 ) ) 2 (5) 

If there is more than one fringe in the interferograms, 
 

 

 

 

 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝑏 cos ( 𝜑 ) ) 2 ≈

√ √ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

( 𝑏 sin ( 𝜑 ) ) 2 (6) 

The phase can be directly obtained by 

 = arctan 
(
− ̂𝐼 2 ∕ ̂𝐼 1 

)
(7) 

.1.2. Diamond diagonal vectors algorithm (DDV) 

DDV was proposed by Deng et al. Given the interferograms after
emoving the background as 𝐼 1 and 𝐼 2 , their length can be calculated by

𝐼 1 ‖‖= 

√ √ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

𝑏 2 cos 2 ( 𝜑 ) (8) 

𝐼 2 ‖‖= 

√ √ √ √ √ 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

𝑏 2 cos 2 ( 𝜑 + 𝛿) (9) 

If there is more than one fringe in the interferograms, 

𝐼 1 ‖‖ ≈ ‖‖𝐼 2 ‖‖ (10) 

It means that 𝐼 1 and 𝐼 2 have the same length but go in different direc-
ions. According to the parallelogram rule, the sum and the difference
f 𝐼 1 and 𝐼 2 are perpendicular. Therefore, two perpendicular diamond
iagonal vectors are expressed as 

 ̃𝑑𝑖𝑓 = 𝐼 1 − 𝐼 2 (11)

 ̃𝑠𝑢𝑚 = 𝐼 1 + 𝐼 2 (12)

When the fringe number is more than one, 

𝛿

2 
≈ arctan 

⎛ ⎜ ⎜ ⎝ 
‖‖‖𝐼 𝑑𝑖𝑓 ‖‖‖‖‖𝐼 𝑠𝑢𝑚 ‖‖

⎞ ⎟ ⎟ ⎠ (13) 

After the phase shift calculation, the phase can be obtained by 

 = arctan 
⎛ ⎜ ⎜ ⎝ 
𝐼 𝑑𝑖𝑓 

‖‖𝐼 𝑠𝑢𝑚 ‖‖
𝐼 𝑠𝑢𝑚 

‖‖‖𝐼 𝑑𝑖𝑓 ‖‖‖
⎞ ⎟ ⎟ ⎠ − 

𝛿

2 
(14)
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.1.3. Extreme values of the interference algorithm (EVI) 

EVI was designed by Deng et al. With the interferograms after back-
round removal, the phase shift can be obtained by 

= 

𝑃 ∑
𝑖 =1 

arccos 
( 

𝐼 2 ,𝑝 𝑖 
𝐼 1 ,𝑝 𝑖 

) 

+ 

𝑉 ∑
𝑗=1 

arccos 
( 

𝐼 2 ,𝑣 𝑗 
𝐼 1 ,𝑣 𝑗 

) 

𝑃 + 𝑉 
(15) 

Where P and V are respectively the number of maximum and min-
mum intensity in 𝐼 1 , and 𝑝 𝑖 ( 𝑖 = 1 , 2 , ⋯ 𝑃 ) and 𝑣 𝑗 ( 𝑗 = 1 , 2 , ⋯ 𝑉 ) are the
orresponding pixel positions of maximum and minimum intensity. 

After the phase shift calculation, the phase can be directly obtained
y 

 = arctan 
( 

𝐼 1 cos ( 𝛿) − 𝐼 2 

𝐼 1 sin ( 𝛿) 

) 

(16)

.1.4. Quotient of inner products algorithm (QIP) 

QIP was proposed by Niu et al. The inner products of 𝐼 1 and 𝐼 1 can
e expressed by 

 1 = 

⟨
𝐼 1 , 𝐼 1 

⟩
= 

𝑀 ∑
𝑥 =1 

𝑁 ∑
𝑦 =1 

[
𝑏 2 cos 2 ( 𝜑 ) 

]
(17)

And the inner products of 𝐼 1 and 𝐼 2 can be calculated by 

 2 = 

⟨
𝐼 1 , 𝐼 2 

⟩
≈

𝑀 ∑
𝑥 =1 

𝑁 ∑
𝑦 =1 

[
𝑏 2 cos 2 ( 𝜑 ) 

]
cos ( 𝛿) (18)

Next, the phase shift can be determined by 

= arccos 
(
𝑠 2 ∕ 𝑠 1 

)
= arccos 

( ⟨
𝐼 1 , 𝐼 2 

⟩⟨
𝐼 1 , 𝐼 1 

⟩) 

(19)

At last, the phase can be reconstructed by Eq. (16) . 

.1.5. Coefficient of variation minimization method (CVM) 

Cheng et al. proposed a TS-PSA based on CVM. The modulation am-
litude 𝑏 can be expressed as a function of the phase shift 𝛿, 

 = 

√ 

𝐼 2 1 + 

[
𝐼 1 ∕ tan ( 𝛿) − 𝐼 2 ∕ sin ( 𝛿) 

]2 
(20)

The coefficient of variation (CV) of 𝑏 can be defined as 

 𝑉 ( 𝑏 ) = 𝑠𝑡𝑑 ( 𝑏 ) ∕ 𝑚𝑒𝑎𝑛 ( 𝑏 ) (21)

here 𝑠𝑡𝑑( ⋅) represents the standard deviation, and 𝑚𝑒𝑎𝑛 ( ⋅) represents the
ean. 

The accurate phase shift 𝛿 is at the position where 𝐶 𝑉 is minimum, 

= arg min 
𝛿

𝐶 𝑉 ( 𝑏 ) (22)

The classical Fibonacci search algorithm is used to search the phase
hift, and then the corresponding phase is reconstructed by Eq. (16) . 

.1.6. Quartic polynomial equation solving algorithm (QPE) 

Cheng et al. proposed a fast and accurate TS-PSA based on the quartic
olynomial equation solution. 

If the fringe number is more than one, the phase shift can be esti-
ated by 

= argmin 

{ ( 

𝐴 

cos ( 𝛿) 
sin ( 𝛿) 

− 𝐶 

1 
sin ( 𝛿) 

) 2 

+ 

( 

𝐴 − 𝐴 

1 
tan 2 ( 𝛿) 

− 𝐵 

1 
sin 2 ( 𝛿) 

+ 2 𝐶 

cos ( 𝛿) 
sin 2 𝛿

) 2 
} 

(23) 

here 𝐴 = 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

𝐼 2 1 , 𝐵 = 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

𝐼 2 2 , 𝐴 = 

𝑁 𝑥 ∑
𝑥 =1 

𝑁 𝑦 ∑
𝑦 =1 

𝐼 1 𝐼 2 . 
3 
After setting the derivative of the target function to zero, the opti-
al cos ( 𝛿) will be ultimately found by the following quartic polynomial

quation. 

