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Surface flows can represent the motions of the viscous and incompressible fluid at the 
solid/fluid interfaces. This paper presents a topology optimization approach for surface 
flows and extends the design space of topology optimization of fluidic structures onto 
the curved surfaces in the forms of 2-manifolds corresponding to the geometrical 
configurations of the solid/fluid interfaces. The presented approach is implemented by 
filling a porous medium onto the 2-manifolds. An artificial Darcy friction is correspondingly 
added to the area force term of the surface Navier-Stokes equations used to describe 
the surface flows and the physical area forces are penalized to eliminate their existence 
in the fluidic regions and to avoid the invalidity of the porous medium based topology 
optimization model. Topology optimization for the steady and unsteady surface flows 
has been executed by iteratively evolving the impermeability of the porous medium, 
where the impermeability is interpolated by the material density derived from a design 
variable. The related partial differential equations are solved by using the surface finite 
element method. Numerical examples have been provided to demonstrate this topology 
optimization approach for the surface flows, including the boundary velocity driven flows, 
the area force driven flows and the convection-diffusion flows.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The viscous dissipation of an object moving in a fluid is mainly caused by the boundary condition at the solid/fluid 
interface corresponding to the surface of this object. The boundary condition at the solid/fluid interface can be categorized 
into the no slip, partial slip and complete slip types as demonstrated in Fig. 1. The solid/fluid interface is essentially slippy. 
Increasing the slip length can effectively reduce the shear stress leaded by the velocity gradient at the solid/fluid interface 
and thereby decrease the viscous dissipation. Usually, the slip length at the solid/fluid interface is small enough with an 
ignorable value, and such solid/fluid interface can be regarded as no-slip boundary. When the slip length is prone to infinity, 
it can be approximated as a complete-slip boundary. Several approaches have been developed to approximate the complete-
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Fig. 1. Sketch for the no slip, partial slip and complete slip boundary conditions at the solid/fluid interfaces, where u is the fluidic velocity and ls is the slip 
length.

Fig. 2. (a) Sketch for the flows corresponding to objects moving in fluids with complete-slip boundaries. (b) Sketch for the surface flow on a 2-manifold. 
In the sketches, � is the 2-manifold, T� is the Boussinesq-Scriven surface stress tensor, u is the fluidic velocity, p is the fluidic pressure, ulv is the known 
fluidic velocity at the boundary of �, n is the unitary normal vector of �, τ is the unitary tangential vector at ∂� and nτ = n × τ is the outward unitary 
normal at ∂�.

slip boundary, including chemically coating or physically structuring a solid surface to derive the extreme hydrophobicity 
[1], using the optimal control method to manipulate the boundary velocity of a flow [2] and producing a vapor layer 
between the solid and liquid phases based on the Leidenfrost phenomenon [3]. The fluidic velocity is tangential to the 
complete-slip boundary, and it has zero gradient in the normal direction of the object surface. The complete-slip boundary 
is a streamsurface of the bulk flow around the object. The fluidic flow at the surface of the object can thus be separated as 
a surface flow demonstrated in Fig. 2(a).

Moreover, several interfacial phenomena, including the mass transfer on biological membranes, the open flows and the 
sealed flows of flexible microfluidics, can also be described as surface flows. On a biological membrane, the mass transfer 
process can be investigated as the dynamics of a corresponding surface flow of a liquid at the mid-surface of the mem-
brane, where the membrane is fixed on the skeletons composed of protein materials in the solid phase and sandwiched 
by the liquid/vapor interfaces [4]. In flexible microfluidics, a surface flow plays the key roles on the functional performance 
of a deformed, bent and stretched device, which can overcome the drawbacks, including relatively expensive processing, 
brittle and not self-sealing, associated with the usually used materials of silicon and glass [5]. For an open flow of flexible 
microfluidics, a surface flow corresponds to the mass transfer process at the free liquid/vapor interface of the flow in a 
unsealed groove-shaped channel with low aspect ratio [6]. For a sealed flow sandwiched by the walls with complete slip 
property, a surface flow can be used to describe the mass transfer process in the mid-surface between the complete-slip 
walls.

The above introduced surface flows can be described on the curved surfaces in the forms of 2-manifolds (Fig. 2(b)). 
Surface flows can extend the design space of fluidic structures onto the 2-manifolds corresponding to the geometrical con-
figurations of the material interfaces including solid/fluid interfaces. Because reasonable surface patterns can effectively 
control the performance of surface flows, this paper presents a topology optimization approach for surface flows, to imple-
ment the robust and efficient inverse design of fluidic structures on the extended design space.

This topology optimization approach is implementation by using the material distribution method, which was pioneered 
by Bendsøe and Kikuchi for elasticity [7] and has been extended to several other scientific fields [8]. Meanwhile, it can also 
be implemented by using a level set approach for the motion of curves constrained on surfaces [9]. Surface flows are im-
portant aspects of fluid mechanics. With regard to fluid mechanics, topology optimization has been implemented for Stokes 
flows [10], creeping fluid flows [11], steady Navier-Stokes flows [12], unsteady Navier-Stokes flows [13,14], flows with body 
forces [15,16], turbulent flows [17,18], two-phase flows of immiscible fluids [19], electroosmotic flows [20,21] and flows of 
non-Newtonian fluids [22,23], etc; topology optimization for fluidic flows has been reviewed in [24]. With regard to material 
interfaces, researches have been implemented for stiffness and multi-material structures [25–31], layouts of shell structures 
[32–37], electrode patterns of electroosmosis [21], fluid-structure and fluid-particle interaction [38–40], energy absorption 
[41], cohesion [42], actuation [43] and wettability control [44–46], etc.; a topology optimization approach implemented on 
the 2-manifolds corresponding to the geometrical configurations of material interfaces has also been generally developed 
with applications in the fields of wettability control, heat transfer and electromagnetics [47].
2
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Surface flows can be described by the surface Navier-Stokes equations defined on 2-manifolds [48–50]. This can be 
dated back to Scriven who was interested in the interface rheology on a foam [51]. In topology optimization for flows 
problems, a porous medium model was developed for Stokes flows [10]. This model was then extended to implement 
topology optimization for steady and unsteady Navier-Stokes flows [12–14]. In this model, the porous medium was filled 
in the two-/three-dimensional design domains. Correspondingly, an artificial Darcy friction was introduced into the force 
terms of the Stokes equations and Navier-Stokes equations. The impermeability of the porous medium was evolved in the 
topology optimization procedure to derive the fluidic structures. Inspired by the porous medium model developed in [10], 
this paper implements topology optimization for surface flows by filling a porous medium onto the 2-manifolds, where an 
artificial Darcy friction is added to the area force term of the surface Navier-Stokes equations.

To solve the surface flow problems on the 2-manifolds filled with the porous medium, surface finite element methods 
can be used to discretize the surface Navier-Stokes equations, where a Lagrange multiplier method and a penalty technique 
have been developed to enforce the tangential constraints of the flow fields [52,53]. Because the Lagrange multiplier method 
can ensure more accurate enforcement of the tangential constraints, it is chosen to solve the surface Navier-Stokes equa-
tions. Based on the porous medium model and the surface finite element method, the topology optimization approach is 
formulated for unsteady surface flows. This approach can be reduced into the forms for steady surface flows by setting the 
flow fields to be independent of time.

The remained sections of the paper are organized as follows. In Section 2, a monolithic description of the topology 
optimization problem for surface flows is presented. In Section 3, numerical implementation for the iterative solution of the 
topology optimization problem is introduced. In Section 4, numerical examples are provided to demonstrate the developed 
topology optimization approach for surface flows. In Section 5 and 6, the conclusion and acknowledgment of this paper are 
provided. In Appendix A, details are provided for the surface finite element discretization of the related partial differential 
equations (PDEs). All the mathematical descriptions are implemented in a Cartesian system.

2. Methodology

In this section, a topology optimization problem for the incompressible surface flows is described by using the material 
distribution method.

2.1. Surface Navier-Stokes equations

The equations of the motion of a Newtonian surface fluid can be formulated intrinsically on a 2-manifold of codimension 
one in an Euclidian space sketched in Fig. 2(b). In the incompressible cases, the constitutive law of the Newtonian surface 
fluid is

T� = η
(∇�u + ∇T

�u
)− pP at ∀x ∈ �, (1)

where � is a stationary 2-manifold loaded with fluid flows; ∇� is the tangential gradient operator on �; T� is the 
Boussinesq-Scriven surface stress tensor [54,55]; u is the fluidic velocity; p is the fluidic pressure; η is the shear vis-
cosity of the fluid on �; the superscript T represents the transposition operation of a tensor; P = I − nnT is the normal 
projector on the tangential space at x ∈ �, with x denoting a node on �; I is the three-dimensional unitary tensor; n is 
unitary normal vector of �. Based on the conservation laws of momentum and mass, the surface Navier-Stokes equations 
can be derived to describe the incompressible surface flows on the stationary 2-manifolds:

ρ
∂u

∂t
+ ρ (u · ∇�)u − P div�

[
η
(∇�u + ∇T

�u
)]+ ∇�p = b�

−div�u = 0

⎫⎬
⎭ at ∀ (t,x) ∈ (0, T ) × �, (2)

where ρ is the fluidic density; b� is the area forces in the tangential spaces of �; div� is the tangential divergence operator; 
T is the terminal time. The evolution of time t from 0 to T together with the 2-manifold � defines a 3-manifold (three-
dimensional manifold) S := (0, T ) × � sketched in Fig. 3. Because the fluid spatially flows on the 2-manifold �, the fluidic 
velocity is a vector in the tangential space of �, and it satisfies the tangential constraint described as

u · n = 0 at ∀ (t,x) ∈ (0, T ) × �. (3)

To solve the surface Navier-Stokes equations for the unsteady incompressible surface flows, an initial condition with a 
specified spatial distribution of the fluidic velocity is required, and it is expressed as

u|t=0 = u0 at ∀x ∈ �, (4)

where u0 is a specified distribution of the fluidic velocity on �.
To solve the surface Navier-Stokes equations, the fluidic velocity and pressure are also required to be specified at some 

boundaries, interfaces or points of a 2-manifold. The following boundary, interface or point conditions are considered in this 
paper. The inlet or interfacial boundary condition with known fluidic velocity is expressed as
3
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Fig. 3. Sketch for the 3-manifold S := (0, T ) × � defined by the time interval (0, T ) and the 2-manifold �, with T representing the terminal time.

u · nτ = ulv · nτ

u − (u · nτ )nτ = ulv − (
ulv · nτ

)
nτ

}
at ∀ (t,x) ∈ (0, T ) × lv , (5)

where ulv is a known distribution of the fluidic velocity; lv satisfies lv ⊂ ∂� when lv is a boundary curve of �, and it 
satisfies lv ⊂ � when lv is an interface curve of �; nτ = n ×τ is the outward unitary normal at ∂�, with τ representing the 
unitary tangential vector at ∂�. To ensure the compatibility between Eqs. (3) and (5), the known fluidic velocity ulv should 
be a distribution satisfying ulv · n = 0. When the known fluidic velocity is 0, Eq. (5) degenerates into the no-slip boundary 
condition:

u · nτ = 0

u − (u · nτ )nτ = 0

}
at ∀ (t,x) ∈ (0, T ) × lv0, (6)

where ulv is equal to 0 on lv0 ⊂ lv , and lv0 is the no-slip part of the boundary curve. The open boundary condition with 
zero tangential stress is expressed as

σ� · nτ = 0 at ∀ (t,x) ∈ (0, T ) × ls, (7)

where ls is the boundary satisfying ls ⊂ ∂�. The point condition with known fluidic pressure is expressed as

p = p0 at ∀ (t,x) ∈ (0, T ) ×P, (8)

where p0 is a known fluidic pressure; P ⊂ � is a finite point set.
The variational formulation of the surface Navier-Stokes equations is considered in the functional spaces without con-

taining the tangential constraint of the fluidic velocity. The tangential constraint of the fluidic velocity is imposed by a 
Lagrangian multiplier. Based on the Galerkin method, the variational formulation of the surface Navier-Stokes equations can 
be derived in the form of the following initial value problem:

