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Abstract

Air traffic systems are of great significance to our society.

However, air traffic systems are extremely complicated

since an air traffic system encompasses many compo-

nents which could evolve over time. It is therefore

challenging to analyze the evolution dynamics of air

traffic systems. In this paper we propose a graph

perspective to trace the spatial‐temporal evolutions of

air traffic systems. Different to existing studies which are

model‐driven and only focus on certain properties of an

air traffic system, in this paper we propose a data‐driven
perspective and analyze a couple of properties of an air

traffic system. Specifically, we model air traffic systems

with both unweighted and weighted graphs with respect

to real‐world traffic data. We then analyze the evolution

dynamics of the constructed graphs in terms of nodal

degrees, degree distributions, traffic delays, causality

between graph structures and traffic delays, and system

resilience under airport failures. To validate the effective-

ness of the proposed approach, a case study on the

American air traffic systems with respect to 12‐month

traffic data is carried out. It is found that the structures

and traffic mobilities of the American air traffic systems

do not evolve significantly over time, which leads to the

stable distributions of the traffic delays as evidenced by a

causality analysis. It is further found that the American
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air traffic systems are quite robust to random airport

failures while, respectively, 20% and 10% failures of the

hub airports will lead to the collapse of the entire system

with respect to the two proposed cascading failure

models.

KEYWORD S

air traffic system, airport networks, evolution dynamics, graph
theory, spatial‐temporal networks

1 | INTRODUCTION

Traveling is part of daily lives. Everyday people travel from one place to another, either for
work or for leisure. Among all travel means, air transport plays an important role in
transportation.1–3 Air transport services are provided by the air transport systems which are
very complicated as they encompass many components such as airports, airways, airspaces, etc.
Note that the components of an air traffic system usually interact with each other and they can
evolve over time.4 As a consequence, an air traffic system is spatially and temporally evolving.
It is of great significance to trace the spatial‐temporal evolutions of air traffic systems as such
tracing can provide scientific supports to traffic managers for their decision makings.5–7

Since air traffic systems are extremely complicated, it is therefore challenging to build a holistic
view toward their evolution dynamics.4,8 Scientists have made tremendous efforts to achieve this
goal. In the literature, the most efficient and effective way for tracing the evolution dynamics of air
traffic systems is based on graph theories.9 A graph, also known as a network, is composed of a set
of nodes and edges. By modeling a complex system as a network is every straightforward as the
nodes and edges of the network can depict the structural properties of the studied system.10,11 The
most important thing is that modeling a complex system as a network can provide a systemic view
toward the understanding of the focal complex system.12–14

To trace the spatial‐temporal evolution dynamics of air traffic systems, scientists normally
model the air traffic systems as spatial‐temporal networks and then apply network theories to probe
the evolution dynamics of the modeled air traffic systems. In Ref. [8], the authors reviewed studies
on complex networks for air traffic system modeling and analysis. However, studies as surveyed in
Ref. [8] only deal with static networks. Meanwhile, only basic network properties such as nodal
degrees, betweenness, shortest path, etc., are discussed. The authors in Ref. [15] investigated the
evolution dynamics of air traffic systems by applying network theories and evaluated traffic
complexity using clustering methods. The research in Ref. [16] provided a systemic view of the
dynamics of air transport networks with a focus on traffic delay. The authors in Ref. [17]
investigated the evolution of air traffic systems long time ago. But they focused on the evolution of
nodal degrees over time. The very recent work in Ref. [18] proposed highly effective spatial‐
temporal network models for air traffic systems. But the authors only paid attention to the
propagation dynamics of the traffic delays. Another recent work in Ref. [19] investigated network
theories with applications to air traffic systems. However, the focus of that work is also on traffic
delays. Apart from delays, the work in Ref. [20] investigated the reliability of air traffic systems from
the viewpoint of complex networks, while the work in Ref. [21] applied dynamic weighted network
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models to measure the air traffic complexity. An earlier work dealing with network topologies with
air traffic system evolution can be found in Ref. [22].

Although a couple of studies have been carried out to analyze the evolution dynamics of air
traffic systems based on network theories, existing studies mainly have two drawbacks. First,
existing studies mainly pay attention to a certain property of the constructed networks,
therefore cannot present a holistic view towards the system dynamics. For example, the work in
[18] mainly deals with the delay property of the networks. This drawback limits the real‐world
applications of existing studies. Second, which is also the key drawback, is that existing studies
normally are model‐driven. In other words, existing studies mainly apply network models and
seldom take into account real‐world traffic data. As a result, existing studies normally model air
traffic systems using unweighted networks. For example, the work in Ref. [1,3] only deals with
unweighted airport and airway networks. Therefore, research findings of existing studies may
not capture the real evolution dynamics of air traffic systems.

To overcome the drawbacks of existing studies, in this study we propose to analyze the
evolution of air traffic systems by modeling both spatial‐temporal unweighted and weighted
networks. Unweighted networks help capture the structural properties of the modeled air
traffic systems, while weighted networks help capture the traffic properties of the systems.