 𝐴𝐶 𝑧 4 − 

(
4 𝐴𝐵 + 3 𝐶 

2 + 3 𝐴 

2 )𝑧 3 + ( 6 𝐵𝐶 + 6 𝐴𝐶 ) 𝑧 2 

− 

(
5 𝐶 

2 + 2 𝐵 

2 − 𝐴 

2 )𝑧 + 2 𝐵𝐶 − 𝐴𝐶 = 0 (24) 

Eq. (24) may have many solutions, and the real solution is closest to
∕ 𝐴 . After getting the phase shift, the phase can be obtained by Eq. (16) .

.2. TS-PSAs with no background removal (TS-PSAs-NBR) 

.2.1. Gram-Schmidt orthonormalization and Lissajous ellipse fitting 

ethod (GS&LEF) 

Traditional GS uses the interferograms with background removed
o reconstruct the phase. In order to avoid the extra error caused by
ackground removal, a TS-PSA based on GS&LEF was proposed by the
uthors of this paper. 

Firstly, the interferograms 𝐼 1 and 𝐼 2 are orthonormalized by GS. The
etails are in the following. 

 

′
1 = 𝐼 1 ∕ ‖‖𝐼 1 ‖‖ (25)

 

𝐼 2 = 𝐼 2 − 

⟨
𝐼 2 , 𝐼 

′
1 
⟩
⋅ 𝐼 ′1 (26)

 

′
2 = 

⌣ 

𝐼 2 ∕ 
‖‖‖‖⌣ 

𝐼 2 
‖‖‖‖ (27)

Then, set 𝐷 

∗ = 𝐼 ′1 and 𝑁 

∗ = − 𝐼 ′2 , the ellipse equation is obtained. 

𝐴𝑁 

∗ + 𝐵𝐷 

∗ + 𝐶 

)2 + 

(
𝐷 𝐷 

∗ + 𝐸 

)2 = 1 (28)

In order to calculate the ellipse parameters, including semi-major
mplitude 𝑎 𝑥 , semi-minor amplitude 𝑎 𝑦 , center offset 𝑥 0 , 𝑦 0 and ellipse
rientation angle 𝜃, the coefficients of the ellipse function should be
alculated by the Lissajous ellipse fitting method (LEF) firstly. 

Finally, Eq. (29) is used to convert the ellipse into a perfect circle
entered at the origin. 
 

𝑁 𝑐 

𝐷 𝑐 

] 
= 𝑇 ∗ 

[ 
𝑁 

∗ − 𝑥 0 
𝐷 

∗ − 𝑦 0 

] 
(29)

here 𝑁 𝑐 and 𝐷 𝑐 are the numerator and denominator of tan ( 𝜑 ) after using
EF, the transformation matrix is 

 = 

[ 
cos 

(
− 𝜃′

)
− sin 

(
− 𝜃′

)
sin 

(
− 𝜃′

)
cos 

(
− 𝜃′

) ] 
∗ 
[ 
1 0 
0 𝑟 

] 
∗ 
[ 
cos 𝜃′ − sin 𝜃′

sin 𝜃′ cos 𝜃′

] 
(30)

here 𝜃′ = − 𝜃, 𝑟 = 𝑎 𝑥 ∕ 𝑎 𝑦 . 
At last, the real phase can be calculated by 

 = arctan 
( 

𝑁 𝑐 

𝐷 𝑐 

) 

(31)

.2.2. Principal component analysis and Lissajous ellipse fitting method 

PCA&LEF) 

A TS-PSA based on PCA&LEF was also proposed by the authors of this
aper, it can remove the limit that PCA needs more than three interfer-
grams with uniform phase shift distribution. This TS-PSA requires only
wo interferograms without background removal, and the phase shift
an be set randomly. 

Firstly, the size of phase-shifting interferograms is reshaped from
 𝑥 ×𝑁 𝑦 to 𝑁 𝑥 𝑁 𝑦 × 1 , and the intensity of n th phase-shifting interfer-

grams after reshaping is set as the n th column of the matrix I . The
ovariance matrix C is calculated by 

 = 𝐼 𝑇 𝐼 (32)

Then, the orthogonal matrix Γ̂ is calculated, and the first and sec-
nd principal components ( z 1 and z 2 ) which correspond to the highest
igenvalues by 𝑧 = 𝐼 ̂Γ𝑇 can be obtained. 
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Take z 2 as the x coordinate and z 1 as the y coordinate to plot an
pproximate ellipse, then 𝑎 𝑥 , 𝑎 𝑦 , 𝑥 0 and 𝑦 0 of the ellipse can be calculated
y LEF. 

Finally, the phase is calculated using Eq. (33) . 

 = tan −1 
( 

𝑋 − 𝑥 0 
𝑌 − 𝑦 0 

⋅
𝑎 𝑦 

𝑎 𝑥 

) 

− tan −1 
( 

𝑎 𝑥 

𝑎 𝑦 

) 

(33)

.2.3. Lissajous ellipse fitting and least-squares iterative algorithm 

LEF&LSI) 

In order to improve the accuracy of TS-PSAs, the authors of this pa-
er proposed a TS-PSA based on LEF&LSI. The sum and difference of
nterferograms are calculated by 

 𝑑𝑖𝑓 = 𝐼 1 − 𝐼 2 = 2 𝑏 sin 
(
𝜑 + 

𝛿

2 

)
sin 

(
𝛿

2 

)
(34)

 𝑠𝑢𝑚 = 𝐼 1 + 𝐼 2 = 2 𝑎 + 2 𝑏 cos 
(
𝜑 + 

𝛿

2 

)
cos 

(
𝛿

2 

)
(35)

Then an ellipse equation can be obtained by 
 

𝐼 𝑑𝑖𝑓 − 𝑥 0 

𝑎 𝑥 

) 2 
+ 

( 

𝐼 𝑠𝑢𝑚 − 𝑦 0 
𝑎 𝑦 

) 2 
= 1 (36)

After LEF, the phase shift and phase can be calculated by 

= 2 tan −1 
( 

𝑎 𝑥 

𝑎 𝑦 

) 

(37)

 = tan −1 
( 

𝐼 𝑑𝑖𝑓 − 𝑥 0 

𝐼 𝑠𝑢𝑚 − 𝑦 0 
⋅
𝑎 𝑦 

𝑎 𝑥 

) 

− tan −1 
( 

𝑎 𝑥 

𝑎 𝑦 

) 

(38)

Then the phase calculated by Eq. (38) is used as the initial value,
nd the iteration is performed to improve the accuracy of phase re-
rieval. 