Find

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u ∈ (V (S))3 with

⎧⎨
⎩

u · nτ = ulv · nτ

u − (u · nτ )nτ = ulv − (
ulv · nτ

)
nτ

}
at ∀ (t,x) ∈ (0, T ) × lv ,

u|t=0 = u0 at ∀x ∈ �,

p ∈ V (S) with p = p0 at ∀ (t,x) ∈ (0, T ) ×P,

λ ∈ W (S) with λ = 0 at ∀ (t,x) ∈ (0, T ) × lv ,

such that

T∫
0

∫
�

ρ

[
∂u

∂t
+ (u · ∇�)u

]
· ũ + η

2

(∇�u + ∇T
�u
) : (∇�ũ + ∇T

�ũ
)− p div�ũ + u · ∇� p̃ − b� · ũ

+ λ
(
ũ · n

)+ λ̃ (u · n) d�dt −
T∫

0

∫
lv

ulv · nτ p̃ dldt −
T∫

0

∫
∂�\lv

u · nτ p̃ dldt = 0,

for ∀ũ ∈ (V (S))3 , ∀p̃ ∈ V (S) and ∀λ̃ ∈ W (S) ,

(9)

where λ is the Lagrange multiplier used to impose the tangential constraint of the fluidic velocity; ũ, p̃ and λ̃

are the test functions of u, p and λ, respectively; d� and dl are the differential of the 2-manifold and its bound-
ary curves, respectively; V (S) represents the Hilbert space defined as H ((0, T ) ;H (�)) = {

u (t,x) : u (t,x) |x=x0 ∈
H ((0, T )), u (t,x) |t=t0 ∈ H (�) , ∂u/∂t ∈ L2 ((0, T ) ;H (�)) , for ∀t0 ∈ (0, T ) , ∀x0 ∈ �

}
, with L2 ((0, T ) ;H (�)) := {

u (t,x) :
u (t,x) |x=x0 ∈ L2 ((0, T )) , u (t,x) |t=t0 ∈ H (�) , for ∀t0 ∈ (0, T ) , ∀x0 ∈ �

}
; W (S) represents the Hilbert space defined as 

L2
(
(0, T ) ;L2 (�)

) := {
u (t,x) : u (t,x) |x=x0 ∈ L2 ((0, T )), u (t,x) |t=t0 ∈ L2 (�) , for ∀t0 ∈ (0, T ) , ∀x0 ∈ �

}
; H ((0, T )) and 

H (�) represent the first order Sobolev spaces defined on (0, T ) and �, respectively; L2 ((0, T )) and L2 (�) represent the 
second order Lebesque spaces defined on (0, T ) and �, respectively.
4
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On the Lagrangian multiplier in Eq. (9), it is used to impose the tangential constraint of the fluidic velocity and acts as a 
distributed force in the normal direction of the 2-manifold. When the fluidic particles cooperatively move on the 2-manifold, 
the centrifugal, Coriolis and Euler forces are induced by the non-zero distribution of the curvature of the 2-manifold. Those 
forces have the components in the normal direction of the 2-manifold, i.e., the normal components of the centrifugal, 
Coriolis and Euler forces. The normal components of those forces are canceled out by the distributed force corresponding to 
the Lagrangian multiplier. The tangential constraint of the fluidic velocity is thus satisfied.

The above surface Navier-Stokes equations and the corresponding variational formulation are introduced for the unsteady 
surface flows. For the steady surface flows, the time dependence is casted off by removing the local-derivative term ∂u/∂t
from Eq. (2). Sequentially, the time-space 3-manifold S degenerates into the spacial 2-manifold �; the initial condition in 
Eq. (4) is unnecessary; all the time dependence is removed from the tangential constraint in Eqs. (3) and the boundary, 
interface and point conditions in Eqs. (5), (7) and (8); the time integration of the variational formulation in Eq. (9) is 
removed; and the related functions are located in the first order Sobolev space H (�) and Lebesgue space L2 (�) instead of 
V (S) and W (S).

2.2. Porous medium model

In this topology optimization for surface flows, a porous medium model is utilized heuristically [10]. In this model, a 
porous medium is filled onto the 2-manifold. Correspondingly, an artificial Darcy friction is added into the area force term 
of the surface Navier-Stokes equations in Eq. (2). The artificial Darcy friction is derived based on the constitutive law of the 
porous medium. It is assumed to be proportional to the fluidic velocity [10,12], i.e.,

ba = −αu at ∀x ∈ �, (10)

where α is the impermeability. When the porosity of the porous medium is zero, it corresponds to a solid material with 
infinite impermeability and zero fluidic velocity caused by the infinite friction force. When the porosity is infinite, it corre-
sponds to the structural void for the transport of the fluid with zero impermeability. Therefore, the impermeability can be 
described as

α =
{+∞ for γp = 0,

0 for γp = 1,
(11)

where γp ∈ {0,1} is a binary distribution defined on �, with 0 and 1 representing the solid and fluid phases, respectively. 
To avoid the difficulty on solving a binary optimization problem, the binary variable γp is relaxed to vary continuously in 
[0,1]. The relaxed binary variable is referred to as the material density of the impermeability.

Fluidic structures are invariable for the flow problems, although the fluidic velocity and pressure can vary along with 
time in the unsteady flows. The material density of the impermeability is thus independent of time. In this paper, the 
material density is obtained by sequentially implementing the surface-PDE filter and the threshold projection on a time-
independent design variable valued continuously in [0,1], in order to remove the gray regions and control the minimum 
length scale in a derived fluidic structure. Inspired by the PDE filter developed in [56], the surface-PDE filter for the design 
variable is implemented by solving the following surface PDE [47]:{

div�

(
−r2

f ∇�γ f

)
+ γ f = γ at ∀x ∈ �,

nτ · ∇�γ f = 0 at ∀x ∈ ∂�,
(12)

where γ is the design variable; γ f is the filtered design variable. The variational formulation of the surface-PDE filter is 
considered in the first order Sobolev space defined on �. It can be derived based on the Galerkin method:

Find γ f ∈ H (�) for γ ∈ L2 (�) , such that∫
�

r2
f ∇�γ f · ∇�γ̃ f + γ f γ̃ f − γ γ̃ f d� = 0 for ∀γ̃ f ∈ H (�) ,

(13)

where γ̃ f is the test function of γ f . The threshold projection of the filtered design variable is [57,58]

γp = tanh (βξ) + tanh
(
β
(
γ f − ξ

))
tanh (βξ) + tanh (β (1 − ξ))

, (14)

where r f is the filter radius and it is constant; β and ξ are the parameters for the threshold projection, with values chosen 
based on numerical experiments [58].

Based on the description of the impermeability in Eq. (11) and the derivation of the material density in Eqs. (12) and 
(14), the material interpolation of the impermeability can be implemented as [10]
5
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α
(
γp
)= α f + (

αs − α f
)

q
1 − γp

q + γp
, (15)

where αs and α f are the impermeability of the solid and fluid phases, respectively; q is the penalization factor used to 
tune the convexity of this interpolation. For the fluid phase, the impermeability is zero, i.e., α f = 0. For the solid phase, αs

should be infinite theoretically; numerically, a finite value much larger than the fluid density ρ is chosen for αs , to ensure 
the stability of the numerical implementation and approximate the solid phase with enough accuracy. Based on numerical 
tests, q is valued as 10−1, and αs is chosen as 104ρ to satisfy αs � ρ .

For the porous medium model, the area force term in the surface Navier-Stokes equations includes the artificial Darcy 
friction and the physical area force:

b� = −αu + χbp, (16)

where bp is the physical area force, and it can be the gravity, and the centrifugal force along with the Coriolis and Euler 
forces, etc.; χ is a penalizing factor imposed on bp . It has been specified that the physical forces can drive the fluidic flow 
in the approximated solid phase with high impermeability [16]. This can result in the invalidity of the porous medium 
model. To solve this problem, a penalization is implemented by multiplying the physical force bp with the penalizing factor 
expressed as

χ
(
γp
)= χmax + (χmin − χmax)q

1 − γp

q + γp
, (17)

where χmin = 0 and χmax = 1 are the minimal and maximal values of χ , respectively. The effect of the penalization is to 
achieve the physical retrieval by gradually removing the physical force from solid phase and keeping its existence in the 
liquid phase. Then, the problem on the invalidity of the porous medium model can be avoided, when a physical force exists.

The interpolation schemes in Eqs. (15) and (17) are used to implement the material interpolation and penalization of 
the physical force. To ensure the synchronous action of those two interpolation schemes, the same value is chosen for the 
penalization factor q.

2.3. Topology optimization problem

Based on the introduction of the surface Naiver-Stokes equations and the porous medium model, the topology optimiza-
tion problem of surface flows can be constructed in the following general form:

Find γ : � 	→ [0,1] to minimize or maximize
J

J0
with

J =
T∫

0

∫
�

A
(
u,∇�u, p;γp

)
d�dt +

T∫
0

∫
∂�

B (u, p) dldt +
∫
�

C
(
u;γp

) ∣∣
t=T d�,

constrained by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂u

∂t
+ ρ (u · ∇�)u − P div�

[
η
(∇�u + ∇T

�u
)]+ ∇�p = −αu + χbp

− div�u = 0

u · n = 0

⎫⎪⎪⎬
⎪⎪⎭ at ∀ (t,x) ∈ S

α
(
γp
)= α f + (

αs − α f
)

q
1 − γp

q + γp

χ
(
γp
)= χmax + (χmin − χmax)q

1 − γp

q + γp{
div�

(
−r2

f ∇�γ f

)
+ γ f = γ at ∀x ∈ �

nτ · ∇�γ f = 0 at ∀x ∈ ∂�

γp = tanh (βξ) + tanh
(
β
(
γ f − ξ

))
tanh (βξ) + tanh (β (1 − ξ))

|v − v0| ≤ 10−3 with v = 1

|�|
∫
�

γp d� (Area constraint)

,

(18)

where J is the design objective in a general form; A, B and C are the integrands of J ; J0 is the value of J corresponding to 
the initial distribution of the design variable; to regularize this optimization problem, an area constraint with a permitted 
6
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tolerance of 10−3 chosen to be much less than 1 is imposed on the fluidic structure; v is the area fraction of the fluidic 
structure; v0 ∈ (0,1) is the specified area fraction; |�| = ∫

�
1 d� is the area of �.

The topology optimization problem in Eq. (18) is formulated for the unsteady surface flows. For the steady surface flows, 
reduction can be implemented by setting the related variables to be independent of time. The time integration in the design 
objective J is casted off, and the surface integration term about C defined at the terminal time t = T is removed. The surface 
Navier-Stokes equations in the constraints are degenerated into the stationary ones.

2.4. Adjoint analysis

The topology optimization problem in Eq. (18) can be solved by using a gradient information-based iterative procedure, 
where the adjoint sensitivities are used to determine the relevant gradient information. The adjoint analysis is implemented 
for the design objective and the area constraint to derive the adjoint sensitivities.

Based on the adjoint analysis method [59], the adjoint sensitivity of the design objective J can be derived as

δ J = −T

∫
�

γ f aδγ d�, (19)

where δ is the operator for the first order variational of a variable; δγ ∈ L2 (�) is first order variational of γ ; γ f a is the 
adjoint variable of the filtered design variable γ f . The adjoint variable γ f a can be derived from the adjoint equations in 
the variational formulations. The variational formulation for the adjoint equations of the surface Naiver-Stokes equations is 
derived in the form of a terminal value problem described as

Find

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ua ∈ (V (S))3 with

⎧⎨
⎩

ua · nτ = 0
ua − (ua · nτ )nτ = 0

}
at ∀ (t,x) ∈ (0, T ) × lv ,

ua|t=T = − 1
ρ

∂C
∂u at ∀x ∈ �,

pa ∈ V (S) with pa = 0 at ∀ (t,x) ∈ (0, T ) ×P,

λa ∈ W (S) with λa = 0 at ∀ (t,x) ∈ (0, T ) × lv ,

such that

T∫
0

∫
�

∂ A

∂u
· ũa + ∂ A

∂∇�u
: ∇�ũa + ∂ A

∂ p
p̃a − ρ

∂ua

∂t
· ũa + ρ

[(
ũa · ∇�

)
u + (u · ∇�) ũa

] · ua

+ η

2

(∇�ua + ∇T
�ua

) : (∇�ũa + ∇T
�ũa

)+
(
αua − χ

∂bp

∂u
· ua

)
· ũa + ua · ∇� p̃a − padiv�ũa

+
(
λ̃aua + λaũa

)
· n d�dt −

T∫
0

∫
∂�

(
ua · nτ − ∂ B

∂ p

)
p̃a dldt +

T∫
0

∫
∂�\lv

∂ B

∂u
· ũa dldt = 0,

for ∀ũa ∈ (V (S))3 , ∀p̃a ∈ V (S) and ∀λ̃a ∈ W (S) ,

(20)

where ua , pa and λa are the adjoint variables of u, p and λ, respectively; ũa , p̃a and λ̃a are the test functions of ua , pa and 
λa , respectively. The adjoint equation of the surface-PDE filter is derived in the variational formulation as

Find γ f a ∈ H (�) , such that

1

T

T∫
0

∫
�

(
∂ A

∂γp
+ ∂α

∂γp
u · ua − ∂χ

∂γp
bp · ua

)
∂γp

∂γ f
γ̃ f a d�dt + 1

T

∫
�

∂C

∂γp

∣∣∣
t=T

∂γp

∂γ f
γ̃ f a d�

+
∫
�

r2
f ∇�γ f a · ∇�γ̃ f a + γ f aγ̃ f a d� = 0, for ∀γ̃ f a ∈ H (�) ,

(21)

where γ̃ f a is the test function of γ f a .
The adjoint sensitivity of the area fraction v can be derived as

δv = − 1

|�|
∫
�

γ f aδγ d�, (22)

where γ f a can be derived from the following variational formulation for the adjoint equation of the surface-PDE filter:
7
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Table 1
Pseudocode used to solve the topology optimization problem for 
the surface flows. In the iterative solution loop, ni is the loop-
index, nmax is the maximal value of ni , Jni is the value of J
in the ni -th iteration, and mod is the operator used to take the 
remainder. In this paper, the terminal value 210 of the projection 
parameter β is used to make the material interface to be clear 
enough, although there is no remarkable variation of the design 
objective value after its value reaching 28.

