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Topology Optimization on
Complex Surfaces Based on the
Moving Morphable Component
Method and Computational
Conformal Mapping
In the present article, an integrated paradigm for topology optimization on complex
surfaces with arbitrary genus is proposed. The approach is constructed based on the
two-dimensional (2D) Moving Morphable Component (MMC) framework, where a set of
structural components are used as the basic units of optimization, and computational con-
formal mapping (CCM) technique, with which a complex surface represented by an unstruc-
tured triangular mesh can be mapped into a set of regular 2D parameter domains
numerically. A multipatch stitching scheme is also developed to achieve an MMC-friendly
global parameterization through a number of local parameterizations. Numerical examples
including a saddle-shaped shell, a torus-shape shell, and a tee-branch pipe are solved to
demonstrate the validity and efficiency of the proposed approach. It is found that compared
with traditional approaches for topology optimization on 2D surfaces, optimized designs
with clear load transmission paths can be obtained with much fewer numbers of design vari-
ables and degrees-of-freedom for finite element analysis (FEA) via the proposed approach.
[DOI: 10.1115/1.4053727]
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1 Introduction
Topology optimization aims at distributing a certain amount of

material in a prescribed design domain to satisfy some design

requirements and at the same time achieve exceptional performances.
As a revolutionary and powerful designmethod, it can help engineers
create competitive designs in a systematic way and has attracted the
attention ofmany engineeringfields since its invention.After the pio-
neering work of Bendsøe and Kikuchi [1], numerous topology opti-
mization approaches such as the solid isotropic material with
penalization (SIMP) method (also named as variable density
method) [2,3], evolutionary structural optimization method [4],
level set method [5,6], just to name a few, have been established
and applied successfully in many engineering applications.
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Shell, as a typical engineering structure surrounding space in an
aesthetic way, enjoys the benefits of efficient load-carrying capacity
and high stiffness [7]. Topology optimization of shell structures
could further promote their strength to weight ratio and help
achieve a lightweight structural design in many application fields
such as mechanical, civil, marine, and aeronautical engineering.
From the mathematical point of view, topology optimization of
shell structures is equivalent to finding the optimized material dis-
tribution on a 2D surface. Compared to topology optimization on
flat 2D and 3D space, corresponding research works on 2D surface-
based topology optimization are relatively rare. Most of the
approaches are constructed under the implicit variable density
framework. For example, Luo and Gea [8] investigated the
optimal design of 3D plate and shell structures for both static and
dynamic cases using the density method. The filter scheme of the
SIMP method on surfaces and topology optimization on two-
dimensional manifolds was proposed for several physical fields
by Deng et al. [9]. Sigmund and his coworkers combined high-
performance computing and topology optimization to design
ultra-large-scale shell structures [10]. Other recent excellent pro-
gress on topology optimization of shell structures can be found in
Refs. [11–14] and the references therein.
The challenging issues associated with the SIMP-based approach

mainly come from two sources. One is that compared with its flat
2D counterpart, topology optimization on curved surfaces involves
larger numbers of design variables and degrees-of-freedom for opti-
mization and finite element analysis (FEA), respectively. This is due
to the fact that more finite elements are required to discretize a shell-
type structure to guarantee the accuracy of both geometry modeling
and FEA, especially when the shell is of complex shape and has
relatively large local curvatures. The other is that the filter
approaches, which are very effective in suppressing the numerical
instabilities (e.g., checkerboard pattern) in flat 2D case, may
encounter some difficulties when applied to unstructured meshes
generated on curved surfaces since it is difficult to determine the
(element-wise) radius of the filter in advance, which should be
local curvature-dependent under the considered case.
Topology optimization of shell structures has also been investi-

gated with the level set approach. One of the excellent works is pre-
sented by Ye et al. [15], in which the conformal geometry theory
was first introduced to the field of structural topology optimization.
By constructing the parametric domain of surfaces through confor-
mal mappings, the classical level set topology optimization method
is extended to manifolds. Since global parameterization of the man-
ifold is pursued, the relatively high nonlinear mapping would
increase the difficulties in the corresponding solution process.
It should be noted that the aforementioned works of topology opti-

mization on surfaces mainly use implicit methods and therefore may
suffer from problems such as grey elements, islanding effect, and an
enormous number of design variables. Recently, explicit approaches
have received more and more attention in the field of topology opti-
mization [16–18]. Among them, the Moving Morphable Component
(MMC) method describes the optimized structure using a set of geo-
metrically explicit components. By taking its advantages of explicit
description and a fewer number of design variables, the MMC
method has been successfully extended to consider manufacturability
[19], geometrical nonlinearity [20], dynamic performance [21], and
multiphysics effects [22,23], etc. Nevertheless, the current MMC
method is developed on 2D or 3D Euclidean space and cannot be
directly applied to design optimization on surfaces effectively.
Compared to topology optimization in two-dimensional flat

space, it is necessary to solve the following challenging problems
when the MMC approach is developed for achieving topological
design on a complex surface S with an arbitrary genus. First,
how to describe the geometry configuration of a complex surface
in a universal and flexible way? Second, how to construct the topol-
ogy description function (TDF) ϕ of a component whose support set
is lying entirely on the surface (i.e., Supp ϕ ⊂ S)? Third, how to
carry out MMC-based topology optimization on a complex
surface with a high genus number?