According to the known phase, the absolute phase shift of every in-
erferogram can be determined by 

𝑖 = tan −1 
( 

− 

𝐶 𝑖 

𝐵 𝑖 

) 

(39)

here 𝐵 𝑖 and 𝐶 𝑖 can be obtained by 

 

 

 

 

𝐴 𝑖 

𝐵 𝑖 

𝐶 𝑖 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 𝑥 ×𝑁 𝑦 

𝑁 𝑥 ×𝑁 𝑦 ∑
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𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

sin 𝜑 𝑗 

𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

cos 𝜑 𝑗 

𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

cos 2 𝜑 𝑗 

𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

sin 𝜑 𝑗 cos 𝜑 𝑗 

𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

sin 𝜑 𝑗 
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⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

− 1 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 𝑥 ×∑
𝑗=

𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

here 𝑖 = 1 , 2 presents the interferogram index, and 𝑗 = 1 , 2 , …𝑁 𝑥 ×𝑁 𝑦 

enotes the pixel position. 
Next, the background intensity and modulation amplitude of every

hase-shifting interferogram can be obtained as 𝑎 𝑖 = 𝐴 𝑖 , 𝑏 𝑖 = 

√ 

𝐵 

2 
𝑖 
+ 𝐶 

2 
𝑖 
,

nd the relative phase shift can be calculated by 𝛿 = 𝛿2 − 𝛿1 . Then
q. (41) is used to calculate the iterative phase. 

 = tan −1 
( (

𝑏 2 𝐼 1 cos ( 𝛿) − 𝑏 1 𝐼 2 
)
− 

(
𝑏 2 𝑎 1 cos ( 𝛿) − 𝑏 1 𝑎 2 

)(
𝐼 1 − 𝑎 1 

)
𝑏 2 sin ( 𝛿) 

) 

. (41)

⎡ ⎢ ⎢ ⎣ 
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𝑦  
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𝑗 

s 𝜑 𝑗 

 𝜑 𝑗 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(40) 

Repeat the iteration until 𝑅𝑀𝑆( 𝜑 

𝑘 − 𝜑 

𝑘 −1 ) < 𝜉, the accurate phase
nd phase shift 𝛿 can be gained. 

.2.4. Euclidean matrix norm of sum and difference map and fast 

east-squares algorithm (EMNSD&FLSA) 

To meet the requirements of high-speed optical measurement,
MNSD&FLSA was designed by the authors of this paper. 

The sum and difference of the interferograms can be defined as 𝐼 𝑠𝑢𝑚 
nd 𝐼 𝑑𝑖𝑓 , the sum without the background can be obtained by 

 ̃𝑠𝑢𝑚 ≈ 𝐼 𝑠𝑢𝑚 − 𝑚𝑒𝑎𝑛 
(
𝐼 𝑠𝑢𝑚 

)
(42)

Then initial phase can be obtained by 

= 𝜑 + 

𝛿

2 
= 𝑡𝑎𝑛 − 1 

⎛ ⎜ ⎜ ⎝ 
‖‖𝐼 𝑠𝑢𝑚 ‖‖‖‖‖𝐼 𝑑𝑖𝑓 ‖‖‖ ⋅

𝐼 𝑑𝑖𝑓 

𝐼 𝑠𝑢𝑚 

⎞ ⎟ ⎟ ⎠ (43)

For the purpose of saving time, a limited number of Φ, 𝐼 1 and
 2 at regular intervals are selected. According to the least-squares
heory, 

cos 
(
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)
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)
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)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

− 1 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

𝐼 1 𝑗 

𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

𝐼 1 𝑗 cos 
(
Φ𝑗 

)
𝑁 𝑥 ×𝑁 𝑦 ∑
𝑗=1 

𝐼 1 𝑗 sin 
(
Φ𝑗 

)

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(44) 

Then, 𝛿2 can be calculated by 

𝛿

2 
= tan −1 

( 

𝜉1 
𝜂1 

) 

(45) 

And the background intensity 𝑎 1 can also be obtained. 
𝑎 2 can be calculated in the same way as above, and 𝛿2 can be obtained

gain, the average of twice-acquired 𝛿2 is set as the final 𝛿2 . 
The new phase can be calculated by 

= 𝜑 + 𝛿∕2 = tan −1 
( 

cot 
(
𝛿

2 

)
⋅
𝐼 dif − 

(
𝑎 1 − 𝑎 2 

)
𝐼 sum 

− 

(
𝑎 1 + 𝑎 2 

)) 

(46) 

Repeat the above iterative process until 𝑅𝑀𝑆( Φ𝑙 − Φ𝑙−1 ) < 𝜀 , the ac-
urate 𝛿2 can be obtained by partial pixels. 

Finally, the whole pixels of 𝐼 𝑠𝑢𝑚 and 𝐼 𝑑𝑖𝑓 are used to calculate the
nal phase as 

 = tan −1 
( 

cot 
(
𝛿

2 

)
⋅
𝐼 𝑑𝑖𝑓 − 

(
𝑎 1 − 𝑎 2 

)
𝐼 𝑠𝑢𝑚 − 

(
𝑎 1 + 𝑎 2 

)) 

− 𝛿∕2 (47)

. Comparisons of TS-PSAs in the simulations 

In order to evaluate the performance of TS-PSAs described above,
e perform lots of simulations. In the following, all computations are
erformed with the CPU of Intel(R) Core(TM) i5-8265U and the 8 GB
emory, and we use the Matlab software for coding. 

We simulate different phase distributions. The phase distri-
utions of Fig. 1 (a)-1(d) are set as 𝜑 = 5 𝜋( 𝑥 2 + 𝑦 2 ) , 𝜑 = 0 . 8 𝜋( 𝑥 2 +
 

2 ) , 𝜑 = 5 𝜋𝑥 and 𝜑 = 4 𝜋( 𝑥 2 + 𝑦 2 + 𝑥 3 + 𝑦 3 ) + 4[3 ( 1 − 𝑥 ) 2 𝑒 − 𝑥 2 − ( 𝑦 +1 ) 2 −



Y. Zhang, B. Liu and R. Liang Optics and Lasers in Engineering 161 (2023) 107327 

Fig. 1. Simulated phase distributions and phase-shifting interferograms. (a)-(b) Theoretical phase distributions corresponding to the circular fringes ((a) fringe 
number = 5, (b) fringe number = 0.8); (c)-(d) Theoretical phase distributions corresponding to the straight and complex fringes; (e)-(h) Corresponding interferograms 
related to Fig. 1 (a)-1(d); (i)-(l) Interferograms after Gaussian high-pass filtering; (m)-(p) Interferograms after subtracting the mean intensity; (q)-(t) Difference maps 
between (i)-(l) and (m)-(p); (u)-(x) Interferograms after HHT. 
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Table 1 

Acronyms of algorithms. 