Algorithm 1: iterative solution of Eq. (18)

Set u0, ulv p0, ρ and η;

Set

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ ← v0

nmax ← 315
ni ← 1
ξ ← 0.5
β ← 1

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αmin ← 0
αmax ← 104ρ
χmin ← 0
χmax ← 1
q ← 10−1

;

loop
Solve Eq. (13) to derive γ f by filtering γ ;
Project γ f to derive γp and compute v;
Solve u, p and λ from Eq. (9), and evaluate J/ J0;
Solve ua , pa , λa and γ f a from Eqs. (20) and (21);
Evaluate δ J from Eq. (19);
Solve γ f a from Eq. (23);
Evaluate δv from Eq. (22);
Update γ based on δ J and δv;
if mod (ni ,30) == 0

β ← 2β;
end if

if (ni == nmax) or

⎧⎪⎨
⎪⎩

β == 210

1
5

∑4
m=0

∣∣ Jni − Jni−m
∣∣/ J0 ≤ 10−3

|v − v0| ≤ 10−3

break;
end if
ni ← ni + 1

end loop

Find γ f a ∈ H (�) , such that∫
�

∂γp

∂γ f
γ̃ f a + r2

f ∇�γ f a · ∇�γ̃ f a + γ f aγ̃ f a d� = 0, for ∀γ̃ f a ∈ H (�) . (23)

After the derivation of the adjoint sensitivities in Eqs. (19) and (23), the design variable γ can be evolved iteratively to 
inversely design the fluidic structure for a surface flow.

The adjoint analysis is implemented on the topology optimization problem for the unsteady surface flows. It can be 
changed into the form for the steady surface flows by implementing reductions. For the steady surface flows, reductions can 
be implemented directly based on the time-independence of the fluidic velocity and pressure, with casting off the surface 
integration term about C defined at the terminal time t = T and degenerating the functional spaces into the ones defined 
on � instead of S .

3. Numerical implementation

The topology optimization problem in Eq. (18) is solved by using an iterative procedure described as the pseudocode in 
Table 1, where a loop is included for the iterative solution of the topology optimization problem in Eq. (18). The surface 
finite element method is utilized to solve the variational formulations of the relevant PDEs and adjoint equations [60]. The 2-
step backward differentiation formula (BDF) is utilized to discretize the time derivative terms of the variational formulations 
[61]. The details for the surface finite element solution have been provided in Appendix A. To ensure the well-posedness 
of the variational formulations of the surface Navier-Stokes equations and their adjoint equations (Eqs. (9) and (20)), the 
Taylor-Hood elements are used to satisfy the inf-sup condition [62]. Linear elements are used to interpolate and solve the 
variational formulations of the surface-PDE filter and its adjoint equation (Eqs. (13), (21) and (23)). The finite element 
nodes of the Taylor-Hood and linear elements of the quadrangular-element based discretization of a 2-manifold have been 
sketched in Fig. 4.

In the iterative procedure, the radius of the surface-PDE filter is set as π/30; the projection parameter β with the 
initial value of 1 is doubled after every 30 iterations; the loop is stopped when the maximal iteration number is reached, 
or if the averaged variation of the design objective in continuous 5 iterations and the residual of the area constraint are 
simultaneously less than the specified tolerance 10−3 chosen to be much less than 1. The design variable is updated by 
using the method of moving asymptotes [63].
8
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Fig. 4. Sketch for the finite element nodes of the Taylor-Hood and linear elements of the quadrangular-element based discretization of the 2-manifold �.

4. Results and discussion

In this section, topology optimization for the surface flows is implemented on the 2-manifolds with and without 
boundary. For the 2-manifolds without boundary, the orientable 2-manifolds are chosen as the sphere and torus, and the 
non-orientable 2-manifold is chosen as the Möbius strip. The density and dynamic viscosity of the fluid are assigned to be 
unitary.

4.1. Steady surface flows driven by boundary velocity

In this section, topology optimization is implemented for the steady surface flows driven by boundary velocity. The 2-
manifolds corresponding to continuously deforming quadrangular planes into the shapes of a sphere, a torus and a Möbius 
strip are considered (Figs. 5(a1-e1), 6(a1-e1) and 7(a1-c1)). In the sketched continuously deforming process, the 2-manifolds 
with boundaries are evolved into the ones without boundary and the areas of the 2-manifolds are kept to be constant. In 
Figs. 5(a1-e1), 6(a1-e1) and 7(a1-c1), the inlet boundaries with known velocity distributions, the no-slip boundaries and the 
open boundaries have been marked in different colors. The known velocity distributions are the parabolic functions of the 
arc-length coordinate of the inlet boundaries. The known velocity ulv in Eq. (5) satisfies sup∀x∈lv

∣∣ulv

∣∣= 1 and the tangential 
constraint in Eq. (3). By setting the design objective as the power of the viscous dissipation described as

J =
∫
�

η

2

(∇�u + ∇T
�u
) : (∇�u + ∇T

�u
)+ αu2 d�, (24)

the optimized structure of the surface flows on the 2-manifolds in Figs. 5(a1-e1), 6(a1-e1) and 7(a1-c1) are derived as shown 
in Figs. 5(a2-e2), 6(a2-e2) and 7(a2-c2) including the distributions of the fluid pressure and velocity vectors as shown in 
Figs. 5(a3-e3), 6(a3-e3) and 7(a3-c3), where the area fraction of the area constraint are specified as v0 = 0.4.

The derived surface structures on the quadrangular planes shown in Figs. 5(a2-e2), 6(a2-e2) and 7(a2-c2) are con-
sistent with the previously reported diffuser-shaped channels derived by using the topology optimization approach for 
two-dimensional fluidic flows [10,12]. When the square plane deforms as demonstrated in Figs. 5(b1-e1), the diffuser-
shaped channel in Fig. 5(a2) is split into two branches as shown in Figs. 5(b2-e2). When the rectangular plane deforms 
as demonstrated in Figs. 6(b1-e1), the diffuser-shaped channel in Fig. 6(a2) is firstly rolled and then bent as shown in 
Figs. 6(b2-e2). When the rectangular plane deforms into a Möbius strip as demonstrated in Figs. 7(b1) and 7(c1), the de-
rived surface channel in Fig. 7(a2) is winded into a twisted channel and a Möbius strip as shown in Figs. 7(b2) and 7(c2). 
The inherent mechanism for the evolution of the optimized surface structures is that the fluid is prone to moving in the 
short path between the inlet and the outlet to minimize the viscous dissipation.

Topology optimization for the steady surface flows has been further implemented to maximize the projected veloc-
ity distribution perpendicular or parallel to a specified distribution of the unitary directional vectors. For the 2-manifolds 
sketched in Figs. 8(a1-c1), the specified unitary directional vectors are the ones tangential to the axial curves of the cylinder, 
semi-torus and torus. The design objective is set to maximize

J =
∫
�

[u − (u · d)d]2 d�, (25)

where d is the specified unitary directional vectors tangential to the axial curves of the cylinder, semi-torus and torus. 
For the 2-manifolds sketched in Figs. 9(a1-c1), topology optimization is implemented to maximize the projected velocity 
distribution parallel to the directional vector k shown in the same figure. The design objective is set to maximize

J =
∫
�

(u · k)2 d�. (26)

By setting the known velocity at the inlets to be the similar distribution as that in Figs. 6 and 7 with sup∀x∈lv

∣∣ulv

∣∣ =
1 × 10−1, the results are then derived as shown in Figs. 8(a2-c2) and 9(a2-c2) including the distributions of the fluid 
9
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Fig. 5. Topology optimization for the steady surface flows on the 2-manifolds corresponding to continuously deforming a square plane into the shape of 
a sphere, where the design objective is to minimize the viscous dissipation of the surface flows driven by the inlet/interficial velocity ulv . During the 
deformation process, the areas of the 2-manifolds are kept to be constant. The inlet, no-slip and open boundaries have been marked in blue, black and red 
colors, respectively. ulv , satisfying the tangential constraint of the fluidic velocity in Eq. (3), is a known velocity distribution, which is a parabolic function 
of the arc-length coordinate at an inlet boundary. i, j and k are three directional vectors perpendicular to each other. (a1-e1) 2-manifolds corresponding to 
continuously deforming a square plane into the shape of a sphere, discretized by 60 × 60 quadrangular elements. (a2-e2) The patterns of the surface flows, 
corresponding to the derived distributions of the material density. (a3-e3) The distributions of the fluid pressure including the velocity vectors presented 
by the arrows marked in black color. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

pressure and velocity vectors, where helical-/zigzag-shaped surface structures are obtained on the cylinder, semi-torus, 
torus, rectangular strip, twisted strip and Möbius strip, respectively. The derived helical/zigzag structures can preserve the 
mass and momentum conservation of the surface flows and maximize the projected velocity component, simultaneously. 
Those structures have chirality and lose the geometrical symmetry of the 2-manifolds to avoid the elimination of the velocity 
component in the direction of the specified directional vectors. This ensures the transporting continuity of the surface flows.

To confirm the optimized performance of the structures derived for the steady surface flows, the results in Figs. 6(c-e) 
and 7(a-c) are cross compared to Figs. 8(a-c) and 9(a-c) as listed in Table 2. From Table 2, the optimized performance of the 
derived surface structures in Figs. 6(c-e) and 7(a-c) can be confirmed from their smaller converged values of the power of 
the viscous dissipation; meanwhile, the optimized performance of the derived surface structures in Figs. 8(a-c) and 9(a-c) 
can be confirmed from their larger converged values on the projected velocity distribution.

To confirm the convergence performance, the decrease of the design objective along with the topology optimization 
iterations has been provided as shown in Fig. 10 for the surface flows on the sphere, torus and Möbius strip in Figs. 5e1, 6e1 
and 7c1, including the evolution of the material density and sensitivity distribution. To check the optimization performance 
on different meshes, the patterns of the surface flows shown in Fig. 11 have been further derived on the refined meshes 
for the sphere, torus and Möbius strip in Figs. 5e1, 6e1 and 7c1. Fig. 11 includes the patterns of the surface flows and 
the velocity distributions on the two sets of meshes with different sizes. To check the convergence of the derived results 
with mesh refinement, L2-norm of the difference of the material density on the meshes with different sizes is used to 

characterize the pattern difference. The L2-norm is calculated to be 
(∫

�

(
γp,1 − γp,2

)2 d�
)1/2

/ |�| with the values listed in 
Table 3, where γp,1 and γp,2 are the material density on � discretized by two different meshes. Because the values of the 
L2-norms in Table 3 are much less than 1, convergence of the derived results with mesh refinement can be confirmed.
10
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Fig. 6. Topology optimization for the steady surface flows on the 2-manifolds corresponding to continuously deforming a rectangular plane into the shape 
of a torus, where the design objective is to minimize the viscous dissipation of the surface flows driven by the inlet/interficial velocity ulv . During the 
deformation process, the areas of the 2-manifolds are kept to be constant. The inlet, no-slip and open boundaries have been marked in blue, black and red 
colors, respectively. ulv , satisfying the tangential constraint of the fluidic velocity in Eq. (3), is a known velocity distribution, which is a parabolic function 
of the arc-length coordinate at an inlet boundary. i, j and k are three directional vectors perpendicular to each other. (a1-e1) 2-manifolds corresponding to 
continuously deforming a rectangular plane into the shape of a torus, discretized by 60 × 112 quadrangular elements. (a2-e2) The patterns of the surface 
flows, corresponding to the derived distributions of the material density. (a3-e3) The distributions of the fluid pressure including the velocity vectors 
presented by the arrows marked in black color.