The present work intends to solve the aforementioned problems
in an integrated way. An unstructured triangular mesh which is
highly robust and flexible for geometry/topology description is
employed to describe the embedding information of a smooth
surface inℝ3 with arbitrary accuracy. With the use of computational
conformal mapping (CCM) on triangular meshes, the traditional
MMC approach originally established in flat space is extended to
a simply connected open surface with genus zero (which is homeo-
morphic to a planar rectangle unit cell) at first and then generalized
to account for arbitrary complex surfaces with the help of the multi-
patch stitching scheme, with which anMMC-friendly global param-
eterization of a complex surface can be achieved through a set of
local parameterizations.
The remainder of this article is organized as follows. The theore-

tical foundations of the proposed approach including the 2D
MMC-based framework for topology optimization and CCM used
for surface parameterization are introduced in Sec. 2. In Sec. 3,
first, the mathematical formulation of the considered problem is
provided. Second, taking a simply connected open surface with
zero genus as an example, the numerical algorithm for carrying
out explicit topology optimization on a 2D surface is described.
Finally, the flowchart of the proposed integrated solution procedure
applicable to complex surfaces with arbitrary genus is described in
detail in the last part of this section. Three numerical examples are
then investigated in Sec. 4 to demonstrate the effectiveness of the
proposed approach. Some concluding remarks including the
summary of the present work and discussions on possible directions
of future researches are provided in Sec. 5.

2 Theoretical Foundation
2.1 Moving Morphable Component Method. The MMC

method for topology optimization was developed in Ref. [16] to
optimize structural topology in an explicit way. In this method,
the basic units of optimization are a set of structural components,
and the variation of structural topology can be achieved by the
moving, deforming, overlapping, and merging of these compo-
nents. A typical 2D component (also adopted in the present work)
is shown in Fig. 1, and its TDF can be described as follows:

ϕ = 1 −
x′

L

( )6

+
y′

f (x′)

( )6
( )1/6

(2.1)

with

x′

y′

( )
=

cos θ sin θ
−sin θ cos θ

[ ]
x − x0
y − y0

( )
(2.2)

f (x′) =
t1 + t2 − 2t3

2L2
(x′)2 +

t2 − t1

2L
x′ + t3 (2.3)

Fig. 1 Geometry description of a typical 2D structural
component
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where x0, y0, and θ denote the two coordinates of the component’s
central point and its rotational angle with respect to the global Car-
tesian coordinate system, as illustrated in Fig. 1, respectively. In
Eqs. (2.1)–(2.3), the symbols L, t1, t2, and t3 denote the
half length and three thickness parameters of the component,
respectively.
Assuming that there are totally n components existing in the

design domain, the topology of the structure can be described by
its TDF ϕs as follows:

ϕs(x) > 0, if x ∈ Ωs

ϕs(x) = 0, if x ∈ ∂Ωs

ϕs(x) < 0, if x ∈ D \ (Ωs ∪ ∂Ωs)

⎧⎨
⎩ (2.4)

whereD represents the design domain andΩs is the region occupied
by the structure. The TDF ϕs can be constructed by the TDF of each
component in terms of K-S function as follows [24]:

ϕs =KS(ϕ1, ϕ2, . . . , ϕn) = ln
∑n
i=1

exp (ζϕi)

( )( )/
ζ (2.5)

where ζ is a large positive number, e.g., ζ= 100 and ϕi is the TDF of
the ith component.Under this circumstance, the vector of the design
variables associated with the ith component can be identified as
Di = (xi0, y

i
0, θi, Li, t

1
i , t

2
i , t

3
i )

⊤ and the vector of the design variables
of the whole structure is D = (D⊤

1 , D
⊤
2 , . . . , D

⊤
n )

⊤.

2.2 Computational Conformal Mapping. Roughly speak-
ing, a surface is a 2D manifold with intrinsic nonzero curvature
embedding in the three-dimension (flat) Euclidean space. The orig-
inal MMC approach described in Sec. 2.1 is developed in the 2D
(or 3D) flat space and therefore cannot be applied directly to
solve topology optimization problems on surfaces. The key
problem is how to construct the global TDF ϕs

S(x) of the structure
on the 2D surface. A natural idea is to establish a homeomorphic
mapping f : S � M between the concerned surface S embedded
in a flat 3D space and a 2D planar parameter domain M (parame-
terization), construct the corresponding topology description func-
tion ϕs

M(p) on M, and then use the inverse mapping
f −1: M � S to obtain the topology description function ϕs

M(p)
through ϕs

S(x) = ϕs
M(p = f (x)) (see Fig. 2 for reference).