To trace the evolution dynamics of air traffic systems, we propose to analyze the dynamic
properties of the constructed networks in terms of a couple of network key performance
indicators including node degrees, degree distributions, traffic delays on the networks, and
network resilience under attacks. To validate whether the proposed network‐based approach is
feasible or not for tracing the evolution of air traffic systems, we carry out a case study on the
American air traffic systems. We construct spatial‐temporal airport networks with respect to a
12‐month real‐world traffic data recording the domestic flights of America for the year 2019.
We discover that both the degree distributions and the delay distributions do not change to
much over the 12 months. We further adopt three typical similarity indices. We calculate the
similarities between each pair of the unweighted matrices corresponding to the unweighted
airport networks. We do the same to the weighted networks. We discover that the similarities
between the unweighted networks and the similarities between the weighted networks are
quite high. This indicates that both the American airport network structures and the traffic
mobilities are stable over the 12 studied months. This accounts for the phenomenon why the
distributions of the nodal degrees and the delays do not change significantly over time. We also
investigate the resilience of the airport networks to the failures of airport. We discover that the
American airport networks are robust to random failures of airports. However, if 20% of their
hub airports are failed, then the entire traffic systems will collapse.

The remainder of the paper is structured as follows. Section 2 presents the related
backgrounds for this study. Section 3 describes in detail the investigated research problem and
the proposed research methodology. Section 4 demonstrates the experimental studies on the
American air traffic systems, and Section 5 concludes the paper.

2 | RELATED BACKGROUNDS

2.1 | Graph representation for networks

A graph is a straightforward way for modeling complex networks and networked systems.23–27

A graph is composed of nodes or vertices and edges. Generally, a graph is denoted by
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G V E= { , }. The symbolsV and E represent the sets of nodes and edges, respectively. Normally,
the number of nodes and edges are respectively denoted by  n V= and  m E= in which the
notation  · represents the cardinality.

A graph describes the complex relationships between the nodes of a system by the edges.
Each edge corresponds to two nodes. The relationships between two nodes such as information
transformation can be depicted by the properties of the edge. Very often, the edge properties are
represented by the so‐called adjacency matrix A a= { }n n ij× of a graph G. The matrix A can be
either symmetric or asymmetric, depending on how one models the specific network or a
networked system.

2.2 | Air traffic systems and modeling

Air traffic system is very complex.28,29 An air traffic system involves many components which
include the aerodromes, runways, terminal airspaces, en‐route airspaces, controllers, aircraft,
and so forth. These components interact with each other and the interactions are usually in a
nonlinear mode. Changes on particular components and/or the interactions between the
components can propagate throughout the entire system, causing great difficulties for tracing
and analyzing the systemic dynamics of the air traffic system.

To build a systemic view of the complicated air traffic system, complex network modeling is
a promising approach. A complex air traffic system can be modeled by a network.30 The nodes
of the network can be the components of an air traffic system while the edges between the
nodes can be the relations between the components. For example, one can take an airport as a
node and an edge can be established between two airports if there are flights between those two
airports. By modeling a complex air traffic system as a complex network, one can build a
systemic view of the entire traffic system.

2.3 | Representation of spatial‐temporal networks

For some networks like airport networks, their nodes contain location information and their
edges and even their nodes could change over time. In network science domain, such networks
are called spatial‐temporal networks.31,32

Since a spatial‐temporal network is changing with the time, to trace its dynamics, one needs
first to model it. In the literature, there are two ways to model a spatial‐temporal network.33

The two ways are shown in Figure 1.
In Figure 1A, a spatial‐temporal network is modeled as a sequence of networks. Specifically,

a spatial‐temporal network Gst
t over a time period t t t= [ , ]a b can be modeled as

{ }G G i= = 1, 2, …st
t

st
ti (1)

in which Gst
ti is the spatial‐temporal network at time t ti ∈ . Note that ti can represent a certain

time point or a time period.
Representing a spatial‐temporal network using the way shown in Figure 1A is very

straightforward. However, such a representation does not provide a quick visual clue for the
dynamics of the network. In view of this, in the literature there is another way to represent a
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spatial‐temporal network. As shown in Figure 1B, a spatial‐temporal network is modeled as a
sequence of temporal edges. Specifically, a spatial‐temporal network Gst

t can be modeled as
G E i= { = 1, 2, …}st

t
st
ti in which Est

ti is the set of edges at time t ti ∈ .

3 | RESEARCH PROBLEM AND METHODOLOGY

This study is dedicated to adopting graph theories to trace the spatial‐temporal evolution of
complex air traffic systems. This study aims to provide a systemic view towards complex air
traffic systems such that the corresponding findings can assist aviation decision makers with
their decision making process. In what follows, we present the detailed research problem and
the corresponding methodology based on graph theories.

3.1 | Research problem description

Given a complex air traffic system which mainly involve airports and the traffic mobility, we
aim to answer the following two research questions:

1. How can we analyze the evolution of the air traffic system given the fact that the system is
spatially and temporally evolving over time?

2. What quantitative properties could be considered to trace the evolution dynamics of the
system?

(A)

(B)

FIGURE 1 Illustrations of the two typical ways for modeling a spatial‐temporal network. (A) The network
sequence way in which a spatial‐temporal network is represented by a sequence of graphs over time. (B) The
temporal edge sequence way in which a spatial‐temporal network is represented by a sequence of edges over
time. [Color figure can be viewed at wileyonlinelibrary.com]
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The first research question actually explores the promising methods for tracing the
evolution dynamics of complex air traffic systems. The second research question focuses on
the detailed key performance index for quantifying the evolution dynamics of air traffic
systems.

3.1.1 | System modeling

To answer the first question raised above, we need to model a complex air traffic system in a
scientific way such that its dynamics can be traced and analyzed. In view of this, we propose to
represent a complex air traffic system using a spatial‐temporal network.

When mapping an air traffic system into a network, we respectively use nodes and edges
to denote the components comprising the system and the interactions between the
components. More importantly, we construct spatial‐temporal networks for an air traffic
system. Note that we adopt the first method as shown in Figure 1A to represent a
spatial‐temporal network.