4.2. Unsteady surface flows driven by area forces

In this section, topology optimization is implemented for the unsteady surface flows driven by the area forces, generated 
by rotating the 2-manifolds around specified axes. The rotating systems have been sketched in Figs. 12(a-c). The sizes of 
the sphere, torus and Möbius strip are the same as that in Fig. 5, 6 and 7. They are rotated around the axes across their 
centers in the direction of k. In a rotating system, the area forces include the centrifugal, Coriolis and Euler forces. On a 
2-manifold, the combination of the tangential components of those forces is used as the physical area force in Eq. (16) to 
drive the surface flows:

bp = (bc + bC + bE) − [(bc + bC + bE) · n] n, (27)

where bc , bC and bE are the centrifugal, Coriolis and Euler forces, respectively. Those forces are expressed as bc = ρω × r ×
ω, bC = ρu ×ω and bE = ρr × dω

dt , where ω is the angular velocity; r is the vector of the rotating radius; dω
dt is the angular 

acceleration. The time-dependent angular velocity and angular acceleration are imposed as plotted in Figs. 12(d-e).
The design destination is to optimize the actuation performance of the area forces. The design objective is thus set to 

maximize the work of the area forces:

J =
T∫

0

∫
�

bp · u d�dt. (28)

By using the topology optimization approach introduced in Section 2, the optimized surface structures are derived as shown 
in Fig. 13 including the plots of the variation of the work power of the area forces along with the time evolution, where the 
11
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Fig. 7. Topology optimization for the steady surface flows on the 2-manifolds corresponding to deforming a rectangular strip into the shape of a Möbius strip, 
where the design objective is to minimize the viscous dissipation of the surface flows driven by the inlet/interficial velocity ulv . During the deformation 
process, the areas of the 2-manifolds are kept to be constant. The inlet, no-slip and open boundaries have been marked in blue, black and red colors, 
respectively. ulv , satisfying the tangential constraint of the fluidic velocity in Eq. (3), is a known velocity distribution, which is a parabolic function of 
the arc-length coordinate at an inlet boundary. i, j and k are three directional vectors perpendicular to each other. (a1-c1) 2-manifolds corresponding to 
deforming a rectangular strip into the shape of a Möbius strip, discretized by 30 × 240 quadrangular elements. (a2-c2) The patterns of the surface flows, 
corresponding to the derived distributions of the material density. (a3-c3) The distributions of the fluid pressure including the velocity vectors presented 
by the arrows marked in black color.

area fraction of the area constraint is specified as v0 = 0.3. The results in Fig. 13 show that the derived surface structures 
have the shapes of ring belts to make the combined area force exert positive work by ensuring the consistency between 
the directions of the combined area force and fluidic velocity. During the rotating process, the Coriolis force has zero con-
tribution to the work of the area forces, because it is perpendicular to the local fluidic velocity; the work of the centrifugal 
force is much less than that of the Euler force. Therefore, the surface flows are mainly actuated by the Euler force and the 
graphics of the work power in Figs. 13(a3-c3) have similar shapes as that of the angular acceleration plotted in Fig. 12(e). 
From Figs. 13(a2-c2), we can see that the directions of the combined area force and fluidic velocity on the sphere and 
torus are more consistent than that on the Möbius strip. The area forces have more efficient actuation performance on the 
sphere and torus, and the actuated surface flows have stronger convection. Therefore, the curves for the sphere and torus in 
Figs. 13(a3) and 13(b3) have less symmetry than that for the Möbius strip in Fig. 13(c3).

When the design destination is changed to maximize the projected velocity distribution in the directions of the rotating 
axes:
12
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Fig. 8. Topology optimization for the steady surface flows on the 2-manifolds sketched in Figs. (a1-c1), where the surface flows are driven by the inlet/inter-
ficial velocity ulv and the design objective is to maximize the projected velocity distribution perpendicular to the directional vectors tangential to the axial 
curves of the cylinder, semi-torus and torus. (a2-c2) The patterns of the surface flows, corresponding to the derived distributions of the material density. 
(a3-c3) The distributions of the fluid pressure including the velocity vectors presented by the arrows marked in black color.

Table 2
Values of the design objectives in Eqs. (24), (25) and 
(26) for the surface structures in Figs. 6(c-e), 7(a-c), 
8(a-c) and 9(a-c). The optimized entries have been 
noted in bold.

Fig. 6(c) Fig. 8(a)

Eq. (24) 2.00 × 102 < 1.40 × 104

Eq. (25) 4.00 × 10−1 < 1.18 × 102

Fig. 6(d) Fig. 8(b)

Eq. (24) 1.63 × 102 < 1.34 × 104

Eq. (25) 1.12 × 100 < 1.13 × 102

Fig. 6(e) Fig. 8(c)

Eq. (24) 2.26 × 102 < 1.19 × 104

Eq. (25) 2.31 × 100 < 1.04 × 102

Fig. 7(a) Fig. 9(a)

Eq. (24) 5.63 × 102 < 3.49 × 103

Eq. (26) 1.98 × 10−2 < 3.86 × 100

Fig. 7(b) Fig. 9(b)

Eq. (24) 5.19 × 102 < 2.93 × 103

Eq. (26) 1.11 × 10−1 < 2.85 × 100

Fig. 7(c) Fig. 9(c)

Eq. (24) 1.06 × 102 < 1.03 × 103

Eq. (26) 3.59 × 10−2 < 1.04 × 100

J =
T∫

0

∫
�

(u · k)2 d�dt, (29)

the optimized surface structures are derived as shown in Fig. 14, including the plots of the variation of the spatial integration 
of the projected velocity distribution along with the time evolution. The surface structures are derived in the shapes of the 
twisted rings. Those surface structures can maximize the work of the components of the area forces in the directions of 
13
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Fig. 9. Topology optimization for the steady surface flows on the 2-manifolds sketched in Figs. (a1-c1), where the surface flows are driven by the inlet/inter-
ficial velocity ulv and the design objective is to maximize the projected velocity distribution perpendicular to the directional vector k. (a2-c2) The patterns 
of the surface flows, corresponding to the derived distributions of the material density. (a3-c3) The distributions of the fluid pressure including the velocity 
vectors presented by the arrows marked in black color.

the rotating axes. In Figs. 14(a3) and 14(b3), the asymmetry of the curves is also caused by the more efficient actuation 
performance of the area forces and stronger convection of the actuated surface flows.

To confirm the optimized performance of the structures derived for the unsteady surface flows, the results in Figs. 13
and 14 are cross compared in Table 4. From Table 4, the optimized performance of the derived surface structures in Fig. 13
can be confirmed from their larger converged values of the work of the area forces; meanwhile, the optimized performance 
of the derived surface structures in Fig. 14 can be confirmed from their larger converged values on the projected velocity 
distribution.

4.3. Convection-diffusion problems of surface flows

To demonstrate topology optimization of surface flows described by the stabilized surface Navier-Stokes equations 
discretized by linear finite elements, the convection-diffusion problems are investigated in this section. Convection and 
diffusion are the most basic phenomena in the fluidic flows. The corresponding typical problem is the mixing of the fluid 
with different concentration of a solute. Topology optimization for convection-diffusion problems has been investigated in 
two-dimensional plane and three-dimensional domains [66,67]. For the surface flows, the convection and diffusion can be 
described by the surface convection-diffusion equation:

div� (−D∇�c) + u · ∇�c = 0 at ∀x ∈ �, (30)
14



Fig. 10. (a) Convergence performance of topology optimization for the surface flow on the sphere in Fig. 5e1. (b) Convergence performance of topology 
optimization for the surface flow on the torus in Fig. 6e1. (c) Convergence performance of topology optimization for the surface flow on the Möbius strip 
in Fig. 7c1. In the convergence plots, the evolution of the material density and sensitivity distribution have been included.

where c is the distribution of the concentration on the 2-manifold �; D is the diffusion coefficient of the solute; the 
fluidic velocity u is described by using the steady counterpart of the surface Navier-Stokes equations in Eq. (2), for which 
the known-velocity, no-slip and open boundary conditions are included. For the surface convection-diffusion equation, the 
distribution of the concentration is known at the boundary curve with known non-zero fluidic velocity, i.e., c = c0 at lv \ lv0, 
where c0 is a known distribution of the concentration; the remained part of the boundary curves is insulation boundary, 
i.e., ∇�c · nτ = 0 at ∂� \ (lv \ lv0).

The fluidic velocity u in Eq. (30) can be solved from the variational formulation for the steady counterpart of the surface 
Navier-Stokes equations:
Y. Deng, W. Zhang, Z. Liu et al. Journal of Computational Physics 467 (2022) 111415
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Fig. 11. (a) Results derived on the meshes with different sizes for the discretization of the sphere in Fig. 5e1. (b) Results derived on the meshes with 
different sizes for the discretization of the torus in Fig. 6e1. (c) Results derived on the meshes with different sizes for the discretization of the Möbius strip 
in Fig. 7c1. The results include the patterns of the surface flows in black-while colors, the meshes in blue color and the velocity distribution presented by 
the arrows marked in red color.

Fig. 12. (a-c) 2-manifolds in the shapes of sphere, torus and Möbius strip rotating around the axes across their centers. (d-e) Time-dependent angular 
velocity and angular acceleration of rotated 2-manifolds. k is the directional vectors of the rotating axes; ω is the angular velocity; dω/dt is the angular 
acceleration.

Table 3
L2-norm of the difference of the material density on the meshes 
with different sizes used to characterize the difference of the pat-
terns in Fig. 11.

Fig. 11(a) Fig. 11(b) Fig. 11(c)

L2-norm 3.43 × 10−5 8.69 × 10−5 3.87 × 10−5
16
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Fig. 13. (a1-c1) Surface structures derived by maximizing the work of the area forces generated in the rotating systems. (a2-c2) Patterns of the surface flows, 
where the distributions of the velocity vectors and area forces at time t = 0.5 are presented by the arrows marked in red and blue colors, respectively. 
(a3-c3) Plots of the variation of the work power of the area forces along with the time evolution.

Fig. 14. (a1-c1) Surface structures derived by maximizing the work of the area forces generated in the rotating systems. (a2-c2) Patterns of the surface flows, 
where the distributions of the velocity vectors and area forces at time t = 0.5 are presented by the arrows marked in red and blue colors, respectively. (a3) 
and (a4) are the top views of (a1) and (a2), respectively. (b3), (b4), (c3) and (c4) are the bottom views of (b1), (b2), (c1) and (c2), respectively. (a5-c5) Plots 
of the variation of the integration of the projected velocity distribution along with the time evolution.

Table 4
Values of the design objectives in Eqs. (28) and (29) for the 
surface structures in Figs. 13 and 14. The optimized entries 
have been noted in bold.

Fig. 13(a1) Fig. 14(a1)

Eq. (28) 1.81 × 101 > 4.00 × 10−1

Eq. (29) 6.33 × 10−5 < 2.85 × 10−1

Fig. 13(b1) Fig. 14(b1)

Eq. (28) 6.08 × 101 > 4.52 × 101

Eq. (29) 1.07 × 10−3 < 3.53 × 10−1

Fig. 13(c1) Fig. 14(c1)

Eq. (28) 1.21 × 100 > 1.04 × 100

Eq. (29) 1.13 × 10−4 < 4.67 × 10−4
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Find

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u ∈ (H (�))3 with

{
u · nτ = ulv · nτ

u − (u · nτ )nτ = ulv − (
ulv · nτ

)
nτ

}
at ∀x ∈ lv

p ∈ H (�)

λ ∈ L2 (�) with λ = 0 at ∀x ∈ lv

,

such that
∫
�

ρ (u · ∇�)u · ũ + η

2

(∇�u + ∇T
�u
) : (∇�ũ + ∇T

�ũ
)− p div�ũ + u · ∇� p̃ + αu · ũ

+ λ
(
ũ · n

)+ λ̃ (u · n) d� +
∑
E∈E

∫
E

−τB P ∇� p · ∇� p̃ d� −
∫
lv

ulv · nτ p̃ dl −
∫

∂�\lv

u · nτ p̃ dl = 0,

for ∀ũ ∈ (H (�))3 , ∀p̃ ∈ H (�) and ∀λ̃ ∈ L2 (�) ,

(31)

where the Brezzi-Pitkäranta stabilization term 
∑

E∈E
∫

E −τB P ∇� p ·∇� p̃ d� with τB P representing the stabilization parameter 
has been imposed on the variational formulation, in order to use the linear elements sketched in Fig. 4 to solve both the 
fluidic velocity and pressure [68]; E is an element of the elementization E of �. The distribution of the solute concentration 
can be solved from the variational formulation of the surface convection-diffusion equation:

Find c ∈ H (�) with c = c0 at ∀x ∈ lv \ lv0, such that∫
�

(u · ∇�c) c̃ + D∇�c · ∇�c̃ d� +
∑
E∈E

∫
E

τP G (u · ∇c)
(
u · ∇ c̃

)
d� = 0, for ∀c̃ ∈ H (�) , (32)

where the Petrov-Galerkin stabilization term 
∑

E∈E
∫

E τP G (u · ∇c)
(
u · ∇ c̃

)
d� with τP G representing the stabilization pa-

rameter has been imposed on the variational formulation, in order to use the linear elements to solve the distribution of 
the concentration [69]. In Eqs. (31) and (32), the stabilization parameters are chosen as [68,69]⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
τB P = h2

E

12η
,

τP G =
(

4

h2
E D

+ 2 |u|
hE

)−1

,

(33)

where hE is the size of the element E .
The design destination is to completely mix the fluid with different concentration of the solute. The design objective is 

thus set to minimize the least square measurement of the solute concentration at the open boundary of the surface flow. 
According to [67], the least square difference measurement is expressed as

J =
∫
ls

(c − c̄)2 dl, (34)

where c̄ is the anticipation of the concentration at the open boundary, and it is the averaged value of the concentration at 
the boundary with the known non-zero velocity, i.e., c̄ = ∫

lv \lv0
c0 dl

/∫
lv\lv0

1 dl. Based on the adjoint analysis method [59], 
the variational formulation for the adjoint equation of Eq. (32) can be derived as

Find ca ∈ H (�) with ca = 0 at ∀x ∈ lv \ lv0, such that∫
�

2 (c − c̄) c̃a + (
u · ∇�c̃a

)
ca + D∇�ca · ∇�c̃a d� +

∑
E∈E

∫
E

τP G (u · ∇ca)
(
u · ∇ c̃a

)
d� = 0, for ∀c̃a ∈ H (�) , (35)

where ca is the adjoint variable of c. Similarly, the variational formulation for the adjoint equation of Eq. (31) can be derived 
as

Find

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ua ∈ (H (�))3 with

{
ua · nτ = 0

ua − (ua · nτ )nτ = 0

}
at ∀x ∈ lv

pa ∈ H (�)

λa ∈ L2 (�) with λa = 0 at ∀x ∈ lv

, such that

∫
ρ
[(

ũa · ∇�

)
u · ua + (u · ∇�) ũa · ua

]+ η

2

(∇�ua + ∇T
�ua

) : (∇�ũa + ∇T
�ũa

)− p̃a div�ua + ũa · ∇�pa
�
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+αua · ũa + λ̃a (ua · n) + λa
(
ũa · n

)+ (
ũa · ∇�c

)
ca d� +

∑
E∈E

∫
E

−τB P ∇� pa · ∇� p̃a (36)

+τP G
(
ũa · ∇c

)
(u · ∇ca) + τP G (u · ∇c)

(
ũa · ∇ca

)+
(

∂τP G

∂u
· ũa

)
(u · ∇c) (u · ∇ca) d�

−
∫

∂�\lv

ũa · nτ pa dl = 0, for ∀ũa ∈ (H (�))3 , ∀p̃a ∈ H (�) and ∀λ̃a ∈ L2 (�) .

Based on the solution of the adjoint variables in Eqs. (35) and (36), the adjoint sensitivity of the design objective in Eq. (34)
can be derived.

In order to control the patency of the surface structures used to mix the fluid with different solute concentration, a 
bilateral constraint of the pressure drop instead of the volume fraction is added to the topology optimization problem, 
where the pressure drop is computed between the known-velocity and open boundaries. The bilateral constraint of the 
pressure drop is set with a permitted tolerance 10−3 chosen to be much less than 1:∣∣∣∣ �P

�P0
− 1

∣∣∣∣≤ 10−3, (37)

where �P0 is a specified value of the desired pressure drop; �P is the pressure drop expressed as

�P =
∫

lv\lv0

p dl −
∫
ls

p dl. (38)

For the pressure drop �P in Eq. (38), the variational formulation for the adjoint equation of Eq. (31) can be derived as

Find

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ua ∈ (H (�))3 with

{
ua · nτ = 0

ua − (ua · nτ )nτ = 0

}
at ∀x ∈ lv

pa ∈ H (�)

λa ∈ L2 (�) with λa = 0 at ∀x ∈ lv

, such that

∫
�

ρ
[(

ũa · ∇�

)
u · ua + (u · ∇�) ũa · ua

]+ η

2

(∇�ua + ∇T
�ua

) : (∇�ũa + ∇T
�ũa

)− p̃a div�ua + ũa · ∇� pa

+ αua · ũa + λ̃a (ua · n) + λa
(
ũa · n

)+ (
ũa · ∇�c

)
ca d� +

∑
E∈E

∫
E

−τB P ∇�pa · ∇� p̃a d� −
∫

∂�\lv

ũa · nτ pa dl

+
∫

lv\lv0

p̃a dl −
∫
ls

p̃a dl = 0, for ∀ũa ∈ (H (�))3 , ∀p̃a ∈ H (�) and ∀λ̃a ∈ L2 (�) .

(39)

Based on the solution of the adjoint variable in Eq. (39), the adjoint sensitivity of the pressure drop can be derived.
Topology optimization of the surface structures for the convection-diffusion problems is implemented on the 2-manifolds 

sketched in Fig. 15, where the known velocity at the inlets is set to be the same as that in Fig. 6. The known distribution of 
the concentration at the inlets is set to be c = 2 and c = 0 at the upper and lower half parts of the inlet curves, respectively. 
The anticipation of the concentration at the open boundary is c̄ = 1. By setting the diffusion coefficient to be D = 5 × 10−3

and the specified value of the pressure drop to be �P0 = 1.5 × 103, the optimized surface structures, the patterns together 
with the distributions of the velocity vectors and the corresponding distributions of the solute concentration are derived 
as shown in Figs. 16(a1-d1), 16(a2-d2) and 16(a3-d3), respectively. The distributions of the velocity vectors show that 
the mixing length and convection of the surface flows have been enhanced effectively. From the derived results, we can 
conclude that the rolling and bending operation of a 2-manifold can result in different geometrical configurations of the 
surface structures optimized to control the convection and diffusion in the surface flows. The distributions of the solute 
concentration on the 2-manifolds without optimized surface structures have been provided in Figs. 16(a4-d4). The values 
of the design objective corresponding to the distributions of the solute concentration in Figs. 16(a3-d3) and 16(a4-d4) 
have been listed in Table 5, from which the improved performance achieved by the optimized surface structures can be 
confirmed.

To further confirm the optimized performance of the structures derived for the convection-diffusion problems, the values 
of the design objective corresponding to the results in Figs. 16(d1-d4) and 16(e1-e4) are cross compared as listed in Table 6, 
where the results in Figs. 16(e1-e4) are derived by setting the known distribution of the solute concentration to be c = 2
and c = 0 at the left and right half parts of the inlet curves, respectively. From Table 6, the optimized performance of the 
derived surface structures in Figs. 16(d1-d4) and 16(e1-e4) can be confirmed from their smaller converged values of the 
least square difference measurement.
Y. Deng, W. Zhang, Z. Liu et al. Journal of Computational Physics 467 (2022) 111415
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Fig. 15. 2-manifolds used in topology optimization of the surface structures for the convection-diffusion problems. The areas of the 2-manifolds are kept to 
be constant during the deformation. The design domains are colored in gray. The surface channels connected on the design domains are marked in white 
color. The known velocity at the inlets is set to be parabolic distributions which are the same as that in Fig. 3.

Fig. 16. (a1-d1) Optimized surface structures for the convection-diffusion problems derived on the 2-manifolds sketched in Fig. 15. (a2-d2) Patterns of 
the surface flows corresponding to the derived surface structures, where the distributions of the velocity vectors are presented by the arrows marked in 
red color. (a3-d3) Distributions of the solute concentration on the patterns of the surface flows. (a4-d4) Distributions of the solute concentration on the 
2-manifolds without optimized surface structures. (e1-e4) Results derived by setting the known distribution of the concentration at the inlets to be c = 2
and c = 0 at the left and right half parts of the inlet curves, respectively.
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Table 5
Values of the design objective in Eq. (34) corresponding to 
the distributions of the solute concentration in Figs. 16(a3-
e3) and (a4-e4). The optimized entries have been noted in 
bold.

Fig. 16(a3) Fig. 16(a4)

Eq. (34) 0.994 < 2.472

Fig. 16(b3) Fig. 16(b4)

Eq. (34) 1.049 < 2.473

Fig. 16(c3) Fig. 16(c4)

Eq. (34) 0.299 < 1.592

Fig. 16(d3) Fig. 16(d4)

Eq. (34) 0.279 < 1.616

Fig. 16(e3) Fig. 16(e4)

Eq. (34) 0.206 < 1.606

Table 6
Values of the design objective in Eq. (34) for the surface 
structures in Figs. 16(d1-d4) and 16(e1-e4). ‘Upper-Lower’ 
corresponds to the known distribution of the concentration at 
the inlet set to be c = 2 and c = 0 at the upper and lower half 
parts of the inlet curves, respectively; ‘Left-Right’ corresponds 
to the known distribution of the solute concentration set to 
be c = 2 and c = 0 at the left and right half parts of the inlet 
curves, respectively. The optimized entries have been noted 
in bold.

Fig. 16(d1-d4) Fig. 16(e1-e4)

Upper-Lower 0.279 < 0.398
Left-Right 0.431 > 0.206

5. Conclusions

This paper has developed a topology optimization approach for the surface flows at the solid/fluid interfaces, where 
the fluidic motion is described by the surface Navier-Stokes equations. This approach is implemented by filling a porous 
medium onto the design domains in the form of 2-manifolds, where an artificial Darcy friction force is added to the surface 
Navier-Stokes equations. When an area force induced by an exterior physical field is imposed on the surface flows, it is 
penalized to avoid the invalidity of the porous medium model of this topology optimization approach by eliminating its 
existence in the solid phase.

The outlined topology optimization approach has been implemented for the steady and unsteady surface flows, respec-
tively. For the steady cases, this approach has been carried out for the surface flows driven by the boundary velocity on 
a series of 2-manifolds deformed from the ones with boundaries to the ones without boundaries. For the unsteady cases, 
this approach has been performed for the surface flows driven by the centrifugal, Coriolis and Euler forces generated by 
rotations around fixed axes, where a time dependent angular velocity is imposed. The derived numerical results can provide 
intuitive understanding of the optimized topology on the continuously deformed 2-manifolds and the actuation perfor-
mance of area forces for the surface flows. This approach has been extended to implement topology optimization for the 
convection-diffusion problems of surface flows, where the numerical stabilization has been introduced to solve the surface 
Navier-Stokes equations by using the linear surface elements.

The presented topology optimization approach can provide an optimization based inverse design method for the coating 
patterns on the surfaces of aerial and underwater equipments, of which the outer shapes can be described as invariant 
2-manifolds and the fluidic velocity is tangential to the solid/fluid interface with approximated complete slip property. In 
the future, we will implement topology optimization for the surface flows including the evolution of 2-manifolds caused by 
the normal velocity of the surface flows. This is significant to include more dynamic effects into the topology optimization 
for fluid mechanics.
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Appendix A

This section provides the details for the adjoint analysis of the topology optimization problem and the surface finite 
element solutions of the variational formulations for the related PDEs and adjoint equations.