Parameterizing a complex surface with an arbitrary genus is,
however, not a trivial task. Fortunately, thanks to the development
of computational geometry, powerful tools such as conformal/
quasi-conformal mapping techniques have been established and
applied successfully in many interesting applications [25,26]. Spe-
cifically, according to the theorems provided in Refs. [27,28], a
complex surface with an arbitrary genus can be mapped to a

simply connected planar parameter domain through some appropri-
ate homeomorphic mapping, which can be determined numerically
by solving a series of partial differential equations [29–32]. In the
present work, the computational conformal mapping algorithm
developed in Refs. [32–35] is adopted to construct the homeomor-
phism used for parameterization. The corresponding solution proce-
dure is described briefly as follows.
The present conformal mapping is composed of two quasi-

conformal mappings. For the sake of simplicity, taking a simply
connected oriented open surface S (a two-dimensional manifold)
with genus zero as an example, the first quasi-conformal mapping
h: S � D ⊂ C establishing a topological homeomorphism
between S and a planar unit disk D in complex plane C is con-
structed by solving the following partial differential equation:

ΔSh = 0, on S,
h(∂S) =D

{
(2.6)

using the finite element method [36]. In Eq. (2.6), ΔS represents the
Laplace–Beltrami operator defined on surface S. Once h = h(S) is
determined, the second complex quasi-conformal mapping
g(z = x + iy) = u(x, y) + iv(x, y): D ⊂ C � M ⊂ C from D to a
planar parametric domain M (a standard rectangle in the present
work) is constructed by finding the solutions of the following gen-
eralized Laplace equations [33,34]:

∇ · (A(∇u)) = 0
∇ · (A(∇v)) = 0

{
(2.7a,2.7b)

where u= u(x, y), v= v(x, y), and ∇(·) = (∂(·)/∂x, ∂(·)/∂y)⊤.
Furthermore, A =

α1 α2
α2 α3

( )
and α1= ((ρ− 1)2+ τ2)/(1− ρ2−

τ2), α2=−2τ/(1− ρ2− τ2), α3= ((ρ+ 1)2+ τ2)/(1− ρ2− τ2) with
ρ + iτ = μh−1 denoting the Beltrami efficient of the mapping of
h−1: D � S (the inverse mapping of h) [33,34].
On condition that the two quasi-conformal mappings h and g are

determined, the required conformal mapping f :S � M can be
constructed as f= g ∘ h. For the case where the concerned surface
S has complex topology and nonzero genus, we refer the readers
to Refs. [32–35] for more technical details on constructing the con-
formal mapping function.

2.3 Topological Description Function Construction on
Complex Surfaces

2.3.1 Simply Connected Open Surface With Zero Genus. This
is the simplest case for TDF construction. Once the parameteriza-
tion from S to M expressed in terms of f is constructed, we can
first define the TDF on M obtaining ϕs

M(p), p ∈ M and then

Fig. 2 Parameterization of a surface embedded in 3D Euclidean space and the construction of
the corresponding TDF
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determine the TDF on S through ϕs
S(x) = ϕs

M(p) with p = f (x ∈ S)
(see Fig. 3 for reference). This treatment is well posed since f repre-
sents a topological homeomorphism between S and M.

2.3.2 Complex Surface With Arbitrary Genus. When the topol-
ogy of the concerned surface S is a complex surface with a high
genus, there is no homeomorphism between S and a planar rectan-
gle M. Under this circumstance, cutting operation should be used
to generate a simply connected open intermediate surfaceS∗, which
can be made topologically equivalent to a planar rectangle M by
the conformal mapping technique described earlier. Figure 4(a)
demonstrates the procedure of the cutting operation for a torus
surface. Therefore, we can define the TDF on S∗ as
ϕs
S∗ (x) = ϕs

M( f ∗(x)), where f ∗: S∗ � M (see Fig. 4(b) for refer-
ence). Considering the fact that in general ϕs

S∗ (x) may take different
values on different sides of a specific cutting line Γi on S (Γ′

i and Γ
′′
i

on S∗), we propose to define the value of ϕs
S(x) in terms of ϕs

M(x)

as follows:

ϕs
S(x)=

ϕs
M( f ∗(x)), if x ∈ S \ Γi,

KS(ϕs
M( f ∗(x′)), ϕs

M( f ∗(x′′))), if x ∈ Γi,x′ ∈ Γ′
i and x′′ ∈ Γ′′

i

{
(2.8a,2.8b)

where f ∗(x′) and f ∗(x′′) denote the values of f ∗ taking on x′ ∈ Γ′
i

and x′′ ∈ Γ′′
i respectively.