In the literature, most spatial‐temporal network modeling for complex systems deals with
unweighted and undirected networks,16,18 which is not appropriate for air traffic system. This is
because that an unweighted and undirected network modeling cannot reflect the true
properties of the system. Different to existing studies, we in this study model an air traffic
system using weighted and directed networks.

3.1.2 | System properties

After constructing a directed and weighted spatial‐temporal network for an air traffic system,
then it comes to the second question, that is, what properties of the network we should consider
in the subsequent analysis. In this study, we propose to analyze the following properties of the
constructed spatial‐temporal networks.

In‐/out‐degree: For a given network, the degree of a node represents the edges associated
with the node. For the constructed airport networks, we analyze the in‐degrees (edges pointing
to a node) and out‐degrees (edges pointing from a node) of the airports to build a microscopic
view at the airport level of the focal networks.

Degree distribution: The degree distribution measures how the degrees of the nodes of an
airport network are distributed. We analyze the degree distribution to build a holistic view of
the structural organization of the focal network.

Traffic delay distribution: For air traffic, delay is an important indicator of the performance
of the air traffic systems. We analyze the delay distribution to obtain a systemic view toward the
overall efficiency of an air traffic system.

Adjacency matrix similarity: The similarity between two adjacency matrices measures how
two networks are structurally similar. We analyze the similarity between a pair of adjacency
matrices to see whether a high structural similarity leads to similar distributions of the traffic
delay.

Network resilience: For an airport network, it is very important to assure a high resilience of
the network in the face of perturbations such as attacks and/or airport closures. We investigate
the resilience of the constructed airport networks to assist network managers with better air
traffic system planning.

8026 | HU ET AL.
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3.2 | Spatial‐temporal network construction

When constructing a spatial network, we construct the directed and weighted edges between
the nodes in the following way. If a flight, say flight with tail number N311DN, departs from
airport SLC to airport LAS, then we construct a directed edge pointing from node representing
airport SLC to node representing airport LAS. For a given time period t , if the aircraft N311DN
flies from SLC to LAS for 10 times, then the weight for the directed edge SLC–LAS is 10.

Based on the above method we can get an asymmetric and weighted adjacency matrix
aA = { }wtd

t
ij
t representing the directed and weighted airport networkGwtd

t for time period t. Note

that in this study we construct both weighted and unweighted networks. The adjacency matrix
bB = { }uw

t
ij
t for the unweighted network Guw

t corresponding to Gwtd
t is calculated as follows:




 ( )b

B A A

B

= +

> 0 = 1ij
t

T

(2)

in which AT is the transpose of A. We set every non‐zero elements in B obtained via the first
equation to be 1 so as to obtain the finally binary matrix B.

3.3 | Degree calculation

For a given weighted network Gwtd
t with n nodes, we use di t

in
, and di t

out
, to denote the in‐degree

and out‐degree of node i in networkGwtd
t . The degrees di t

in
, and di t

out
, are respectively calculated as

d a= ,i t
in

j

n

ji
t

,
=1

(3)

d a= .i t
out

j

n

ij
t

,
=1

(4)

For a given unweighted network Guw
t , since it is undirected and the adjacency matrix is

symmetric, we therefore do not distinguish the in‐degree and out‐degree. We calculate the
degree ki t, of node i as

k b= .i t

j

n

ij
t

,

=1
(5)

3.4 | Degree distribution analysis

After getting the spatial‐temporal airport networks Guw
t and Gwtd

t , we calculate the degree for
each node of the networks. Then we get the in‐degree and outdegree sequences

{ }d d i n= [1, ] ,t
in

i t
in
, ∈ (6)
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{ }d d i n= [1, ] .t
out

i t
out
, ∈ (7)

Analogously, we can have k k i n= { [1, ]}t i t, ∈ . We then analyze the probability
distributions P d( )i t, and P k( )i t, for the degrees.

3.5 | Delay distribution analysis

When constructing the edges of the spatial‐temporal networks, we also record the traffic delays
on the edges. Then for a given weighted and directed network Gwtd

t , we get to know the arrival
delay sequence as

{ }φ φ i j n= , [1, ] .arr
t

arr
i j t, , ∈ (8)

Analogously, we have the departure delay sequence as

{ }ψ ψ i j n= , [1, ] .dep
t

dep
i j t, , ∈ (9)

The symbol φarr
i j t, , represents the arrival delay for flight flying from airport i to airport j at

given time period t . Analogously, the symbol ψdep
i j t, , is the departure delay. We than analyze the

probability distributions P φ( )arr
i j t, , and P ψ( )dep

i j t, , .

3.6 | Matrix similarity calculation

For a given pair of networks, we calculate the similarity between the two adjacency matrices to
investigate the structural similarity of the two networks. To do so, we adopt three widely used
similarity indices, i.e., Cosine index, Pearson Correlation Coefficient, and Tanimoto Coefficient.

Given two vectors x x x x= ( , , …, )n1 2 and y y y y= ( , , …, )n1 2 with same length of n, the
calculations of the similarities between the two vectors with respect to the four indices are
given as follows:

  
xy

x y
S = ,Cosine

T

(10)


 S

x x y y

x x y y
=

( − )( − )

( − ) ( − )
,i

n
i i

i
n

i i
n

i

Pearson
2 2 (11)

   
xy

x y xy
S =

+ −
.Tani

T

2 2 T (12)

In the above equations, x and y represent the mean of x and y, and  · represents the norm
of a vector. To calculate the similarity between a pair of matrices, we first turn the matrices into
vectors by stretching the square matrices into row vectors. We then calculate the similarities
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between the two rows vectors using the above mentioned metrics. The larger the value of the
similarity index, the more similar the two vectors in a hyper‐plane space.