A.1. Details on Adjoint analysis

Based on the variational formulations in Eqs. (9) and (13) and the Lagrangian multiplier-based adjoint method [59], the 
augmented Lagrangian for the topology optimization problem in Eq. (18) can be formulated as

Ĵ =
T∫

0

∫
�

A
(
u,∇�u, p;γp

)
d�dt +

T∫
0

∫
∂�

B (u, p) dldt +
∫
�

C
(
u;γp

) ∣∣
t=T d�

+
T∫

0

∫
�

ρ

[
∂u

∂t
+ (u · ∇�)u

]
· ua + η

2

(∇�u + ∇T
�u
) : (∇�ua + ∇T

�ua
)− p div�ua + u · ∇�pa

− b� · ua + λ (ua · n) + λa (u · n) d�dt −
T∫

0

∫
lv

ulv · nτ pa dldt −
T∫

0

∫
∂�\lv

u · nτ pa dldt

+
T∫

0

∫
�

r2
f ∇�γ f · ∇�γ f a + γ f γ f a − γ γ f a d�dt

=
T∫

0

∫
�

A
(
u,∇�u, p;γp

)
d�dt +

T∫
0

∫
∂�

B (u, p) dldt +
∫
�

[
C
(
u;γp

)+ ρu · ua
] ∣∣

t=T − (ρu · ua)
∣∣
t=0 d�

+
T∫

0

∫
�

−ρ
∂ua

∂t
· u + ρ [(u · ∇�)u] · ua + η

2

(∇�u + ∇T
�u
) : (∇�ua + ∇T

�ua
)− p div�ua

+ u · ∇� pa − b� · ua + λ (ua · n) + λa (u · n) d�dt −
T∫

0

∫
lv

ulv · nτ pa dldt

−
T∫

0

∫
∂�\lv

u · nτ pa dldt + T

∫
�

r2
f ∇�γ f · ∇�γ f a + γ f γ f a − γ γ f a d�,

(40)

where ua , pa , λa and γ f a are the adjoint variables of u ∈ (V (S))3, p ∈ V (S), λ ∈ W (S) and γ f ∈ H (�), respectively; the 
functional spaces (V (S))3, V (S), W (S) and H (�) have been defined and described in Section 2.1. The adjoint variables 
satisfy
22
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ua ∈ (V (S))3 with

{
ua · nτ = 0

ua − (ua · nτ )nτ = 0

}
at ∀ (t,x) ∈ (0, T ) × lv

pa ∈ V (S) with pa = 0 at ∀ (t,x) ∈ (0, T ) ×P
λa ∈ W (S) with λa = 0 at ∀ (t,x) ∈ (0, T ) × lv

. (41)

Based on Bochner’s theorem [70], the transformation in Eq. (40) is implemented based on the following relation:

T∫
0

∫
�

ρ
∂u

∂t
· ua d�dt =

∫
�

⎛
⎝ T∫

0

ρ
∂u

∂t
· ua dt

⎞
⎠d� =

∫
�

(ρu · ua)
∣∣t=T
t=0 d� −

T∫
0

∫
�

ρ
∂ua

∂t
· u d�dt. (42)

The first-order variational of the augmented Lagrangian Ĵ in Eq. (40) is

δ Ĵ =
T∫

0

∫
�

∂ A

∂u
· δu + ∂ A

∂∇�u
: ∇�δu + ∂ A

∂ p
δp + ∂ A

∂γp

∂γp

∂γ f
δγ f d�dt +

T∫
0

∫
∂�

∂ B

∂u
· δu + ∂ B

∂ p
δp dldt

+
∫
�

(
∂C

∂u
· δu + ∂C

∂γp

∂γp

∂γ f
δγ f + ρua · δu

)∣∣∣∣∣
t=T

d� +
T∫

0

∫
�

−ρ
∂ua

∂t
· δu + ρ[(δu · ∇�)u

+ (u · ∇�) δu] · ua + η

2

(∇�ua + ∇T
�ua

) : (∇�δu + ∇T
�δu

)− δpdiv�ua − padiv�δu

+ αua · δu + ∂α

∂γp

∂γp

∂γ f
u · uaδγ f − χ

∂bp

∂u
δu · ua − ∂χ

∂γp

∂γp

∂γ f
bp · uaδγ f

+ δλ (ua · n) + λa (δu · n) d�dt −
T∫

0

∫
∂�\lv

δu · nτ pa dldt

+ T

∫
�

r2
f ∇�γ f a · ∇�δγ f + γ f aδγ f − γ f aδγ d�,

(43)

where δu ∈ (V (S))3, δp ∈ V (S), δλ ∈W (S) and δγ f ∈H (�) are the first-order variational of u, p, λ and γ f , respectively. In 
Eq. (43), the term related with the first-order variational of 

∫
� (ρu · ua)

∣∣
t=0 d� vanishes because of the initial condition of 

the fluidic velocity in Eq. (4). According to the KKT condition of the PDE constrained optimization problem [59], the adjoint 
sensitivity of the design objective J can be derived by setting the first-order variational of the augmented Lagrangian to the 
variables u, p, λ and γ f to be zero as follows:

T∫
0

∫
�

∂ A

∂u
· δu + ∂ A

∂∇�u
: ∇�δu + ∂ A

∂ p
δp − ρ

∂ua

∂t
· δu + ρ [(δu · ∇�)u + (u · ∇�) δu] · ua

+ η

2

(∇�ua + ∇T
�ua

) : (∇�δu + ∇T
�δu

)+
(
αua − χ

∂bp

∂u
· ua

)
· δu + ua · ∇�δp − padiv�δu

+ (δλua + λaδu) · n d�dt −
T∫

0

∫
∂�

(
ua · nτ − ∂ B

∂ p

)
δp dldt +

T∫
0

∫
∂�\lv

∂ B

∂u
· δu dldt = 0;

(44)

1

T

T∫
0

∫
�

(
∂ A

∂γp
+ ∂α

∂γp
u · ua − ∂χ

∂γp
bp · ua

)
∂γp

∂γ f
δγ f d�dt + 1

T

∫
�

∂C

∂γp

∣∣∣
t=T

∂γp

∂γ f
δγ f d�

+
∫
�

r2
f ∇�γ f a · ∇�δγ f + γ f aδγ f d� = 0.

(45)

Without losing the arbitrariness of δu, δp, δλ and δγ f , one can set ũa = δu, p̃a = δp, λ̃a = δλ and γ̃ f a = δγ f , to derive the 
variational formulations of the adjoint equations in Eqs. (20) and (21). Further, the adjoint sensitivity of J can be derived 
from δ Ĵ as that in Eq. (19).

Following a similar procedure, the adjoint sensitivity of the area fraction v in Eq. (22) and the variational formulation of 
the adjoint equation in Eq. (23) can also be derived.
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Fig. 17. Sketch for the elementization of � by using quadrangular elements, where �h is the discrete surface, E is a quadrangular element and nh is the 
unitary normal vector on �h .

A.2. Surface finite element solution

To solve the variational formulations of the PDEs and their adjoint equations, a surface finite element method is utilized 
[60]. In the surface finite element method, the 2-manifold � is approximated by a discrete surface denoted by �h =⋃

E∈Eh
E , 

where E is a finite element and Eh is the elementization of � sketched in Fig. 17. The quadrangular and triangular elements 
are usually used to discretize a 2-manifold. In this paper, quadrangular elements are used.

Taylor-Hood elements are used to satisfy the inf-sup condition to ensure the well-posedness of the variational formula-
tions of the surface Navier-Stokes equations and their adjoint equations [62]. Linear elements are used to interpolate and 
solve the variational formulations of the surface-PDE filter and its adjoint equation, to ensure the positivity of the design 
variable. The finite element nodes of a Taylor-Hood element and a linear element of the elementization Eh have been 
sketched in Fig. 4. Quadratic elements are used for the fluidic velocity u, Lagrangian multiplier λ and their adjoint variables. 
The corresponding finite element space is

S(2)

h =
{
φh ∈ C0 (�h) : φh (x) |x∈E,∀E∈Eh is a quadratic affine

}
, (46)

where C0 (�h) defined on �h is a space of the continuous functions with compact support. This space can be spanned by 
the nodal basis 

{
ψ

(2)
1 ,ψ

(2)
2 , · · · ,ψ

(2)
N2

}
satisfying

ψ
(2)
i ∈ S(2)

h

ψ
(2)
i

(
x(2)

j

)
= δi j

⎫⎬
⎭ for i, j = 1,2, · · · , N2 (47)

where N2 is the number of interpolation nodes; 
{

x(2)
j : j = 1,2, · · · , N2

}
⊂ � denotes the nodes for quadratic interpolation 

on the elementization Eh; δi j is the Kronecker symbol. δi j is 1 when i = j is satisfied; or else, it is 0. Linear elements 
are used for the fluidic pressure p, the design variable γ , the filtered design variable γ f and their adjoint variables. The 
corresponding finite element space is

S(1)

h =
{
φh ∈ C0 (�h) : φh (x) |x∈E,∀E∈Eh is a bilinear affine

}
. (48)

This space can be spanned by the nodal basis 
{
ψ

(1)
1 ,ψ

(1)
2 , · · · ,ψ

(1)
N1

}
satisfying

ψ
(1)
i ∈ S(1)

h

ψ
(1)
i

(
x(1)

j

)
= δi j

⎫⎬
⎭ for i, j = 1,2, · · · , N1 (49)

where N1 is the number of the interpolation nodes; 
{

x(1)
j : j = 1,2, · · · , N1

}
⊂ � denotes the nodes for the bilinear inter-

polation on the elementization Eh .
To discretize the time derivative terms of the variational formulations, the backward differentiation formula (BDF) is 

utilized [61]. The forms of the m-step BDF are provided for the cases of m ≤ 6 with m representing the step number of the 
BDF algorithm, because the methods with m > 6 are not zero-stable [64].
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A.2.1. Discretization of variational formulation in Eq. (13)
Based on the surface finite element method, the variational formulation in Eq. (13) for the surface-PDE filter can be 

discretized into the following formulation defined on �h :

Find γ f ,h ∈ S(1)

h , such that∫
�h

r2
f ∇�hγ f ,h · ∇�h γ̃ f ,h + γ f ,hγ̃ f ,h − γhγ̃ f ,h d� = 0 for ∀γ̃ f ,h ∈ S(1)

h , (50)

where γh and γ f ,h are the design variable and its filtered counterpart on �h; ∇�h v = Ph∇v is the tangential gradient of 
a scalar function v : �h 	→ R, with ∇ representing the spatial gradient operator, Ph = I − nhnT

h representing the normal 
projector on the tangential space of �h and nh denoting the unitary normal vector on �h sketched in Fig. 17.

Based on the nodal basis 
{
ψ

(1)
1 ,ψ

(1)
2 , · · · ,ψ

(1)
N1

}
of S(1)

h , γh and γ f ,h can be expressed as:

γh =
N1∑

i=1

ϒh,i ψ
(1)
i (x)

γ f ,h =
N1∑

i=1

ϒ f ,h,i ψ
(1)
i (x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

at ∀x ∈ �h, (51)

where ϒh,i and ϒ f ,h,i are the nodal variables of γh and γ f ,h , respectively. By substituting Eq. (51) into Eq. (50) and us-

ing the nodal basis of S(1)

h as the test functions, a linear system can be derived based on the assembly rule of stiffness 
matrix:

(K + N)ϒ f = Nϒ, (52)

where the correspondence between the matrixes in Eq. (52) and terms in Eq. (51) has been provided as Eq. (77) in Sec-
tion A.2.7; ϒ f and ϒ are the discrete counterparts of γ f ,h and γh , respectively. The variational formulation in Eq. (13) can 
be solved by using a PARDISO solver [65].

A.2.2. Discretization of variational formulation in Eq. (9)
Based on the surface finite element method and m-step BDF schemes with the step number m chosen to be 6, the 

variational formulation in Eq. (9) for the surface Naiver-Stokes equations can be discretized into the following formulation 
defined on �h:

For n = 1,2, · · · , Nt

find

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(n)

h ∈
(
S(2)

h

)3
with

⎧⎪⎨
⎪⎩

u(n)

h · nτ ,h = ulv · nτ ,h

u(n)

h −
(

u(n)

h · nτ ,h

)
nτ ,h = ulv − (

ulv · nτ ,h
)

nτ ,h

}
at t = n�t,∀x ∈ lv,h

u(0)

h = u0 at ∀x ∈ �h

,

p(n)

h ∈ S(1)

h with p(n)

h = p0 at t = n�t,∀x ∈ Ph,

λ
(n)

h ∈ S(2)

h with λ
(n)

h = 0 at t = n�t,∀x ∈ lv,h,

such that
∫
�h

ρ
θmu(n)

h − u(n−1)

h,m

�t
· ũh + ρ

[(
u(n)

h · ∇�h

)
u(n)

h

]
· ũh + η

2

(
∇�h u(n)

h + ∇�h u(n)T
h

)
:
(
∇�h ũh + ∇T

�h
ũh

)

− p(n)

h div�h ũh + u(n)

h · ∇�h p̃h +
(
αhu(n)

h − χhb(n)

p,h

)
· ũh + λ

(n)

h

(
ũh · nh

)+ λ̃h

(
u(n)

h · nh

)
d�

−
∫

lv,h

ulv · nτ ,h p̃h dl −
∫

∂�h\lv,h

u(n)

h · nτ ,h p̃h dl = 0,

for ∀ũh ∈
(
S(2)

h

)3
, ∀p̃h ∈ S(1)

h and λ̃h ∈ S(2)

h ,

(53)

where div�h v = tr ((∇v) Ph) is the divergence of a vector function v : �h 	→ R3; n is the time step number, and it is used 
as the superscript of the relevant variables and functions to denote the time step; the time domain (0, T ) is divided into 
Nt sections with the time-step length of �t = T /Nt , respectively; the time-step number Nt is chosen to be large enough 
25



Y. Deng, W. Zhang, Z. Liu et al. Journal of Computational Physics 467 (2022) 111415
Table 7
Values of the parameter θm

for the m-step BDF schemes.

m θm

1 1
2 3/2
3 11/6
4 25/12
5 137/60
6 147/60

Table 8
Expressions of u(n−1)

h,m for the m-step BDF schemes, where u(n−1)

h with n = 1 is the 
initial distribution of the fluidic velocity u0.

n,m u(n−1)

h,m

n ≥ 1,m = 1 u(n−1)

h

n ≥ 2,m ≤ 2 2u(n−1)

h − 1
2 u(n−2)

h

n ≥ 3,m ≤ 3 3u(n−1)

h − 3
2 u(n−2)

h + 1
3 u(n−3)

h

n ≥ 4,m ≤ 4 4u(n−1)

h − 3u(n−2)

h + 4
3 u(n−3)

h − 1
4 u(n−4)

h

n ≥ 5,m ≤ 5 5u(n−1)

h − 5u(n−2)

h + 10
3 u(n−3)

h − 5
4 u(n−4)

h + 1
5 u(n−5)

h
n ≥ 6,m ≤ 6 6u(n−1)

h − 15
2 u(n−2)

h + 20
3 u(n−3)

h − 15
4 u(n−4)

h + 6
5 u(n−5)

h − 1
6 u(n−6)

h

to ensure the numerical stability and accuracy; u(n)

h , p(n)

h and λ(n)

h are the fluidic velocity, the pressure and the Lagrangian 
multiplier on �h at time t = n�t , respectively; ũh , p̃h and λ̃h are the test functions of u(n)

h , p(n)

h and λ(n)

h , respectively; αh

and χh are the impermeability and the penalization factor on �h , respectively; lv,h and Ph are the discrete counterparts of 
lv and P , respectively; for the m-step BDF schemes, the values of the parameter θm and the expression of u(n−1)

h,m determined 

by the linear combination of 
{

u(n−1)

h ,u(n−2)

h , · · · ,u(n−m)

h

}
are provided in Tables 7 and 8.