2.3.3 Constructing Topological Description Function With
Multipatch Stitching Approach. Although the global parameteriza-
tion technique can be applied for any surface that has manifold
property in principle, the constructed global mapping function f
may be too stiff, and it has the potential to induce some numerical
instabilities when ϕs

S(x) is generated based on f. This issue can be
resolved by the so-called multipatch stitching approach suggested

Fig. 3 TDF definition on a simply connected open surface with genus zero

Fig. 4 Parameterization and TDF construction of a surface with nonzero genus: (a) parameter-
ization of a surface with nonzero genus via cutting operation and (b) TDF definition on a
surface with nonzero genus
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in the literature [37–40]. This approach can reduce the distortion of
parametrization and thus greatly enhance the fidelity of geometry
description of components especially when the concerned surface
has large local curvature, high genus, and/or nonmanifold
properties.
In this approach, as shown in Fig. 5(a), the surface S is decom-

posed onto NU parts, i.e., S =
⋃NU

k=1
Uk and in general Uk ∩ U l ≠

∅, k, l = 1, . . . , NU . For each partUk , we can establish a conformal
parameterization through a mapping fk:Uk � Mk , where Mk is
a rectangle on the parametric domain. For the purpose of construct-
ing the global TDF for S, we can place a set of components on each
Mk and then generate the TDF on Uk through ϕs

Uk
(x) =

ϕs
Mk

( fk(x)) with x ∈ Uk. Considering the fact the intersection
between two parts may be nonempty (i.e., Uk ∩ U l ≠ ∅), which
is sometimes necessary for rendering smooth connections of the
components located on neighboring parts, the global TDF for S,
i.e., ϕs

S = ϕs
S(x) is determined as (see Fig. 5(b) for reference):

ϕs
S(x|x ∈ U i)

=
ϕs
U i
(x), if x ∈ U i \

⋃NU

k=1,k≠i
Uk ,

KS(ϕs
U i
(x), . . . , ϕs

U j
(x)), if x ∈ U i ∩ . . . ∩ U j

⎧⎪⎨
⎪⎩

(2.9a,2.9b)

Numerical examples presented in Sec. 4 show that this approach
is very effective on stabilizing the optimization process and guar-
anteeing the smooth transition of the components in the optimized
designs. It is also worth noting that Uk may also be multiconnected
and has a high genus. Under this circumstance, the cutting opera-
tion described in Sec. 2.3.2 is also applicable for constructing
ϕs
Uk
(x).

3 The Statement of the Problem and Its Solution
Procedure
This section is devoted to the description of the problem state-

ment and the solution procedure of the considered problem.

3.1 Problem Statement. In this study, as shown in Fig. 6,
compliance minimization by distributing a certain amount of isotro-
pic linear elastic material (the upper bound of the volume fraction
is �V) on a 3D region B with a small uniform thickness (i.e., t≪
a, t≪ b with t, a and b denoting the thickness and the characteristic
length scales of the other two directions of B respectively) is
considered. Under this circumstance, shell model can be used for
carrying out structural response analysis in a more efficient way
(compared to the treatment, where 3D elasticity theory is
adopted). It is also assumed that B can be parameterized by a bijec-
tive mapping �φ from a parametric domain Ω=ω× (−t/2, t/2)=
{ξ= (ξ1, ξ2, ξ3)|(ξ1, ξ2)∈ω, ξ3 ∈ (−t/2, t/2)} such that B= �φ(Ω),
and S = �φ(ω × (ξ3 = 0)) is the mid-surface of B. Therefore, the
corresponding topology optimization problem formulation can be
written as follows:

Find U = U(u, θ), D (3.1a)

Minimize C = C(u(D), D) =
∫t/2
−t/2

∫
ω
(F · U) ��

g
√

dξ1dξ2dξ3

(3.1b)

s.t.∫t/2
−t/2

∫
ω
H(ϕs

ω(ξ; D))(Cαβλμeαβ(U)eλμ(V) +Dαλeα3(U)eλ3(V))

×
��
g

√
dξ1dξ2dξ3 =

∫t/2
−t/2

∫
ω
(F · V) ��

g
√

dξ1dξ2dξ3, ∀V = V(v, η) ∈ Uad

(3.1c)

Fig. 5 TDF construction on a complex surface by multipatch stitching technique: (a) decompos-
ing a surface into several patches and (b) TDF construction on each patch and the corresponding
stitching operation
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∫t/2
−t/2

∫
ω
H(ϕs

ω(ξ; D))
��
g

√
dξ1dξ2dξ3 ≤ �V

∫ t
2

− t
2

∫
ω

��
g

√
dξ1dξ2dξ3

(3.1d)

U ∈ U, D ∈ UD (3.1e)

In Eq. (3.1), the primary displacement U=U(u, θ) belonging to a
prescribed constraint set U and the virtual displacement V=V(v, η)
belonging to an admissible set Uad are assumed to have the follow-
ing forms [41]:

U = U(ξ1, ξ2, ξ3) = u(ξ1, ξ2) + ξ3θλ(ξ
1, ξ2)aλ(ξ1, ξ2) (3.2a)