Note that there are a dozen of similarity indices in the literature.34–36 In this study we only
adopt three of them. This main reason is that the above four indices will yield smaller values of
the similarities than other indices like Euclidean distance do without any need of vector
normalization. This is because that we construct weighted networks and the values of the
elements of the stretched vectors could be very large.

3.7 | Network resilience analysis

We investigate the resilience of both unweighted and weighted airport networks under
perturbations. In the literature, there are two ways to investigate the resilience of complex
networks, that is, the resilience of complex networks under node failures and the resilience of
complex networks under edge failures. In this study, we investigate the resilience of airport
networks under node failures instead of edge failures because node (airport) failures can cause
greater disasters than edges do.

3.7.1 | Node failure model

To quantify the resilience of airport networks under node failures, first we need to simulate the
situation of airport failures. For a given airport networkG, we assume that q fraction of airports
are failed. Putting it another way, we need to remove q fraction of nodes of network G. How to
choose the q fraction of nodes is critical as it affects the resilience of G in terms of the four
metrics shown above. In this study, we adopt three widely used node failure models which are
explained below.

Mode 1 Random Failure. Literally, this model choose the q fraction of nodes from G

randomly.
Mode 2 From maximum degree nodes to minimum degree node. This model sorts the

nodes by their degree in a descend order and choose the former q fraction of nodes.
Mode 3 From minimum degree nodes to maximum degree node. This model sorts the

nodes by their degree in a ascend order and choose the former q fraction of nodes.

3.7.2 | Cascading failure model

When q fraction of nodes are removed from a network G, cascading failures could happen, i.e,
other nodes may also fail because of the failure of the q fraction of nodes. In this paper we
propose the following cascading failure model.

Model 1—Undirected network scenario. For a given undirected networkG, we detach all the
edges previously connected to the q fraction of nodes of networkG. Model 1 is in line with
the models used by existing studies in Ref. [37,38].

Model 2—Directed network scenario. For a given directed network G, we propose a
cascading failure model to mimic the chain effect of the airport failures on traffic mobility.

HU ET AL. | 8029
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The proposed model works as follows. We detach all the edges previously connected to the
q fraction of nodes of network G. Afterward, we remove nodes that only have zero in‐
degrees or out‐degrees. At last we delete edges connected to other nodes to balance their
in‐degrees and out‐degrees. Figure 2 presents a detailed illustration of this model.

In Figure 2, node 3 is initially failed due to perturbations. Then we detach all the directed
edges connected to node 3. Then we observe that node 4 only has the in‐degree. Based on our
criterion, we further remove edges connected to node 4. After that we notice that there is an
imbalance between the in‐degree and out‐degree of node 1. Therefore we change the edge
weight to reach a balance.

3.7.3 | Resilience metrics

To quantify the resilience of airport networks under node failures, we introduce four metrics
based on existing literature.37–40 Here we denote the four metrics respectively as Rn_GC,
Rn_RC, Rm_GC and Rm_RC. Given a network G with n nodes andm edges, we assume that q
fraction of its nodes are failed. Then the four metrics are respectively calculated as follows:

n q nRn_GC = ( )GC ∕ (13)

n q nRn_RC = ( )RC ∕ (14)

m q mRm_GC = ( )GC ∕ (15)

m q mRm_RC = ( )RC ∕ (16)

FIGURE 2 Proposed cascading failure model for directed airport networks. The node in red is assumed to
fail because of perturbation. The failure of node 3 causes cascading failures and eventually only nodes 1 and 2
survive. [Color figure can be viewed at wileyonlinelibrary.com]
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in which GC and RC mean the giant and remained components ofG, respectively. The symbols
n q( )GC andm q( )GC , respectively, denote the remained number of nodes and edges in the GC of
G after the failure of q fraction of nodes. The metrics Rn_GC and Rn_RC measure the impact
on network structure while the metrics Rm_GC and Rm_RC measure the impact on traffic
mobility.

4 | EXPERIMENTAL STUDY

To validate the effectiveness of the proposed graph theories for tracing the evolution dynamics
of complex air traffic systems, we do experiments on airport systems as airports are the
backbone of air traffic systems. Different to most of the existing studies that focus on
unweighted and undirected air traffic networks, we in this paper propose to analyze weighted
and directed networks. As a consequence, we need real‐world traffic data.

For many airlines or countries, the real traffic data are not free to obtain due to commercial
interests. However, the Reporting Carrier On‐Time Performance data for the domestic air
traffic within the USA are available online. In the experiments, we use this data as the studying
material. The traffic data can be obtained from the official website of the Bureau of
Transportation Statistics.

4.1 | Traffic data

From the website of the Bureau of Transportation Statistics, we download the data for the year
2019. Although the data for years 2020 and 2021 are also available, we decide not to use them as
the traffic demands declined in 2020 and 2021 due to the COVID‐19 pandemic, and those data
cannot reflect the real capability of the air traffic system.

The original traffic data are organized into csv form. It provides many information. Table 1
shows the key data features that are considered in the subsequent analysis. In Table 1, the city
information for the departure airport and the arrival airport is needed. This is because that in
the original data the flight time is provided in the local time form. The city information will be
used to determine the time zones of the cities.