The discretized variational formulation of the surface Navier-Stokes equations in Eq. (53) is nonlinear because of 
the convection term ρ

[(
u(n)

h · ∇�h

)
u(n)

h

]
· ũh . Newton iteration turns out to be a natural approach to solve it based 

on the perturbation-based linearization [62]. Given the iterate 
(

u(n)

h,k, p(n)

h,k, λ
(n)

h,k

)
with the subscript k representing the 

iteration number of the Newton iteration, the computation can be started from the residuals associated with the vari-

ational formulation in Eq. (53). In the Newton iteration, the corrections 
{
δu(n)

h,k ∈
(
S(2)

h

)3
, δp(n)

h,k ∈ S(1)

h , δλ
(n)

h,k ∈ S(2)

h

}
of {

u(n)

h = u(n)

h,k + δu(n)

h,k, p(n)

h = p(n)

h,k + δp(n)

h,k, λ
(n)

h = λ
(n)

h,k + δλ
(n)

h,k

}
satisfy

∫
�h

ρ
θm

�t
δu(n)

h,k · ũh + ρ
[(

u(n)

h,k · ∇�h

)
δu(n)

h,k

]
· ũh + ρ

[(
δu(n)

h,k · ∇�h

)
u(n)

h,k

]
· ũh

+ η

2

(
∇�h δu(n)

h,k + ∇�h δu(n)T
h,k

)
:
(
∇�h ũh + ∇T

�h
ũh

)
− δp(n)

h,kdiv�h ũh + δu(n)

h,k · ∇�h p̃h

+
⎛
⎝αhδu(n)

h,k − χh

∂b(n)

p,h

∂u(n)

h,k

δu(n)

h,k

⎞
⎠ · ũh + δλ

(n)

h,k

(
ũh · nh

)+ λ̃h

(
δu(n)

h,k · nh

)
d� −

∫
∂�h\lv,h

δu(n)

h,k · nτ ,h p̃h dl

= −
∫
�h

ρ
θmu(n)

h,k − u(n−1)

h,m

�t
· ũh + ρ

[(
u(n)

h,k · ∇�h

)
u(n)

h,k

]
· ũh + η

2

(
∇�h u(n)

h,k + ∇�h u(n)T
h,k

)
:
(
∇�h ũh + ∇T

�h
ũh

)

− p(n)

h,kdiv�h ũh + u(n)

h,k · ∇�h p̃h +
(
αhu(n)

h,k − χhb(n)

p,h

(
u(n)

h,k

))
· ũh + λ

(n)

h,k

(
ũh · nh

)+ λ̃h

(
u(n)

h,k · nh

)
d�

+
∫

lv,h

ulv · nτ ,h p̃h dl +
∫

∂�h\lv,h

u(n)

h,k · nτ ,h p̃h dl.

(54)

By setting
26
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(n)

ut ,k

(
ũh
) := −

∫
�h

ρ
θmu(n)

h,k − u(n−1)

h,m

�t
· ũh d�,

R(n)

u,k

(
ũh
) := −

∫
�h

ρ
[(

u(n)

h,k · ∇�h

)
u(n)

h,k

]
· ũh + η

2

(
∇�h u(n)

h,k + ∇�h u(n)T
h,k

)
:
(
∇�h ũh + ∇T

�h
ũh

)

− p(n)

h,k div�h ũh +
(
αhu(n)

h,k − χhb(n)

p,h

(
u(n)

h,k

))
· ũh + λ

(n)

h,k

(
ũh · nh

)
d�,

R(n)

p,k

(
p̃h
) := −

∫
�h

u(n)

h,k · ∇�h p̃h d� +
∫

lv,h

ulv · nτ ,h p̃h dl +
∫

∂�h\lv,h

u(n)

h,k · nτ ,h p̃h dl,

R(n)

λ,k

(
λ̃h

)
:= −

∫
�h

λ̃h

(
u(n)

h,k · nh

)
d�,

(55)

Eq. (54) can be equivalently transformed into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�h

ρ
θm

�t
δu(n)

h,k · ũh + ρ
[(

u(n)

h,k · ∇�h

)
δu(n)

h,k

]
· ũh + ρ

[(
δu(n)

h,k · ∇�h

)
u(n)

h,k

]
· ũh+

η

2

(
∇�h δu(n)

h,k + ∇�h δu(n)T
h,k

)
:
(
∇�h ũh + ∇T

�h
ũh

)
− δp(n)

h,k div�h ũh+⎛
⎝αhδu(n)

h,k − χh

∂b(n)

p,h

∂u(n)

h,k

δu(n)

h,k

⎞
⎠ · ũh + δλ

(n)

h,k

(
ũh · nh

)
d� = R(n)

ut ,k

(
ũh
)+ R(n)

u,k

(
ũh
)
,

∫
�h

δu(n)

h,k · ∇�h p̃h d� −
∫

∂�h\lv,h

δu(n)

h,k · nτ ,h p̃h dl = R(n)

p,k

(
p̃h
)
,

∫
�h

λ̃h

(
δu(n)

h,k · nh

)
d� = R(n)

λ,k

(
λ̃h

)
,

(56)

where R(n)

u,k

(
ũh
)
, R(n)

p,k

(
p̃h
)

and R(n)

λ,k

(
λ̃h

)
are the residuals associated with the variational formulation in Eq. (53).

Based on the nodal basis 
{
ψ

(2)
1 ,ψ

(2)
2 , · · · ,ψ

(2)
N2

}
of S(2)

h , u(n)

h,k , δu(n)

h,k , λ(n)

h,k and δλ(n)

h,k have the following transformations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(n)

h,k =
N2∑

i=1

U(n)

k,i ψ
(2)
i (x)

δu(n)

h,k =
N2∑

i=1

�U(n)

k,i ψ
(2)
i (x)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ
(n)

h,k =
N2∑

i=1

�
(n)

k,i ψ
(2)
i (x)

δλ
(n)

h,k =
N2∑

i=1

��
(n)

k,i ψ
(2)
i (x)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

at ∀x ∈ �h, (57)

where U(n)

k,i , �U(n)

k,i , �(n)

k,i and ��
(n)

k,i are the nodal variables of u(n)

h,k , δu(n)

h,k , λ(n)

h,k and δλ(n)

h,k , respectively. Based on the nodal 

basis 
{
ψ

(1)
1 ,ψ

(1)
2 , · · · ,ψ

(1)
N1

}
of S(1)

h , p(n)

h,k and δp(n)

h,k have the following transformations:

p(n)

h,k =
N1∑

i=1

P (n)

k,i ψ
(1)
i (x)

δp(n)

h,k =
N1∑

�P (n)

k,i ψ
(1)
i (x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

at ∀x ∈ �h, (58)
i=1
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where P (n)

k,i and �P (n)

k,i are the nodal variables of p(n)

h,k and δp(n)

h,k , respectively. By substituting Eqs. (57) and (58) into Eq. (56), 
and using the nodal basis of S(2)

h and S(1)

h as the test functions, a linear system can be derived based on the assembly rule 
of stiffness matrix:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
A + B1

(
U(n)

k

)
+ B2

(
U(n)

k

)
+ C

]
�U(n)

k + D1�P(n)

k + E
(
ϒp

)
�U(n)

k + F��
(n)

k = R(n)

ut ,k

(
U(n)

k ,U(n−1)

k , · · · ,U(n−m)

k

)
+ R(n)

u,k

(
U(n)

k ,P(n)

k ,�
(n)

k ;ϒp

)
,

DT
2�U(n)

k = R(n)

p,k

(
U(n)

k

)
,

FT�U(n)

k = R(n)

λ,k

(
U(n)

k

)
,

(59)

where the correspondence between the matrixes in Eq. (59) and terms in Eqs. (55) and (56) have been provided as Eqs. (78)
and (79) in Section A.2.7; ϒp is a column vector corresponding to the discrete counterpart of the physical density γp in 
the current iteration of the topology optimization procedure in Table 1; R(n)

ut ,k
depends on 

{
U(n−1)

k , U(n−2)

k , · · · , U(n−m)

k

}
, 

because u(n−1)

h,m is the linear combination of 
{

u(n−1)

h , u(n−2)

h , · · · , u(n−m)

h

}
; U(n)

k , P(n)

k , �(n)

k , �U(n)

k , �P(n)

k and ��
(n)

k are the 

discrete counterparts of u(n)

h,k , p(n)

h,k , λ(n)

h,k , δu(n)

h,k , δp(n)

h,k and δλ(n)

h,k , respectively; the discrete counterparts of u(n)

h , p(n)

h and λ(n)

h
are ⎧⎪⎪⎨

⎪⎪⎩
U(n) := U(n)

k + �U(n)

k ,

P(n) := P(n)

k + �P(n)

k ,

�(n) := �
(n)

k + ��
(n)

k .

(60)

The linear system in Eq. (59) can be rewritten into⎛
⎝ A + B1 + B2 + C + E D1 F

DT
2 0 0

FT 0 0

⎞
⎠
⎛
⎜⎝ �U(n)

k
�P(n)

k
��

(n)

k

⎞
⎟⎠=

⎛
⎜⎝

R(n)

ut ,k
+ R(n)

u,k

R(n)

p,k

R(n)

λ,k

⎞
⎟⎠ . (61)

The boundary or interface condition of u(n)

h at lv,h and the point condition of p(n)

h at Ph can be imposed by using the 
elimination approach, with enforcing the linear system in Eq. (61) to be definite. The variational formulation in Eq. (9) can 
be solved by using the procedure in Table 9.

A.2.3. Discretization of variational formulation in Eq. (20)
Based on the surface finite element method and m-step BDF schemes, the variational formulation in Eq. (20) for the 

adjoint equations of the surface Naiver-Stokes equations can be discretized into the following formulation defined on �h :

For n′ = Nt − 1, Nt − 2, · · · ,0

find

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(
n′)

a,h ∈
(
S(2)

h

)3
with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u
(
n′)

a,h · nτ ,h = 0

u
(
n′)

a,h −
(

u
(
n′)

a,h · nτ ,h

)
nτ ,h = 0

⎫⎪⎬
⎪⎭ at t = n′�t,∀x ∈ lv,h

u(Nt )

a,h = − 1
ρ

∂Ch

∂u
(
Nt
)

h

at ∀x ∈ �h

,

p
(
n′)

a,h ∈ S(1)

h with p
(
n′)

a,h (t,x) = 0 at t = n′�t,∀x ∈ Ph,

λ

(
n′)

a,h ∈ S(2)

h with λ

(
n′)

a,h = 0 at t = n′�t,∀x ∈ lv,h,

such that
∫
�h

∂ A
(
n′)

h

∂u(n′)
h

· ũa,h + ∂ A
(
n′)

h

∂∇�h u(n′)
h

: ∇�h ũa,h + ∂ A
(
n′)

h

∂ p(n′)
h

p̃a,h + ρ
θmu

(
n′)

a,h − u
(
n′+1

)
a,h,m

�t
· ũa,h (62)

+ρ

[(
ũa,h · ∇�h

)
u
(
n′)

h +
(

u
(
n′)

h · ∇�h

)
ũa,h

]
· u

(
n′)

a,h + η

2

(
∇�h u

(
n′)

a,h + ∇�h u
(
n′)T

a,h

)
:
(
∇�h ũa,h + ∇T

�h
ũa,h

)

+
⎛
⎝αhu

(
n′)

a,h − χh

∂b
(
n′)

p,h

∂u(n)
· u

(
n′)

a,h

⎞
⎠ · ũa,h + u

(
n′)

a,h · ∇�h p̃a,h − p
(
n′)

a,h div�h ũa,h +
(

λ̃a,hu
(
n′)

a,h + λ

(
n′)

a,h ũa,h

)
· nh d�
h
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Table 9
Pseudo codes used to solve the variational formulation in Eq. (9), where U(n) , P(n) and �(n) are 
the discrete counterparts of u(n)

h , p(n)

h and λ(n)

h , respectively; ‖·‖2 is the operator for 2-norm of a 
vector.