V = V(ξ1, ξ2, ξ3) = v(ξ1, ξ2) + ξ3ηλ(ξ
1, ξ2)aλ(ξ1, ξ2) (3.2b)

where aλ, λ = 1, 2, 3 are the corresponding contravariant base
vectors associated with the three covariant base vectors aα =
∂φ/∂ξα, α = 1,2 and a3= (a1 × a2)/||a1 × a2||, respectively. In Eqs.
(3.1b) and (3.1c), F=F(ξ1, ξ2, ξ3) is the prescribed external load,
and C = (Cαβλμ) and D = (Dαλ) are the modified constitutive
tensors of the linear elastic material expressed in the convected cur-
vilinear coordinate system (ξ1, ξ2, ξ3). In addition, eαβ(U) (eαβ(V))
and eα3(U) (eα3(V)) are the surface and transverse shear strain
tensors corresponding to the primary (virtual) displacement,
respectively. The specific forms of eαβ(U) and eα3(U) depend on
the shell theory (constructed based on different stress and/or
strain assumptions) adopted. Furthermore, the quantity

��
g

√
in

Eqs. (3.1c) and (3.1d ) takes the form of
��
g

√
= |g1 · (g2 × g3)| with

gα = ∂�φ/∂ξα, α = 1,2,3. We refer the readers to Ref. [41] for
more details on the variational formulation for shell analysis. It is
also noting that topology optimization of a shell structure can be
achieved by finding the material distribution on its mid-surface,
which can be characterized by the TDF ϕs

ω(ξ; D) in Eq. (3.1)
defined on the ω. In addition, H=H(·) is the Heaviside function
and UD is the set that D belongs to.

3.2 Structural Response and Sensitivity Analysis. In this
study, the structural response is calculated approximately using
the S3 element (a conventional stress/displacement shell element
with three nodes) provided in ABAQUS, which is constructed from
a refined shell theory [42]. To establish a seamless link with the
CAD modeling approaches, triangulated unstructured meshes are
adopted for finite element discretization. For the sake of computa-
tion efficiency, the ersatz material model is adopted to calculate
the element stiffness matrix [43]. For the eth finite element, its
equivalent Young’s modulus can be calculated in terms of the
element equivalent density ρe and Young’s modulus of the solid

material Es as follows:

Ee = ρeE
s (3.3)

where

ρe =
∑3
j=1

Hα,ϵ((ϕ
s
SΔ
)
e,j
)/3 (3.4)

with

Hα,ϵ(x) =

1, if x > ϵ,
3(1 − α)

4
x

ϵ
−

x3

3ϵ3

( )
+
1 + α

2
, if |x| ≤ ϵ,

α, otherwise

⎧⎪⎪⎨
⎪⎪⎩ (3.5)

denoting the regularized Heaviside function (ϵ= 0.1 and α= 10−3,
respectively, in the present work).
It is worth noting that although the variational formulation for

structural analysis in Eq. (3.1) is expressed in the parametric
domain for describing a more general problem setting, its numerical
implementation is actually achieved by finite element discretization
in the physical domain. Since the triangulated mesh for the FEA is
generated on SΔ, which is an approximation of S (the mid-surface
of the shell) in the physical domain, ϕs

SΔ
= ϕs

SΔ
(x) (calculated from

ϕs
M = ϕs

M(p) defined on the parametric domain with the uses of the
conformal mapping technique described in Sec. 2) should be used to
characterize the material distribution on SΔ. In Eq. (3.2), (ϕs

SΔ
)e,j

denotes the value of ϕs
SΔ

on the jth node of the eth element on SΔ.
For a general objective/constraint function I, its variation (i.e., δI)

with respect to the variation of a typical design variable d (i.e., δd)
in the following general continuum setting form (provided that
some smoothness conditions on I and regularity requirements on
the design domain are satisfied):

δI =
∫ t

2

− t
2

∫
S
r(U(x),W(x))δϕs

S(x; δd)dx
1dx2dx3 (3.6)

where r= r(U(x), W(x)) is a function of U(x) and W(x), which are
the primary and adjoint displacement fields described in the physi-
cal domain (for the considered compliance minimization problem
W(x)=−U(x)), respectively, while δϕs

S(x; δd) denotes the variation
of ϕs

S = ϕs
S(x; D) due to the variation of d (i.e., δd). Since ϕs

S =
ϕs
S(x; D) = ϕs

M(p; D) with p= f (x) (noting that f is the conformal
mapping from S to M). Under this circumstance, we have
δϕs

S(x; δd) = δϕs
S(p; δd) = δϕs

S( f (x); δd). Considering the fact

Fig. 6 Minimizing the compliance of a shell structure by topology optimization: (a) parametric
domain and (b) physical domain
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that M =
⋃NU

k=1
Mk , it yields that

δϕs
S( f (x); δd)

=

∂ϕs
Mk

(p; D)

∂d

( )
δd, if p = f (x) ∈ Mk \

⋃NU

l=1,l≠k
Ml,

∂KS(ϕs
Mk

(p; D), . . . ,ϕs
Mm

(p; D))

∂d

( )
δd ,

if p = f (x) ∈ Mk ∩ . . . ∩ Mm

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(3.7a,3.7b)

The calculation of ∂ϕs
Mk

(p; D)/∂d follows exactly the same way
as that in the MMC approach developed for the flat 2D case.