Algorithm Name Acronym 

Two-step phase-shifting algorithms TS-PSAs 
TS-PSAs with background removal TS-PSAs-BR 
TS-PSAs with no background removal TS-PSAs-NBR 
TS-PSAs with background removal by Hilbert-Huang Transform TS-PSAs-BR-H 

TS-PSAs with background removal by mean intensity 
subtraction 

TS-PSAs-BR-M 

Gram-Schmidt orthonormalization method with Hilbert-Huang 
Transform 

GS-H 

Gram-Schmidt orthonormalization method with mean intensity 
subtraction 

GS-M 

Diamond diagonal vectors algorithm with Hilbert-Huang 
Transform 

DDV-H 

Diamond diagonal vectors algorithm with mean intensity 
subtraction 

DDV-M 

Extreme values of the interference algorithm with 
Hilbert-Huang Transform 

EVI-H 

Extreme values of the interference algorithm with mean 
intensity subtraction 

EVI-M 

Quotient of inner products algorithm with Hilbert-Huang 
Transform 

QIP-H 

Quotient of inner products algorithm with mean intensity 
subtraction 

QIP-M 

Coefficient of variation minimization method with 
Hilbert-Huang Transform 

CVM-H 

Coefficient of variation minimization method with mean 
intensity subtraction 

CVM-M 

Quartic polynomial equation solving algorithm with 
Hilbert-Huang Transform 

QPE-H 

Quartic polynomial equation solving algorithm with mean 
intensity subtraction 

QPE-M 

Gram-Schmidt orthonormalization and Lissajous ellipse fitting 
method 

GS&LEF 

Principal component analysis and Lissajous ellipse fitting 
method 

PCA&LEF 

Lissajous ellipse fitting and least-squares iterative algorithm LEF&LSI 
Euclidean matrix norm of sum and difference map and fast 

least-squares algorithm 

EMNSD&FLSA 
0( 1 5 𝑥 − 𝑥 3 − 𝑦 5 ) 𝑒 − 𝑥 2 − 𝑦 2 − 

1 
3 𝑒 

− ( 𝑥 +1 ) 2 − 𝑦 2 ] . In the practical situation, the
ackground intensity and modulation amplitude will be non-uniform be-
ween different pixels and variational between different interferograms,
herefore we set the background intensity and modulation amplitude
s 𝑎 𝑖 ( 𝑥, 𝑦 ) = 𝑅 𝑎 exp [ −0 . 02( 𝑥 2 + 𝑦 2 ) ] and 𝑏 𝑖 ( 𝑥, 𝑦 ) = 𝑅 𝑏 exp [ −0 . 02( 𝑥 2 + 𝑦 2 ) ] ,
nd 𝑅 𝑎 of two interferograms are respectively 1 and 0.95, 𝑅 𝑏 of two
nterferograms are respectively 0.95 and 0.9. In addition, 20 dB of noise
s added to the phase-shifting interferograms with the size of 401 × 401,
nd the phase shift between two phase-shifting interferograms is 1
ad. The 1 st interferograms corresponding to Fig. 1 (a)-1(d) are shown
n Fig. 1 (e)-1(h). Fig. 1 (e) and 1(f) are both circular fringes, but the
ringe number is different, the fringe number is respectively 5 and
.8. In addition, Fig. 1 (g) and 1(h) show straight and complex fringes
espectively. The interferograms after Gaussian high-pass filtering are
hown in Fig. 1 (i)-1(l). Moreover, we also subtract the mean intensity
o remove the background, as displayed in Fig. 1 (m)-1(p). To compare
he two background removal methods, the difference maps of interfer-
grams are shown in Fig. 1 (q)-(t). We can see that the two methods
ave similar accuracy, however, the mean intensity subtraction costs
nly 0.006 s, Gaussian high-pass filtering costs 0.127 s. Hence, we
hoose the mean intensity subtraction as a background removal method
n the following. But the mean intensity subtraction can only remove
he background, but not the noise, which will affect the accuracy
f phase reconstruction. The interferograms after HHT are shown in
ig. 1 (u)-1(x). From the processed interferograms, we can see that HHT
an filter both background and noise. However, the filtering error will
ffect the accuracy of phase reconstruction, what’s more, when there
s less than one fringe number, the filtering error is considerably large,
hich will affect the subsequent phase reconstruction. Both noise and
ltering error will affect the performance of TS-PSAs-BR, so it is worth
tudying which has more effect on the phase reconstruction. 

10 TS-PSAs are performed to reconstruct the phase, and their
cronyms are listed in Table 1 . The phase error maps corresponding
o different types of fringes are demonstrated in Figs. 2–5 . It is clear
5 
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Fig. 2. Phase error maps corresponding to the circular fringes (fringe number = 5). (a)-(f) Phase error maps after using GS-H, DDV-H, EVI-H, QIP-H, CVM-H, QPE- 
H; (g)-(l) Phase error maps after using GS-M, DDV-M, EVI-M, QIP-M, CVM-M, QPE-M; (m)-(p) Phase error maps after using GS&LEF, PCA&LEF, LEF&LSI and 
EMNSD&FLSA. 

Fig. 3. Phase error maps corresponding to the circular fringes (fringe number = 0.8). (a)-(d) Phase error maps after using GS&LEF, PCA&LEF, LEF&LSI and 
EMNSD&FLSA. 