Note that the traffic data do not provide the geographical location information of the
airports. To construct spatial airport networks, we need the location information of the airports.
In view of this, we download online the location information of global airports.

4.2 | Data preprocessing

As mentioned earlier that the original traffic data record the traffic time in local time format. To
construct temporal networks, we first need to unify the traffic time. Based on the city
information, we determine the time zones of the cities. Then based on the time zones we turn
all the traffic time as recorded in the data into UTC time.

Note that flights can be canceled due to several reasons such as mechanical failures,
convective weather, etc. In the original data, whether a flight is canceled or not is reflected by
the data entry “Canceled.” Meanwhile, for a normal flight that is not canceled, its information
such as destination or origin could be missing due to reasons such as anthropogenic errors.
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Table 2 presents the basic properties of the original data. In the subsequent analysis, we
delete information of flights that are canceled. We also delete flights whose information are
missing. Then we get the cleaned flight data (reflected in the last column of Table 2) for each
month.

4.3 | Spatial‐temporal network construction

After the data preprocessing process, we obtain the cleaned flight data for constructing the
spatial‐temporal airport networks. For a given time period t , we construct both unweighted and
weighted spatial networks, that is, Guw

t and Gwtd
t .

Figure 3 visualizes a constructed spatial airport network using the traffic data of January 1,
2019. For simplicity, only the unweighted and undirected network is shown and the time
period is set to be one day when constructing the network.

Note that the selection of the time period affects the construction of the temporal networks. In the
experiments, we set the time period for constructing temporal networks to be 1 month. This is
because that we are using 1 year traffic data. For each month, the traffic movements are quite large as
can be seen from Table 2. We in this study analyze the monthly evolution dynamics of the airport
networks. However, the proposed approach based on graph theories is generic and the evolution
dynamics at a higher resolution can be easily achieved by changing the time period.

4.4 | Network structural properties

For each month of the traffic data, we construct a weighted network and an unweighted
network using the way shown above. Both of the networks are directed. The basic structural
properties of the constructed networks are summarized in Table 3.

In Table 3, muw and mwtd represent the number of edges in Guw
t and Gwtd

t , respectively. The
symbols kt and dt represent the average degrees of networks Guw

t and Gwtd
t , respectively.

We can see from Table 3 that for the constructed airport networks, each airport is connected
around 16 airports on average as reflected by the values of kt . The maximum values of ki t,
indicate that there are hub airports in the constructed networks. We also observe from Table 3

TABLE 1 Key data features that are considered in subsequent analysis

Entry Example Entry Example

Year 2018 DestAirportID 12,478

Month 1 Dest JFK

DataofMonth 1 DestCityName New York, NY

FlightData 1/1/2018 DepTime 547

TailNumber N5FGAA DepDelay −13

OriginAirportID 10721 ArrTime 705

Origin BOS ArrDelay −6

OriginCityName Boston, MA Canceled 0

8032 | HU ET AL.
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that the values ofmwt are quite stable. This indicates that the monthly traffic mobilities do not
change significantly over month.

4.5 | Node degree distributions

In Table 3, the properties of the networks only provide a coarse view of the evolution dynamics
of the airport networks in terms of network sizes and node degrees. Decision makers can only
see how the size of the airport networks change over time. They also may wish to see how the

TABLE 2 Basic data properties for each of the 12 months traffic data

Month #Flights #Canceled #MissInfo #Remained

Jan 583,985 16,726 1296 565,963

Feb 533,175 15,255 1606 516,314

Mar 632,074 12,564 1005 618,505

Apr 612,023 14,488 1515 596,020

May 636,390 13,012 2039 621,339

Jun 636,691 13,227 2577 620,887

Jul 659,029 12,928 2320 643,781

Aug 658,461 11,298 1812 645,351

Sep 605,979 10,016 1247 594,716

Oct 636,014 5172 1300 629,542

Nov 602,453 4446 1062 596,945

Dec 625,763 5793 1507 618,463

FIGURE 3 Visualization of a constructed unweighted spatial airport network using the traffic data of January 1,
2019. Each airport (black dot) is labeled with a three‐letter string. [Color figure can be viewed at
wileyonlinelibrary.com]

HU ET AL. | 8033

 1098111x, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.22927 by C

as-C
hangchun Institute O

f O
ptics, Fine M

echanics A
nd Physics, W

iley O
nline L

ibrary on [06/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


connections between the airports look like. As a consequence, in this part we analyze the
degree distributions of the networks.

Figures 4 and 5, respectively, show the degree distributions of the constructed unweighted
and weighted airport networks. In the figures, the curve fittings for the degree distributions are
also presented. For the curve fitting, two probability distribution functions (PDFs) are used,
that is, the power law distribution and the Lognormal distribution. The PDFs of those two
functions are provided below:

P k ckPower Law: ( ) = ,λ− (17)

TABLE 3 Basic structural properties of the constructed weighted and unweighted spatial‐temporal airport
networks