When the finite element method is used for the approximated
structural analysis, the sensitivity of the concerned objective func-
tion can be calculated in the following discrete form:

∂I
∂d

= −U⊤ ∂K
∂d

U (3.8)

where U is the vector of the displacement field on SΔ and ∂K/∂d
can be determined by the variation of δϕs

SΔ
with respect to δd in the

way described earlier. Furthermore, the sensitivity of the shell
volume with respect to d is quite straightforward and will not be dis-
cussed here.

3.3 The Flowchart of the Solution Procedure. As a
summary, the flowchart of the proposed integrated solution proce-
dure for topology optimization on complex surfaces with arbitrary
genus is described in this section.
Step 1: Surface preprocessing

(a) Generating a triangular surface on the mid-surface S of a
given objectO (whose geometry information can be obtained
from CAD modeling or direct 3D scanning) and obtain a
surface SΔ constituted by the generated triangulated surfaces
as an approximation of S with enough accuracy.

(b) Dividing SΔ into several parts Uk , k = 1, . . . , NU based on

its geometric features such that S =
⋃NU

k=1
Uk .

(c) Defining the cutting lines Cl, l = 1, . . . , NU , which make
every Uk (k = 1, . . . , NU) expand into a single simply con-
nected open surface U∗

k with genus zero.Fig. 7 The problem setting of the saddle-shaped shell example

Fig. 8 Parameterization of the mid-surface of the saddle-shaped shell by computational confor-
mal mapping

Fig. 9 Initial components layout of the saddle-shaped shell example
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Step 2: Parameterization based on conformal mapping

(a) Looping from k= 1 to NU for every U∗
k , parameterizing each

U∗
k through the CCM technique described in Sec. 2 and

obtaining the corresponding conformal mappings fk:U∗
k �Mk , k = 1 to NU .

Step 3: Topology Optimization

(a) Placing components in each parametric domain Mk, k = 1
to NU .

(b) Computing ϕs
Mk

(p) based on the design variables associated
with each component on every parametric domain Mk and
obtaining ϕs

Sk
(x) through ϕs

Sk
(x) = ϕs

Mk
( fk(x)).

(c) Obtaining ϕs
S(x) from ϕs

Sk
(x), k = 1 to NU through Eqs.

(2.15)–(2.17) in Sec. 2.
(d) Performing topology optimization on SΔ using ϕs

S(x) based
on the traditional MMC approach.

4 Numerical Examples
In this section, three numerical examples are examined to demon-

strate the effectiveness of the proposed framework for topology
optimization on surface with arbitrary genus. Triangular meshes
are adopted to represent the geometry of complex surfaces. The
same mesh is also used for the finite element analysis. Unit thick-
ness three-node bilinear shell finite elements are used to solve the
structural response. Without loss of generality, all involved quanti-
ties are assumed to be dimensionless, and the thickness t of the con-
sidered shell is t= 1. The Young’s modulus and the Poisson’s ratio
of the isotropic solid material are chosen as Es= 1 and ν= 0.3,
respectively. In all examples, the available volume of the solid
material is �V = 0.4VD, where VD denotes the volume of the
design domain on the surface. The Method of Moving
Asymptotes (MMA) [44] is used as numerical optimizer. The opti-
mization process is terminated if the relative change of each design
variable Tol between two consecutive iterations is below a specified
threshold (i.e., Tol= 0.001).

4.1 Saddle-Shaped Shell Example. In this example, we con-
sider a shell with saddle-shaped mid-surface with its geometry and
boundary conditions shown in Fig. 7. The saddle-shaped shell struc-
ture is subjected to a horizontal tangential concentrated load at its
saddle point. Although this problem is symmetric, the entire struc-
ture is optimized to test the robustness of the proposed approach.
The design domain on the saddle-shaped mid-surface of the shell
is discretized into 29,216 triangular meshes with 14,868 nodes for
geometric description and the finite element analysis.
From the topology point of view, the genus of an open saddle

surface is zero and is globally homeomorphic to a planar rectangle.
This means that the corresponding computational conformal
mapping function can be determined without any cutting operation
(see Fig. 8). As shown in Fig. 9, totally 16 components (containing
7 × 16= 112 design variables) are distributed in the planar rectangle
parametric domain characterizing the topology of the initial design.
Figure 9 shows the corresponding component distribution in the
physical domain (the mid-surface of the shell). Figure 10 plots