Fig. 4. Phase error maps corresponding to the straight fringes. (a)-(f) Phase error maps after using GS-H, DDV-H, EVI-H, QIP-H, CVM-H, QPE-H; (g)-(l) Phase error 
maps after using GS-M, DDV-M, EVI-M, QIP-M, CVM-M, QPE-M; (m)-(p) Phase error maps after using GS&LEF, PCA&LEF, LEF&LSI and EMNSD&FLSA. 
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hat the accuracy of TS-PSAs-BR-M is higher than that of TS-PSAs-BR-
 because HHT can introduce filtering error. When the fringe number
f circular fringes is 0.8, TS-PSAs-BR don’t work since HHT introduces
 large filtering error, and the mean intensity subtraction requires the
ringe number to be more than one. In addition, many TS-PSAs-BR can
nly work when the fringe number is more than one due to the approx-
mation requirement. Nevertheless, TS-PSAs-NBR are effective for the
ituation with less than one fringe number because they don’t require
ackground removal, and there is no approximation in phase reconstruc-
ion. 
6 
In the following, the effect of noise on different TS-PSAs will be stud-
ed, with noise ranging from 20 dB to 50 dB. When the fringe number
s 5, Fig. 6 (a) shows the phase errors RMS of different TS-PSAs corre-
ponding to the circular fringes with different levels of noise. The ac-
uracy of TS-PSAs-BR-M is higher than that of TS-PSAs-BR-H for any
evel of noise, and the accuracy of TS-PSAs-NBR is higher than that of
S-PSAs-BR except that the noise is 20 dB. The phase errors RMS are
imilar for different TS-PSAs-BR-H with different levels of noise since
he filtering error is the main error among all errors. With the same
evel of noise, the phase errors RMS of TS-PSAs-BR-M have little differ-
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Fig. 5. Phase error maps corresponding to the complex fringes. (a)-(f) Phase error maps after using GS-H, DDV-H, EVI-H, QIP-H, CVM-H, QPE-H; (g)-(l) Phase error 
maps after using GS-M, DDV-M, EVI-M, QIP-M, CVM-M, QPE-M; (m)-(p) Phase error maps after using GS&LEF, PCA&LEF, LEF&LSI and EMNSD&FLSA. 

Fig. 6. Phase errors RMS of different TS-PSAs corresponding to the circular fringes with different levels of noise. 
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nce because noise as the main error also exists in the interferograms.
n addition, the accuracy of TS-PSAs-BR-M and TS-PSAs-NBR increases
ith the decrease of noise. When the noise exceeds 30 dB, TS-PSAs-NBR
re more accurate than TS-PSAs-BR since TS-PSAs-NBR don’t perform
ackground removal before phase reconstruction. However, when the
oise is 20 dB, GS&LEF and PCA&LEF are less accurate than TS-PSAs-
R-M, and LEF&LSI and EMNSD&FLSA are more accurate than other
S-PSAs. LEF&LSI and EMNSD&FLSA are iterative PSAs, therefore more
ccurate phase can be obtained from noisy interferograms. 

When the fringe number is 0.8, TS-PSAs-NBR also work. The phase
rrors RMS with different levels of noise are drawn in Fig. 6 (b), and the
hase errors RMS decrease with the decrease of noise. When the noise
s 20 dB, the phase errors RMS of GS&LEF and PCA&LEF are relatively
arge since they obtain the phase without any filtering and iteration, the
ffect of noise is relatively large. 

When the noise is 20 dB, the phase errors RMS of different TS-PSAs
orresponding to the circular (fringe number = 5), straight and complex
ringes are displayed in Fig. 7 (a). All TS-PSAs are suitable for different
ypes of fringes. With regard to circular fringes, the phase errors RMS
f different TS-PSAs have little difference. However, the phase error
MS of EVI-H is significantly larger than that of other TS-PSAs when

he fringe is straight. And when the fringe is complex, the phase er-
ors RMS of TS-PSAs-BR-H are much larger than those of other TS-PSAs.
ence, TS-PSAs-BR-H are more suitable for circular and straight fringes.

To evaluate the inherent error of TS-PSAs, we simulate different
ypes of fringes with perfect background intensity and modulation am-
litude. Moreover, there is no noise in the interferograms. Fig. 7 (b) dis-
lays the results. For different types of fringes, TS-PSAs-NBR can obtain
7 
he accurate phase without any error. For all types of fringes, the phase
rrors RMS of TS-PSAs-BR-H are extremely large because of the filtering
rror. The phase errors RMS of TS-PSAs-BR-M for the straight fringes
re close to zero. However, with regard to the circular and complex
ringes, there are the phase errors for TS-PSAs-BR-M, and the phase er-
ors RMS are similar. In other words, for straight fringes, the mean inten-
ity subtraction can efficiently remove the background, but for circular
nd complex fringes, the error of mean intensity subtraction is relatively
arge. Furthermore, from Fig. 7 , we can clearly see that EVI-H performs
orse than any other TS-PSAs in the situation of straight fringes, so
VI-H is unsuitable for straight fringes. 

To evaluate the effect of different phase shifts on different TS-PSAs
nd the valid phase shift range of TS-PSAs at different levels of noise,
e simulate different phase shifts in the range of 0.1 rad to 3.1 rad,
s shown in Figs. 8 and 9 . For both 20 dB and 0 dB of noise, the phase
rrors RMS of TS-PSAs-BR-H are independent of the phase shift and PSA
ince the effect of filtering error is greater than that of different phase
hifts and PSAs. When the noise is 20 dB, the curves of phase error RMS
f GS-M, DDV-M, QIP-M, CVM-M, QPE-M, LEF&LSI, EMNSD&FLSA are
elatively smooth, and the closer the phase shift is to 𝜋/2, the smaller the
hase error RMS is. But the curves of EVI-M, GS&LEF and PCA&LEF are
nsmooth. When there is no noise, the phase errors RMS are relatively
table with different phase shifts, the phase errors RMS increase only
hen the phase shift is close to 0 or 𝜋. Moreover, the curves of PCA&LEF
nd LEF&LSI are unsmooth even without noise. 

There is an interesting phenomenon that, when the noise is 20 dB,
he phase errors RMS of GS-M, DDV-M, QIP-M, CVM-M, QPE-M with the
hase shift ranging from 0.8 rad to 2.4 rad are less than those of GS-H,
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Fig. 7. Phase errors RMS of different TS-PSAs with different types of fringes. 
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DV-H, QIP-H, CVM-M, QPE-H, for other phase shifts, the conclusion is
pposite. The reason for the above phenomenon is that the noise has a
reater effect on GS-M, DDV-M, QIP-M, CVM-M, QPE-M when the phase
hift approaches 0 or 𝜋. Although EVI doesn’t have the same conclusion,
he curve trend is similar to that of other TS-PSAs-BR. When there is no
oise, the phase errors RMS of GS-M, DDV-M, CVM-M, QPE-M are less
han those of GS-H, DDV-H, CVM-H, QPE-H for any phase shift. And,
IP-M and EVI-M are more accurate than QIP-H and EVI-H except for

ndividual phase shifts. The reason why different levels of noise lead to
ifferent conclusions is that mean intensity subtraction can’t eliminate
oise. 