Metric Jan Feb Mar Apr May Jun

n 359 359 359 359 359 359

muw 5552 5472 5592 5564 5574 5890

mwtd 565,963 516,314 618,505 596,020 621,339 620,887

max(ki t, ) 163 164 168 172 171 177

min(ki t, ) 1 1 1 1 1 1

max(di t
in
, ) 30,797 27,907 33,762 32,615 34,173 33,802

min(di t
in
, ) 8 7 6 1 4 8

max(di t
out
, ) 30,783 27,936 33,752 32,606 34,137 33,872

min(di t
out
, ) 8 7 4 1 4 8

kt 16.05 15.82 16.12 15.90 15.84 16.54

dt
in 1635.73 1492.24 1782.44 1702.91 1765.17 1744.06

dt
out 1635.73 1492.24 1782.44 1702.91 1765.17 1744.06

Metric Jul Aug Sep Oct Nov Dec

n 359 359 359 359 359 359

muw 5842 5890 5510 5492 5630 5716

mwtd 643,781 645,351 594,716 629,542 596,945 618,463

max(ki t, ) 177 177 178 178 175 178

min(ki t, ) 1 1 1 1 1 1

max(di t
in
, ) 34,957 35,228 31,546 33,554 31,143 32,247

min(di t
in
, ) 8 2 3 8 8 2

max(di t
out
, ) 34,978 35,158 31,668 33,523 31,114 32,174

min(di t
out
, ) 8 2 3 8 8 1

kt 16.41 16.54 15.70 15.60 16.22 16.38

dt
in 1808.37 1812.78 1694.35 1788.47 1720.30 1772.10

dt
out 1808.37 1812.78 1694.35 1788.47 1720.30 1772.10
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P k
πσk

eLognormal: ( ) =
1

2
.

k μ

σ

−(ln − )2

2 2 (18)

We can see from Figure 4 that the degree distributions of the unweighted networks tend to
follow the power law as well as the Lognormal distributions, because the scattered points tend
to follow the trends of the black and blue curves quite well. However, Figure 5 indicates that
the two adopted PDFs do not fit the degree distributions of the weighted networks well since
the scattered points deviate too much from the trends of the black and blue curves.

Table 4 records the statistical results for the curve fittings of the degree distributions of the
unweighted and weighted networks. The statistical results include the fitted parameters of the
corresponding PDFs and the values of the R2 metric indicating the goodness of the curve

FIGURE 4 Degree distributions together with the corresponding curve fittings for the distributions of the 12
(January to December from lefthand side to righthand side in consecutive order) constructed unweighted airport
networks. [Color figure can be viewed at wileyonlinelibrary.com]
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fittings. We can clearly see from Table 4 that the Lognormal PDF fits better for the unweighted
networks. Note that many existing research indicate that the degree distributions of many real‐
world networks follow the power law distributions.41,42 However, our research finding is still in
line with existing findings. Although the R2 values for the Lognormal distributions are higher
than those of the power law distributions, those values are still quite close to each other. We
still can conclude that the degree distributions of the unweighted networks follow the power
law distributions.

Note that both Figure 5 and Table 4 demonstrate that the two adopted PDFs do not fit well
the degree distributions of the weighted networks. It seems that the degree distributions of the
weighted networks do not follow any known probability distributions. We have tried 10 other
well‐known PDFs. However, the fitting results are worse than those shown in Table 4.

FIGURE 5 Degree distributions together with the corresponding curve fittings for the distributions of the 12
(January to December from lefthad side to righthand side in consecutive order) constructed weighted airport
networks. [Color figure can be viewed at wileyonlinelibrary.com]
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This phenomenon can be attributed to the specific traffic flow patterns as the weights of the
networks are the traffic flows between the airports.

4.6 | Traffic delay distributions

Air traffic systems are very complicated. Any delay to a certain flight can cause the ripple effect, that
is, the delay can propagate in the system affecting a large body of flights.4,18 It is important to analyze
the delay distributions of the constructed airport networks as such analysis can help aviation
managers better manage air traffic systems to improve the efficiency of the system. Based on the
cleaned traffic data, we obtain the delay information. According to the literature,4,18 a flight is said to
be delayed if the delay is no smaller than 15min. We then filter out the delay information based on
this criterion.

Figure 6 exhibits the distributions of the traffic delays over 12 months. We can see from the
first row of Figure 6 that the monthly delay distributions are quite similar. In the second row of
Figure 6, we choose the delay for January and do the corresponding curve fittings. We have
observed that the delay distributions do not follow the power law distributions. Therefore, apart

TABLE 4 Statistical results for the curve fittings of the degree distributions

Month Power law LogNormal Month Power law LogNormal

Jan c = [0.2093, 0.0117] σ = [1.5844, 0.6765] Jul c = [0.2097, 0.0118] σ = [1.618, 0.6641]

λ = [0.9394, 0.2728] μ = [1.0012, 2.5971] λ = [0.9413, 0.2762] μ = [0.9569, 2.5878]

R2 = [0.9343, 0.2534] R2 = [0.9434, 0.3115] R2 = [0.939, 0.2318] R2 = [0.9454, 0.2881]

Feb c= [0.2132, 0.013] σ = [1.6227, 0.7201] Aug c = [0.2073, 0.0077] σ = [1.6359, 0.6431]

λ = [0.955, 0.293] μ = [0.903, 2.6171] λ = [0.9448, 0.205] μ = [0.9694, 2.6338]

R2 = [0.9283, 0.2381] R2 = [0.9359, 0.2712] R2 = [0.9384, 0.1472] R2 = [0.9455, 0.1899]

Mar c = [0.207, NaN] σ = [1.5603, 0.6423] Sep c = [0.2039,
−906.6123]

σ = [1.4746, 0.6372]

λ= [0.9296, NaN] μ= [1.0519, 2.6176] λ= [0.9049, NaN] μ= 1.1466, 2.5446]

R2 = [0.9219, NaN] R2 = [0.9315, 0.2002] R2 = [0.9105, NaN] R2 = [0.923, 0.2156]