Fig. 10 Iteration history of the saddle-shaped shell example

Fig. 11 The optimized structure of the saddle-shaped shell example

Fig. 12 The problem setting of the torus shell surface Fig. 13 Torus surface parameterization via cutting operation
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the iteration history of optimization process. It is found that the
structural compliance experiences a rapid drop in the first five iter-
ations and then begins to decrease gradually in the following steps
and finally converges to Iopt= 22.56 at about the 120th step. Some
intermediate optimization results are also presented in Fig. 10. It can
be observed that the distributions of components in the parameter
domain and the physical domain do maintain the topological consis-
tency. As the optimization iterations proceed, the components grad-
ually form a connected load transmission path between the loading
point and the fixed structural boundary.
The final optimization results are plotted in Fig. 11, and it can be

seen that the corresponding components form a clear load transmis-
sion path on the mid-surface of the shell. Although no symmetry
constraints are imposed on the optimization problem, the optimized
structure still maintains the symmetry exactly. It is also found that
the stress is higher in the region near the saddle point in the
initial design due to the existence of concentrated horizontal
forces. While in the final design, the optimized components form

an elliptical region around the saddle point automatically, which
effectively relieves the stress concentration phenomenon.

4.2 Torus-Shaped Shell Example. In this example, topologi-
cal design of a torus-shaped shell is considered to demonstrate the
capability of the present approach to deal with surface of nonzero
genus and its potential of being integrate seamlessly with the 3D
scanning technique. The problem under consideration is shown in
Fig. 12. The inner ring of the shell assumed to be fixed, and four
rotationally symmetric shear forces are applied at four points
along the outer ring.
Actually, with the help of modern 3D scanning technique, a high-

precision discrete point cloud obtained from the scanning of a
surface can be generated efficiently, and the corresponding data
representing the geometry of the surface can be exported in a stan-
dard PLY (Polygon) format [45]. Without resorting to any further
postprocessing steps, the vertex and face information contained in
the exported PLY data can be used directly to generate the required
triangular mesh for geometric description and finite element analy-
sis in the proposed method. Figure 13 shows the discrete geometry

Fig. 14 Initial components layout of the torus-shaped example

Fig. 15 The iteration history of the torus surface example

Fig. 16 The optimized design of the tour surface example (viewing from different directions)

Fig. 17 Problem setting of the tee branch pipe example
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Fig. 18 Surface parameterization via multipatch stitching approach: (a) partition the surface into
four patches, (b) surface parameterization of each patch, and (c) delaunay triangularization and
parameterization

Fig. 19 Initial components layout of the tee branch pipe example and the mappings of different patches: (a) components on each
patch and (b) assembling of different patches
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model of the considered torus surface structure generated by 3D
scanning with 31,840 vertices and 63,680 triangular facets. Since
the genus of the torus is nonzero, it cannot be mapped conformally
to a single rectangular in the parametric domain. Under this circum-
stance, as described in Sec. 2 and shown in Fig. 13, we first cut the
torus along the path indicated by two intersecting circles and then
map the intermediate surface obtained by cutting operation to a

rectangular. It is worth mentioning that, actually, as the genus of
a surface increases, the cutting path is hard to be determined by intu-
ition. Fortunately, general algorithms have already been developed
to determine the cutting path automatically for surfaces with arbi-
trary genus in the field of computational topology [46,47] and can
be used to construct conformal mapping for complex surfaces.
Topology optimization can be performed once the mapping

between the intermediate surface obtained by cutting operation
and a planar rectangular has been established. Figure 14 shows
the initial design containing 64 components distributed in the rec-
tangle and their image on the torus surface, respectively. The itera-
tion history of the optimization process and the optimized designs
are provided in Figs. 15 and 16, respectively. An optimized
design with Iopt= 1.80 is obtained after 320 steps. It can be
observed from these figures that driven by the optimization algo-
rithm, the components automatically achieve a smooth connection
along the cutting boundary even though no special constraints are
introduced. A stable structural topology is achieved after 80 optimi-
zation iteration steps, while the subsequent steps only adjust some
minor structural details. In the optimized design, the components
form a lattice-like structure on the torus surface, which is believed
to be very efficient in resisting torsional deformation [48].