For TS-PSAs-NBR, when the noise is 20 dB, the phase errors RMS of
EF&LSI and EMNSD&FLSA are similar and less than those of GS&LEF
nd PCA&LEF because LEF&LSI and EMNSD&FLSA are iterative PSAs
hat can obtain more accurate phase from noisy interferograms. Nev-
rtheless, when there is no noise in the interferograms, the phase er-
ors RMS of PCA&LEF and EMNSD&FLSA are larger than those of
S&LEF and LEF&LSI, indicating that the effect of non-uniform and vari-
tional background intensity and modulation amplitude on PCA&LEF
nd EMNSD&FLSA is larger than that on GS&LEF and LEF&LSI. LEF&LSI
erforms better than other TS-PSAs-NBR for both 20 dB and 0 dB of
oise. 

Further, we discuss the valid phase shift range of different TS-PSAs.
hen the noise is 20 dB, the phase shift ranges of TS-PSAs-BR-H which

re 2.4 rad are larger than those of TS-PSAs-BR-M and TS-PSAs-NBR
ince HHT filters most of the noise, then increases the valid phase shift
ange. For TS-PSAs-BR-M and TS-PSAs-NBR, the phase shift range of
S&LEF which is 1.9 rad is the least, and EMNSD&FLSA has the largest
hase shift range which is 2.2 rad, other TS-PSAs have the same phase
hift range which is 2.1 rad. When there is no noise, the phase shift
anges of GS-M, DDV-M, QIP-M, CVM-M and TS-PSAs-NBR which are
.9 rad are larger than those of TS-PSAs-BR-H which are 2.6 rad since
he filtering error affects the phase shift range, and the phase shift ranges
f EVI-M and QPE-M are relatively small due to the algorithm itself. In
ddition, the valid phase shift ranges of all TS-PSAs for the interfero-
rams with no noise are larger than those for the interferograms with
0 dB of noise. 

To summarize, when the noise in the interferograms is large, it is best
o choose the TS-PSAs-BR-H, LEF&LSI and EMNSD&FLSA with phase
hifts close to 𝜋/2. Moreover, when there is less noise or no noise, TS-
SAs-BR-M and TS-PSAs-NBR with phase shifts away from 0 and 𝜋 are
ore suitable. 

Different fringe numbers are simulated to analyze the performance
nd effective fringe number range of different TS-PSAs. The fringe num-
er range is set between 0.2 and 5. Note that 5 is not the maximum
ringe number, most PSAs will work with more fringe number. We both
imulate the situations with 20 dB and 0 dB of noise, Figs. 10 and 11
how the results. It can be seen that TS-PSAs-BR-M are more accurate
8 
han TS-PSAs-BR-H except GS in the situation of 20 dB of noise. When
here is no noise, TS-PSAs-BR-H perform poorly for several fringe num-
ers because HHT may introduce relatively large error in some situa-
ions. When the noise is 20 dB, LEF&LSI and EMNSD&FLSA perform
etter and are more stable than other TS-PSAs. When there is no noise,
S&LEF, LEF&LSI and EMNSD&FLSA are relatively stable and perform
etter than other TS-PSAs, moreover, EMNSD&FLSA performs slightly
orse than GS&LEF and LEF&LSI. 

From Figs. 10 (h) and 11(h), we can conclude that the effective fringe
umber range of TS-PSAs-BR is independent of noise. The effective
ringe number range of TS-PSAs-BR-H is from 1.4 to 5.0, and the ef-
ective fringe number range of TS-PSAs-BR-M is from 1.2 to 5.0. The
ffective fringe number range of TS-PSAs-NBR is larger than that of TS-
SAs-BR because HHT introduces a larger error when the fringe number
s less than one, and the mean intensity subtraction requires more than
ne fringe number. Moreover, some TS-PSAs-BR also require more than
ne fringe number due to the approximation. For TS-PSAs-NBR except
MNSD&FLSA, since no filtering is performed, the noise will affect the
ffective fringe number range. The effective fringe number range is from
.2 to 5 in the situation of no noise, and it is from 0.6 to 5 in the situation
f 20 dB of noise. When there is no noise, the effective fringe number
ange of EMNSD&FLSA is from 0.4 to 5.0, which is slightly smaller than
hat of other TS-PSAs-NBR, the possible reason is that sometimes the
pproximation of Eq. (42) could affect the accuracy of iteration. 

In addition, when the noise is 20 dB, and there are more than 3
ringe number, the phase errors RMS of TS-PSAs-BR are more stable.

hen there is more than one fringe number, the phase errors RMS of
EF&LSI and EMNSD&FLSA are more stable. And the phase errors RMS
f GS&LEF and PCA&LEF are unstable in the whole range of fringe num-
er. When there is no noise, and the fringe number is larger than 2,
S-PSAs-BR-H performs stably, however, TS-PSAs-BR-M sometimes per-
orm unstably. When the fringe number is larger than one, TS-PSAs-NBR
xcept PCA&LEF perform stably. Overall, the effective fringe number
ange of TS-PSAs-NBR is larger than that of TS-PSAs-BR, and LEF&LSI
utperforms other TS-PSAs in terms of different fringe numbers and ef-
ective fringe number range. 

The efficiency of PSA is as important as its accuracy, hence we cal-
ulate the computational time of different TS-PSAs corresponding to the
ircular fringes, as displayed in Fig. 17 and Table 2 . Except CVM-H and
PE-H, the computational time of TS-PSAs-BR-H is similar, because HHT

akes the most time. And CVM-H and QPE-H cost more time since the
hase shift search also costs lots of time. TS-PSAs-BR-M cost less time
han TS-PSAs-BR-H because the mean intensity subtraction takes almost
o time, and CVM-M and QPE-M spend the major time on searching the
hase shift. LEF&LSI costs the most time for all TS-PSAs because of the
rocess of LSI. Although EMNSD&FLSA is also an iterative algorithm, it
akes very little time since only a limited number of pixels are selected
o take part in the iterative process. In addition, GS&LEF and PCA&LEF
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Fig. 8. (a)-(g) Phase errors RMS of different TS-PSAs corresponding to the circular fringes with different phase shifts and 20 dB of noise; (h) The valid phase shift 
range of different TS-PSAs with 20 dB of noise. 
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ost the similar amount of time because LEF takes up most of the time.
s a whole, the computational time in descending order is: LEF&LSI,
VM-H and QPE-H, TS-PSAs-BR-H except CVM-H and QPE-H, CVM-M
nd QPE-M, GS&LEF and PCA&LEF, EMNSD&FLSA, and TS-PSAs-BR-M
xcept CVM-M and QPE-M. 
9 
. Comparisons of TS-PSAs in the experiments 