Apr c = [0.216, 0.0093] σ = [1.5963, 0.7083] Oct c = [0.21, 0.0098] σ = [1.5377, 0.6745]

λ = [0.9529, 0.2279] μ = [0.8986, 2.5459] λ = [0.9308, 0.2467] μ = [1.0374, 2.6299]

R2 = [0.9315, 0.2005] R2 = [0.9394, 0.2987] R2 = [0.9256, 0.1953] R2 = [0.9364, 0.2302]

May c = [0.2141, 0.0101] σ = [1.5689, 0.6311] Nov c = [0.2079, 0.011] σ = [1.5864, 0.6788]

λ = [0.9414, 0.2423] μ = [0.9565, 2.5317] λ = [0.9374, 0.2626] μ = [1.0144, 2.5974]

R2 = [0.9408, 0.1835] R2 = [0.9491, 0.2644] R2 = [0.9323, 0.2437] R2 = [0.9419, 0.2962]

Jun c = [0.2094, 0.0127] σ = [1.6415, 0.6828] Dec c = [0.1987, 0.007] σ = [1.5291, 0.6983]

λ = [0.9496, 0.2871] μ = [0.9346, 2.584] λ = [0.9067, 0.187] μ = [1.1667, 2.6536]

R2 = [0.9425, 0.2572] R2 = [0.9491, 0.306] R2 = [0.9194, 0.2105] R2 = [0.9301, 0.2889]

Note: Regarding the parameters, the first column represents the results for the unweighted networks and the second the
weighted ones.
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from the Lognormal distribution, we also introduce the Gamma and Weibull distributions. The
PDFs of these two distributions are provided below.

P k
β θ

k eGamma: ( ) =
1

Γ( )
,

β
β−1 k

θ
−

(19)



 


 ( )P k

β

θ

k

θ
eWeibull: ( ) = .

β k
θ

−1
−

β

(20)

We observe that the distributions of the delays follow Lognormal distributions as indicated
by the R2 values. The results shown in Figure 6 indicate that the airport system of the USA is
quite stable over time in terms of traffic delay.

Figure 7 exhibits the linear relationships between the monthly arrival delays and the departure
delays. The curve fittings as shown in Figure 7 clearly indicate the linear relationships between the
arrival and departure delays. The coefficients of the linear functions for the 12 months are quite
close to each other. This explains the phenomenon shown in the first row of Figure 6.

4.7 | Causal factor

As mentioned earlier, the traffic delay is a key performance indicator for analyzing the
dynamics of air traffic system. Air traffic delay is related to the traffic demand and the
associated airport network. However, the delay distributions as shown in Figure 6 indicate that
the delay distributions do not vary too much over the months. This section aims to analyze the
possible causality behind this phenomenon.

FIGURE 6 Distributions (first row) and curve fittings (second row) of the air traffic delays over time. The R2

values for the three curve fitting cases are, respectively, R2 = [0.9618 0.9939 0.9639]; R2 = [0.9633 0.9930 0.9687];
R2 = [0.9620 0.9942 0.9624]. [Color figure can be viewed at wileyonlinelibrary.com]
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Since delay is closely related to the structure of the airport network, we therefore analyze the
similarities between the constructed spatial‐temporal airport networks. For a given airport network
constructed based on a given month of traffic data, we have its two corresponding adjacency matrices,
i.e., the unweighted and weighted matrices. We turn those matrices into vectors. Therefore, we have
two vectors, one is a binary sequence and the other one is an integer sequence.

For the 12 unweighted matrices constructed over the 12 months traffic data, we calculate the
pairwise similarities using the three similarity indices summarized in Section 3.6. Analogously, we do
the same to the weighted networks. The similarity results are presented in Figure 8.

The first row of Figure 8 shows the similarities between the unweighted networks with
respect to the three similarity indices presented in Section 3.6. We can clearly see from the first

FIGURE 7 Linear relationships between the arrival delays and the departure delays with respect to the
12‐month traffic data of the American flights of 2019. [Color figure can be viewed at wileyonlinelibrary.com]
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row of Figure 8 that the similarities between the unweighted networks based on the Cosine and
Pearson indices are quite high (larger than 0.9), while the similarities with respect to the
Tanimoto coefficient are also high (larger than 0.8). The unweighted networks only reflect the
structural properties of the airport networks. The high similarities indicate that the structures
of the American airport networks do not show significant changes over the 12 months of 2019.
Putting it another way, no new airports were built and no airports were closed in 2019.

The second row of Figure 8 shows the similarities between the weighted networks whose
weights represent the traffic mobilities. We can see from Figure 8 that the similarities between
the weighted networks with respect to the Cosine and Pearson indices are around 0.98, while
the similarities with respect to the Tanimoto coefficient are around 0.95. The similarities
between the weighted networks are also quite high. The high similarities indicate that the
traffic mobilities over the 12 months of 2019 do not vary significantly. Putting it another way,
the monthly traffic demands and traffic control procedures are stable.

As mentioned earlier, traffic delay is related to both the airport networks and the traffic mobility.
The delay of a flight could propagate and magnify on an airport network. The traffic mobility defines
the traffic demand which is the source of the traffic delay. However, the results shown in Figure 8
indicate that both the structures of the airport networks and the monthly traffic mobility are quite
stable. This is the mainly causality for the stable distributions of the monthly traffic delays as shown
in Figure 6.

4.8 | Network resilience

As mentioned earlier, we analyze the resilience of airport networks under airport failures. For a
given airport network G with n nodes and m edges, we assume that q [0, 1]∈ fraction of the
airports, that is, nodes, are failed due to perturbations. Then we quantify the resilience of G
using the indices shown in Section 3.7.