4.3 Tee Branch-Shaped Shell Example. In this final
example, we consider a complex tee branch pipe structure, which
can be modeled as a thin shell to illustrate the effectiveness of the
proposed multipatch stitching technique. The geometries of the
tee branch pipe, external load, and boundary conditions are

Fig. 20 The Iteration history of the tee branch pipe example

Fig. 21 The optimized design of the tee branch pipe example: (a) mapping of individual patch, (b) assembly of different patches,
and (c) the optimized design (viewing from different directions)
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shown in Fig. 17. Noting that not only the structure has complex
topology, but each branch of the pipe also has different shape of
nonuniform cross section as indicated in the figure. Although the
cutting operation can also be applied to establish a global conformal
mapping, the topology complexity of the tee branch pipe may inev-
itably cause excessive distortions of the structural components on
the surface although the components distributed in the parametric
domain are of regular shapes. Therefore, based on the intrinsic
topology character of the tee branch structure, we first partition it
into four patches (including three branch patches and a joint
patch) as shown in Fig. 18(a), and then computational conformal
mapping technique is used to establish the surface parameterization
of each patch. Each branch patch is actually topologically equiva-
lent to a cylindrical surface and can be directly mapped to a rectan-
gular by cutting along the direction of the generator. Therefore, the
corresponding conformal mappings can be established in an ordi-
nary way. However, after cutting along the selected lines, it is
still impossible to establish a topological homeomorphism
between the joint patch and a rectangular plane due to the existence
of a “hole” on this patch, as shown in (Fig. 18(c)). In other words,
the joint patch is topologically equivalent to a rectangular with a
hole. To tackle this problem, one approach is to make another cut
and turn the joint patch into a simply connected open surface.
Here, we, however, solve this in another way by first filling the
“hole” in the joint patch by Delaunay triangularization [49,50],
making it topologically equivalent to a rectangular, establishing
the conformal mapping and finally deleting the triangular mesh cor-
responding to the “hole” in the rectangular (Fig. 18(c)). With the use
of the aforementioned treatment, a conformal mapping relationship
between the joint patch and a rectangular with a hole can be estab-
lished. Once the corresponding conformal mappings are constructed
for the four patches, the global TDF characterizing the material dis-
tribution on the tee branch pipe can be determined in the way
described in Sec. 2.
Figure 19 shows the initial component layout and the process of

assembling the components from the different patches. Figure 20
shows the iteration history of the optimization process, and it can
be observed that an optimized design can be found after 200 itera-
tion steps. In the optimized design (Iopt= 141.04) shown in Fig. 21,
the material distributions in the two lower branches of the pipe are
very similar to that in the well-known 2D short beam example [16],
while the overall structural topology of the optimized tee branch
pipe has some similarity to that of the optimized structural layout
of the planar double L-bracket structure [51]. Figure 21 plots the
final component distribution on each patch and illustrates the
assembly process of the optimization results on each patch.

5 Concluding Remarks
In the present work, an integrated paradigm for topology optimi-

zation on complex surfaces with arbitrary genus is proposed. The
two supporting pillars are the MMC-based approach, where the
topology of a structure can be described by a set of parameters
explicitly, and the computational conformal mapping technique
with which a complex surface with arbitrary genus can be
mapped into a set of regular 2D parameter domains in a systematic
way numerically. The effectiveness and the applicability of the pro-
posed paradigm for topological design on complex 2D surfaces
have also been verified by several numerical examples provided.
The advantages of the proposed paradigm can be summarized

from the following aspects: (1) The proposed solution paradigm
is actually based on unstructured triangularization of surface. This
treatment naturally renders its applications to a variety of
complex surfaces constructed from different ways (e.g., analytical
description, CAD modeling, and 3D-scaning generated point
cloud). It can also be used to perform topology optimization directly
based on the triangular meshes generated by CAE software. It is also
worth noting that since the conformal mapping is only needed to be
established once before optimization, it will not introduce too much

computational cost. (2) Since MMCmethod is adopted for topology
optimization, the number of design variables can be reduced signif-
icantly and clear load transmission paths can be identified easily in
final optimized designs. Moreover, since the constructed conformal
mapping is topology preserved, the load path identification
approach developed in the traditional MMC framework [52] can
also be used to eliminate inactive degrees-of-freedom from the
finite element model to speed up the finite element analysis. For
the limitation of space, this feature will be demonstrated in detail
in a separate work. (3) The developed multipatch stitching techni-
que can greatly enhance the fidelity of geometry modeling and
therefore effectively reduce the nonlinearity of the constructed con-
formal mapping through local mapping assembling compared to the
case where a stiff global conformal mapping is established based on
a single patch. It is also very helpful for alleviating the mismatch of
components deployed on the boundaries of neighboring patches.
Furthermore, it is worth noting that the conformal mapping is
needed to be established only once before optimization, and there-
fore, its computation will not deteriorate the efficiency of the opti-
mization process.
The present work can be extended along various directions. For

example, although only topology optimization of mechanical
systems is considered in this work, the proposed solution paradigm
can be extended to solve more general surface design problems con-
sidering multiphysics effects such as heat transfer control and elec-
tromagnetic wave guidance. It can also be generalized to tackle the
problem of multiscale design on complex surfaces by combining the
MMC-based techniques developed for problems in the 2D flat space
[53]. Moreover, the proposed paradigm is also applicable to opti-
mize the layout of stiffeners on shells with complex spatial geome-
tries. This can be achieved by modeling the stiffeners as a set of
morphable components with explicit geometry descriptions
moving on the shells [54]. Corresponding research results will be
reported in separate works.
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