Experimental data are also used to compare the performance of
S-PSAs. Three groups of experiments corresponding to the circular,
traight and complex fringes are carried out respectively. Four phase-
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Fig. 9. (a)-(g) Phase errors RMS of different TS-PSAs corresponding to the circular fringes with different phase shifts and no noise; (h) The valid phase shift range 
of different TS-PSAs with no noise. 
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hifting interferograms with phase shifts of 0, 𝜋/2, 𝜋, and 3 𝜋/2 for each
xperiment are captured by the snapshot phase-shifting interferometer.
he phase shift error is relatively small because only a single image
napshotted is extracted by the polarization camera, then the accurate
hase calculated by standard 4-step PSA can be used as the reference
hase. Fig. 12 (a)-12(f) shows the reference phase distributions and 1 st 

hase-shifting interferograms corresponding to the circular, straight and
omplex fringes. Fig. 12 (g)-12(l) displays the interferograms after HHT
10 
nd mean intensity subtraction. The image quality of interferograms af-
er HHT is significantly improved. However, the image quality of in-
erferograms after mean intensity subtraction is the same as that of the
riginal interferograms. 

We use the first two phase-shifting interferograms for phase recon-
truction, the phase error maps are plotted in Figs. 13-15 , and the phase
rrors RMS of different TS-PSAs with different types of fringes are dis-
layed in Fig. 16 . Generally, the experimental conditions are more com-
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Fig. 10. (a)-(g) Phase errors RMS of different TS-PSAs corresponding to the circular fringes with different fringe numbers and 20 dB of noise; (h) The effective fringe 
number ranges of different TS-PSAs with 20 dB of noise. 

11 
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Fig. 11. (a)-(g) Phase errors RMS of different TS-PSAs corresponding to the circular fringes with different fringe numbers and no noise; (h) The effective fringe 
number ranges of different TS-PSAs with no noise. 
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lex than the simulated ones. Hence, some PSAs with strict requirements
n the quality of the interferogram don’t work in the experiments, for
xample, EVI-M doesn’t work for circular and complex fringes in the ex-
eriments. But EVI-H is effective in any case because HHT can improve
he quality of the interferogram. Because the fringe number is more than
ne for all types of fringes in the experiments, TS-PSAs except EVI-M
ork well. 
12 
By comparing different TS-PSAs in the experiments, we can get simi-
ar conclusions to the simulations. The phase errors RMS of TS-PSAs-BR-
 are similar. The performance of TS-PSAs-BR-M is similar with regard

o the circular and complex fringes. Nevertheless, when the fringes are
traight, EVI-M and QPE-M perform worse than other TS-PSAs-BR-M.
ith regard to TS-PSAs-NBR, different types of fringes give different

onclusions, TS-PSAs-NBR with circular fringes have similar accuracy.
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Fig. 12. Experimental phase distributions and phase-shifting interferograms. (a)-(c) Reference phase distributions corresponding to the circular, straight and complex 
fringes reconstructed by 4-step PSA; (d)-(f) Corresponding interferograms related to Fig. 12 (a)-12(c); (g)-(i) Interferograms after HHT; (j)-(l) Interferograms after 
subtracting the mean of the interferogram. 

Fig. 13. Phase error maps corresponding to the circular fringes in the experiments. (a)-(f) Phase error maps of GS-H, DDV-H, EVI-H, QIP-H, CVM-H, QPE-H; (g)-(k) 
Phase error maps of GS-M, DDV-M, QIP-M, CVM-M, QPE-M; (l)-(o) Phase error maps of GS&LEF, PCA&LEF, LEF&LSI and EMNSD&FLSA. 

13 
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Fig. 14. Phase error maps corresponding to the straight fringes in the experiments. (a)-(f) Phase error maps of GS-H, DDV-H, EVI-H, QIP-H, CVM-H, QPE-H; (g)-(l) 
Phase error maps of GS-M, DDV-M, EVI-M, QIP-M, CVM-M, QPE-M; (m)-(p) Phase error maps of GS&LEF, PCA&LEF, LEF&LSI and EMNSD&FLSA. 

Fig. 15. Phase error maps corresponding to the complex fringes in the experiments. (a)-(f) Phase error maps of GS-H, DDV-H, EVI-H, QIP-H, CVM-H, QPE-H; (g)-(k) 
Phase error maps of GS-M, DDV-M, QIP-M, CVM-M, QPE-M; (l)-(o) Phase error maps of GS&LEF, PCA&LEF, LEF&LSI and EMNSD&FLSA. 

Fig. 16. Phase errors RMS of different TS-PSAs with different types of fringes 
in the experiments. 
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or straight and complex fringes, TS-PSAs-NBR except PCA&LEF also
ave similar accuracy, and PCA&LEF performs worse. In addition, TS-
SAs-NBR except PCA&LEF are superior to TS-PSAs-BR in the situation
f straight and complex fringes. 
14 
We also evaluate the computational time of different TS-PSAs corre-
ponding to the circular fringes in the experiment, as shown in Fig. 17
nd Table 2 . The computational time of the simulations and experiments
s not similar due to the different number of pixels. In terms of compu-
ational time, similar results are obtained from simulations and experi-
ents. 

. Conclusions 

We demonstrated the performance comparison of well-reputed TS-
SAs with unknown phase shift. We compared different TS-PSAs with
ifferent types of fringes, different levels of noise, different phase shifts,
ifferent fringe numbers and computational time in the simulations. To
erify the correctness of the simulations, three different types of fringes
ere also used to compare different TS-PSAs in the experiments. We
ivided TS-PSAs into two types, one is TS-PSAs-BR, the other one is TS-
SAs-NBR. Moreover, TS-PSAs-BR can also be divided into two types,
ne is TS-PSAs-BR-H, and the other one is TS-PSAs-BR-M. Both HHT and
ean intensity subtraction aim to remove the background, but HHT can

lso filter the noise. 
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Fig. 17. Computational time of different TS-PSAs correspond- 
ing to the circular fringes in the simulations and experiments 
(s). 

Table 2 

Computational time (s). 