FIGURE 8 Similarities between the constructed unweighted (first row) and weighted (second row) airport
networks using the 12‐month traffic data of 2019. [Color figure can be viewed at wileyonlinelibrary.com]
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In the experiments we set the interval of the range of q to be 0.025. For a given value of q,
we apply the failures to a given network for 50 independent times. Thus, we get the average
resilience. Figure 9 demonstrates the resilience of the 12 unweighted airport networks under
different node failure mechanisms with respect to four resilience metrics.

We can clearly see from Figure 9 that the values of Rn_GC, Rn_RC, Rm_GC, and Rm_RC in
the first and third columns of Figure 9 decrease quite slowly as the increase of q. This indicates
that the unweighted airport networks are quite robust when random node failures and the
failures of nodes in an ascending order of their degrees happen. The values of Rn_GC, Rn_RC,

FIGURE 9 Resilience of the unweighted airport networks under airport failures with three different failure
models. First column—random failure; Second column—by descend order of node degrees; Third column—by
ascending order of node degrees. Results are obtained over 50 independent runs. [Color figure can be viewed at
wileyonlinelibrary.com]
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Rm_GC, and Rm_RC in the second column of Figure 9 decrease quite fast as the increase of q.
This indicates that the unweighted airport networks are fragile if hub airports are failed.

The experiments shown in Figure 9 only investigate the resilience of airport networks with
respect to the cascading failure model 1 as discussed in subsection 3.7. In other words, the results
shown in Figure 9 demonstrate the resilience of the networks in terms of network structures since the
networks are unweighted and do not carry any weight information. Therefore, the resilience has
nothing to do with the traffic scenarios since in model 1, if an airport is failed, then model 1 only
removes the edges attached to that airport. As a consequence, model 1 cannot capture the impact of

FIGURE 10 Resilience of the weighted airport networks under airport failures with three different
failure models. First column—random failure; Second column—by descending order of node degrees; Third
column—by ascending order of node degrees. Results are obtained over 50 independent runs. [Color figure can
be viewed at wileyonlinelibrary.com]
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the failed airport on the traffic. It would be more appealing to aviation decision makers if the impact
of airport failures on the traffic can be known.

In view of the above, we in what follows investigate the resilience of the airport networks with
respect to the cascading failure model 2 which deals with traffic mobility. Model 2 mimics the
impact of a failed airport on the entire traffic. The corresponding results are shown in Figure 10.

We can see from Figure 10 that the resilience of the airport networks with respect to model
2 are a little bit different to what are shown in Figure 9. The results shown in Figure 10 indicate
the impacts of the airport failures on the airport network structure (captured by Rn_GC and
Rn_RC) and the traffic mobility (captured by Rm_GC and Rm_RC) are quite small. even the
cascading failure model 2 is considered. This indicates that the American airport networks and
the traffic control are well managed. The results shown in the second column of Figure 10
differ slightly from those in the second column of Figure 9. Overall, we notice that the failure of
around 10% of the hub airports could lead to the collapse of the entire traffic network, while the
percentage with respect to cascading failure model 1 is 20%. Besides, we notice an interesting
phenomenon. Under cascading failure model 2 and node failure mode 2, the portions of
remained nodes both in the giant components and the remained components are higher than
those with respect to cascading failure model 1. In other words, when some hub airports failed,
the entire airport network still can function properly as most airports are still available. This
study finding reflects the special design and management of the American airport networks.

5 | CONCLUSION

Air traffic plays a very important role in human society. People rely on air traffic for diverse
kinds of purpose. Since air traffic is indispensable to the air traffic systems, it is therefore of
great significance to build an efficient and resilient air traffic systems. It would be of great value
to aviation decision makers if a comprehensive knowledge about how the air traffic systems
evolve over time can be gained. Note that it is quite challenging to trace the evolution process in
air traffic systems because an air traffic system is quite complex since it consists of a magnitude
of components which often interact with each other.

To trace the evolution dynamics in air traffic systems, the most effective way is to build
complex networks representing the air traffic systems and then apply network theories. In this
study we proposed a spatial‐temporal network approach to investigate the evolution of air
traffic systems. Our proposed approach mainly differs from existing studies in two ways. First,
our approach modeled air traffic systems by both weighted and unweighted complex networks
using real‐world traffic data, while most of existing studies only consider unweighted networks.
Second, our proposed approach investigated the evolution of air traffic systems by analyzing a
couple of network properties, while most of existing studies only pay attention to one or two
properties.

To investigate the evolution of air traffic systems, we first constructed spatial‐temporal airport
networks using real traffic data. We then analyzed the evolution dynamics of the constructed
networks in terms of network properties including nodal degrees, degree distributions, traffic
delays, causality between graph structures and traffic delays, and system resilience under airport
failures. We carried out a case study on the American airport systems with respect to 12‐month
traffic data. We discovered that the American airport networks are quite stable in terms of network
structures over the studied 12 months. We also observed a stable evolution of the traffic
movements. A similarity analysis between the structures of the constructed network indicate that
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the stabilities of the network structures and traffic movements lead to a stable evolution of the
traffic delays. We analyzed the resilience of the American airport networks under airport failures.
To do so, we proposed two network cascading failure models. We discovered that the airport
networks are quite robust to random airport failures. However, if hub airports are failed, then we
discovered that failures of respectively 20% and 10% of the hub airports will lead to the collapse of
the entire system with respect to the two proposed cascading failure models.
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