Simulation 
(401 × 401 pixels) 

Experiment 
(301 × 301 pixels) 

GS-H 2.733 1.605 
GS-M 0.011 0.006 
DDV-H 2.718 1.576 
DDV-M 0.009 0.005 
EVI-H 2.771 1.555 
EVI-M 0.011 –
QIP-H 2.781 1.605 
QIP-M 0.007 0.005 
CVM-H 5.041 2.018 
CVM-M 2.407 0.479 
QPE-H 4.107 2.877 
QPE-M 1.394 1.427 
GS-LEF 0.889 0.599 
PCA-LEF 0.899 0.616 
LEF-LSI 6.676 2.936 
EMNSD&FLSA 0.085 0.099 

 

o  

a  

d
 

t  

c  

t  

a  

t  

m  

d  

t  

T  

P  

q  

f  

G  

p  

d  

n  

G  

o  

G  

L  

f  

a  

r  

t  

t  

t  

t  

c
 

g  

i  

T

C

Table 3 presents the results of the comparison, and we rate the grade
f performance as good, medium and poor. Note that these TS-PSAs
re all well-reputed algorithms, and the grade is only set for comparing
ifferent TS-PSAs. 

In summary, TS-PSAs-H have the largest valid phase shift range, and
hey are almost insensitive to phase shifts. However, they are less ac-
urate than other TS-PSAs with different levels of noise and different
ypes of fringes, and they have the smallest fringe number range. They
able 3 

omparison of performance with regard to TS-PSAs (G, M and P are the grades of pe

Different noise Different types of fringes Different phase shi

G M P G M P G M P

GS-H △ △
√

GS-M ○ ○ ○
DDV-H △ △

√
DDV-M ○ ○ ○
EVI-H △ △

√
EVI-M △ △ △
QIP-H △ △

√
QIP-M ○ ○ ○
CVM-H △ △

√
CVM-M ○ ○ ○
QPE-H △ △

√
QPE-M ○ ○ ○
GS-LEF ○ △ △
PCA-LEF ○ △ ○
LEF-LSI 

√ √
○

EMNSD&FLSA 
√ √

○

15 
lso performed worse in the experiments, and they cost relatively more
ime due to filtering. TS-PSAs-BR-M except EVI-M have medium perfor-
ance in terms of different levels of noise, different types of fringes,
ifferent phase shifts and different fringe numbers, and they performed
he same in the experiments. Their valid phase shift range is less than
S-PSAs-BR-H, and their effective fringe number range is less than TS-
SAs-NBR, but they cost the least time. EVI-M is an algorithm that re-
uires high-quality interferograms, so sometimes it doesn’t work or per-
orms poorly. TS-PSAs-NBR have the largest fringe number range, and
S&LEF performs moderately in terms of different levels of noise, ex-
eriments and computational time, but it performs poorly in terms of
ifferent types of fringes, and its valid phase shift range with 20 dB of
oise is minimum. The performance of PCA&LEF is similar to that of
S&LEF, but the valid phase shift range of PCA&LEF is larger than that
f GS&LEF, and in the experiments, PCA&LEF didn’t perform as well as
S&LEF since PCA&LEF is more susceptible to complex environment.
EF&LEI and EMNSD&FLSA perform similarly, and they do best in dif-
erent levels of noise, different types of noise, different fringe numbers
nd experiments. When there is 20 dB of noise, their valid phase shift
ange is less than TS-PSAs-BR-H. However, there is a huge difference in
heir computational time, EMNSD&FLSA costs very little time, LEF&LSI
akes the most time of any TS-PSA because LEF&LSI uses all pixels to
ake part in the calculation. If we choose a limited number of pixels to
ake part in the iterative process of LEF&LSI, their computational time
an be reduced. 

Through the above analysis, if we rank TS-PSAs by performance, the
rades are divided into five levels. Grade 1 is the best, and Grade 5
s the worst, the results are listed in Table 4 . Although these TS-PSAs
rformance corresponding to good, medium and poor). 

fts Different fringe numbers Experiments Computational time 

 G M P G M P G M P 

△ △ ○
○ ○

√
△ △ ○

○ ○
√

△ △ ○
○ △

√
△ △ ○

○ ○
√

△ △ △
○ ○ ○

△ △ △
○ △ ○√

○ ○√
△ ○√ √

△√ √ √
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Table 4 

The grades of all TS-PSAs. 

Grade 1 2 3 4 5 

TS-PSAs EMNSD&FLSA LEF&LSI GS-M 

DDV-M 

QIP-M 

CVM-M 

QPE-M 

GS-LEF 
PCA-LEF 

GS-H 

DDV-H 

EVI-H 

QIP-H 

CVM-H 

QPE-H 

EVI-M 
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106543 . 
re classified into different levels, they are suitable for different situa-
ions. TS-PSAs-BR-H are suitable for situations with lots of noise, large
ringe number and relatively random phase shift. TS-PSAs-BR-M are ap-
ropriate for situations with large fringe number, moderate phase shift
nd little noise, and GS-M, DDV-M, EVI-M and QIP-M are also suitable
or in-situ measurement. GS&LEF and PCA&LEF are suitable for situ-
tions with little noise, moderate phase shift and relatively arbitrary
ringe number. LEF&LSI and EMNSD&FLSA are appropriate for situa-
ions with lots of noise, moderate phase shift and relatively arbitrary
ringe number. In addition, EMNSD&FLSA is also suitable for in-situ
easurement. 

We can see that different background removal methods have dif-
erent effects on TS-PSAs-BR, these TS-PSAs themselves are excellent.
owever, HHT introduces a large filtering error, and it takes lots of time.
oreover, the mean intensity subtraction can’t remove the noise, there-

ore TS-PSAs-BR-M are susceptible to noise. TS-PSAs-NBR don’t need to
emove the background, hence they are not affected by the background
emoval methods. However, GS&LEF and PCA&LEF perform very ordi-
arily since the noise will affect them, and there is no iteration to reduce
he effect of noise. LEF&LSI and EMNSD&FLSA are two iterative TS-
SAs. General iterative PSAs have higher accuracy but low efficiency,
EF&LSI really is, but EMNSD&FLSA can achieve both high accuracy
nd high efficiency. 

In the future, we should aim at improving background removal meth-
ds to remove the background with high accuracy and high efficiency
or TS-PSAs-BR, saving iterative time and ensuring iterative accuracy for
terative TS-PSAs-NBR, and the enlargement of valid phase shift range
s also essential for TS-PSAs-NBR. 
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