Algorithm 2: surface finite element solution of Eq. (9)

Set

{
n ← 1
k ← 1

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U(n−1)

k ← u0

U(n)

k ← 0
P(n)

k ← 0
�

(n)

k ← 0

;

loop 1 (BDF)
loop 2 (Newton iteration)

Compute
{

R(n)

ut ,k
,R(n)

u,k,R(n)

p,k,R(n)

λ,k

}
based on

{
U(n)

k ,U(n−1)

k ,U(n−2)

k , · · · ,U(n−m)

k ,P(n)

k ,�
(n)

k

}
;

Assemble {A,B1,B2,C,D1,D2,E,F} based on
{

U(n)

k ,P(n)

k ,�
(n)

k

}
;

Solve the definite linear system corresponding to Eq. (61) by using a PARDISO solver;

Compute

⎧⎪⎨
⎪⎩

U(n)

k+1 = U(n)

k + �U(n)

k

P(n)

k+1 = P(n)

k + �P(n)

k

�
(n)

k+1 = �
(n)

k + ��
(n)

k

;

if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∥∥∥�U(n)

k

∥∥∥
2

/∥∥∥U(n)

k

∥∥∥
2

≥ 10−6∥∥∥�P(n)

k

∥∥∥
2

/∥∥∥P(n)

k

∥∥∥
2

≥ 10−6∥∥∥��
(n)

k

∥∥∥
2

/∥∥∥�(n)

k

∥∥∥
2

≥ 10−6

k ← k + 1;
else

Set

⎧⎪⎨
⎪⎩

U(n) ← U(n)

k+1

P(n) ← P(n)

k+1

�(n) ← �
(n)

k+1

, break loop 2, and continue loop 1;

end if
end loop 2
if n�t < T

n ← n + 1;
else

break loop 1;
end if

end loop 1

−
∫

∂�h

⎛
⎝u

(
n′)

a,h · nτ ,h − ∂ B
(
n′)

h

∂ p(n′)
h

⎞
⎠ p̃a,h dl −

∫
∂�h\lv,h

∂ B
(
n′)

h

∂u(n′)
h

· ũa,h dl = 0,

for ∀ũa,h ∈
(
S(2)

h

)3
, ∀p̃a,h ∈ S(1)

h and λ̃a,h ∈ S(2)

h ,

where n′ is the time step number, and it is used as the superscript of the relevant variables and functions to denote the 
time step; u

(
n′)

a,h , p
(
n′)

a,h and λ
(
n′)

a,h are the adjoint variables of u
(
n′)

h , p
(
n′)

h and λ
(
n′)

h on �h at time t = n′�t , respectively; ũa,h , 

p̃a,h and λ̃a,h are the test functions of u
(
n′)

a,h , p
(
n′)

a,h and λ
(
n′)

a,h , respectively; Ah , Bh and Ch are the integration functions of 

the optimization objective on �h; for the m-step BDF schemes, the expression of u
(
n′+1

)
a,h,m is provided in Table 10 and it is 

determined by the linear combination of 
{

u
(
n′+1

)
a,h , u

(
n′+2

)
a,h , · · · , u

(
n′+m

)
a,h

}
. By setting

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
(
n′)

uat

(
ũa,h

) :=
∫
�h

ρ
1

�t
u
(
n′+1

)
a,h,m · ũa,h d�,

F
(
n′)

ua

(
ũa,h

) := −
∫
�h

∂ A
(
n′)

h

∂u(n′)
h

· ũa,h + ∂ A
(
n′)

h

∂∇�h u(n′)
h

: ∇�h ũa,h d� −
∫

∂�h\lv,h

∂ B
(
n′)

h

∂u(n′)
h

· ũa,h dl,

F
(
n′)

pa

(
p̃a,h

) := −
∫
�h

∂ A
(
n′)

h

∂ p(n′)
h

p̃a,h d� +
∫

∂�h

∂ B
(
n′)

h

∂ p(n′)
h

p̃a,h dl,

(63)

Eq. (62) can be equivalently transformed into
29
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Table 10

Expressions of u
(
n′+1

)
a,h,m for the m-step BDF schemes, where u

(
n′+1

)
a,h with n′ = Nt − 1 is the 

initial distribution of the adjoint fluidic velocity.

n,m u
(
n′+1

)
a,h,m

n ≥ 1,m = 1 u
(
n′+1

)
a,h

n ≥ 2,m ≤ 2 2u
(
n′+1

)
a,h − 1

2 u
(
n′+2

)
a,h

n ≥ 3,m ≤ 3 3u
(
n′+1

)
a,h − 3

2 u
(
n′+2

)
a,h + 1

3 u
(
n′+3

)
a,h

n ≥ 4,m ≤ 4 4u
(
n′+1

)
a,h − 3u

(
n′+2

)
a,h + 4

3 u
(
n′+3

)
a,h − 1

4 u
(
n′+4

)
a,h

n ≥ 5,m ≤ 5 5u
(
n′+1

)
a,h − 5u

(
n′+2

)
a,h + 10

3 u
(
n′+3

)
a,h − 5

4 u
(
n′+4

)
a,h + 1

5 u
(
n′+5

)
a,h

n ≥ 6,m ≤ 6 6u
(
n′+1

)
a,h − 15

2 u
(
n′+2

)
a,h + 20

3 u
(
n′+3

)
a,h − 15

4 u
(
n′+4

)
a,h + 6

5 u
(
n′+5

)
a,h − 1

6 u
(
n′+6

)
a,h

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
�h

ρ
θm

�t
u
(
n′)

a,h · ũa,h + ρ

[(
ũa,h · ∇�h

)
u
(
n′)

h +
(

u
(
n′)

h · ∇�h

)
ũa,h

]
· u

(
n′)

a,h +

η

2

(
∇�h u

(
n′)

a,h + ∇�h u
(
n′)T

a,h

)
:
(
∇�h ũa,h + ∇T

�h
ũa,h

)
+

⎛
⎝αhu

(
n′)

a,h − χh

∂b
(
n′)

p,h

∂u(n)

h

· u
(
n′)

a,h

⎞
⎠ · ũa,h − p

(
n′)

a,h div�h ũa,h + λ

(
n′)

a,h ũa,h · nh d� = F
(
n′)

uat

(
ũa,h

)+ F
(
n′)

ua

(
ũa,h

)
,

∫
�h

u
(
n′)

a,h · ∇�h p̃a,h d� −
∫

∂�h

u
(
n′)

a,h · nτ ,h p̃a,h dl = F
(
n′)

pa

(
p̃a,h

)
,

∫
�h

λ̃a,hu
(
n′)

a,h · nh d� = 0,

(64)

where F
(
n′)

ua

(
ũa,h

)
and F

(
n′)

pa

(
p̃a,h

)
are the sources associated with the variational formulation in Eq. (62).

The discretized variational formulation for the adjoint equations of the surface Navier-Stokes equations in Eq. (62) can be 
solved directly, because it is linear. Based on the nodal basis 

{
ψ

(2)
1 ,ψ

(2)
2 , · · · ,ψ

(2)
N2

}
of S(2)

h , u
(
n′)

a,h and λ
(
n′)

a,h have the following 
transformations:

u
(
n′)

a,h =
N2∑

i=1

U
(
n′)

a,i ψ
(2)
i (x)

λ

(
n′)

a,h =
N2∑

i=1

�

(
n′)

a,i ψ
(2)
i (x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

at ∀x ∈ �h, (65)

where U
(
n′)

a,i and �
(
n′)

a,i are the nodal variables of u
(
n′)

a,h and λ
(
n′)

a,h , respectively. Based on the nodal basis 
{
ψ

(1)
1 ,ψ

(1)
2 , · · · ,ψ

(1)
N1

}
of S(1)

h , p
(
n′)

a,h has the following transformation:

p
(
n′)

a,h =
N1∑

i=1

P
(
n′)

a,i ψ
(1)
i (x) at ∀x ∈ �h, (66)

where P
(
n′)

a,i is the nodal variable of p
(
n′)

a,h . By substituting Eqs. (65) and (66) into Eq. (62), and using the nodal basis of S(2)

h

and S(1)

h as the test functions, a linear system can be derived based on the assembly rule of stiffness matrix:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
A + B1

(
U
(
n′))+ B2

(
U
(
n′))+ C

]
U
(
n′)

a + D1P
(
n′)

a + E
(
ϒp

)
U
(
n′)

a + F�

(
n′)

a = F
(
n′)

uat

(
U
(
n′+1

)
a ,U

(
n′+2

)
a , · · · ,U

(
n′+m

)
a

)

+ F
(
n′)

ua

(
U
(
n′)

,P
(
n′);ϒp

)
,

DT
2U

(
n′)

a = F
(
n′)

pa

(
U
(
n′)

,P
(
n′);ϒp

)
,

FTU
(
n′) = 0,

(67)
a
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Table 11
Pseudocode used to solve the variational formulation in Eq. (20).

Algorithm 3: surface finite element solution of Eq. (20)

Solve
{

U(n),P(n),�(n)
}

(n = 1,2, · · · , Nt ) by using Algorithm 2 in Table 9;
for n = 1,2, · · · , Nt

n′ = Nt − n;
loop (BDF)

Compute
{

Fuat ,Fua ,Fpa

}
based on

{
U
(
n′)

,P
(
n′)

,�
(
n′)

,U
(
n′+1

)
a , · · · ,U

(
n′+m

)
a

}
;

Assemble {A,B1,B2,C,D1,D2,E,F} based on U
(
n′)

;
Solve the definite linear system corresponding to Eq. (68) by using a PARDISO solver;

Compute

{
U
(
n′)

a ,P
(
n′)

a ,�

(
n′)

a

}
;

if n′�t > 0
n′ ← n′ − 1;

else
Break;

end if
end loop (BDF)

end for

where the correspondence between the matrixes in Eq. (67) and terms in Eqs. (63) and (64) have been provided as Eqs. (80)

and (81) in Section A.2.7; F
(
n′)

uat depends on 
{

U
(
n′+1

)
a , U

(
n′+2

)
a , · · · , U

(
n′+m

)
a

}
, because u(n+1)

a,h,m is the linear combination of {
u
(
n′+1

)
a,h , u

(
n′+2

)
a,h , · · · , u

(
n′+m

)
a,h

}
; U

(
n′)

a , P
(
n′)

a and �
(
n′)

a are the discrete counterparts of u
(
n′)

a,h , p
(
n′)

a,h and λ
(
n′)

a,h , respectively. 

The linear system in Eq. (67) can be rewritten into

⎛
⎝ A + B1 + B2 + C + E D1 F

DT
2 0 0

FT 0 0

⎞
⎠
⎛
⎜⎜⎝

U
(
n′)

a

P
(
n′)

a

�

(
n′)

a

⎞
⎟⎟⎠=

⎛
⎜⎝ F

(
n′)

uat + F
(
n′)

ua

F
(
n′)

pa

0

⎞
⎟⎠ . (68)

The boundary or interface condition of u
(
n′)

a,h at lv,h and the point condition of p
(
n′)

a,h at Ph can be imposed by using the 
elimination approach, to enforce the linear system in Eq. (68) to be definite. The variational formulation in Eq. (20) can be 
solved by using the procedure in Table 11.

A.2.4. Discretization of variational formulation in Eq. (21)
Based on the surface finite element method, the variational formulation in Eq. (21) for the adjoint equation of the 

surface-PDE filter can be discretized into the following formulation defined on �h :

Find γ f a,h ∈ S(1)

h , such that

1

2Nt

Nt∑
n=1

∫
�h

[
∂
(

A(n−1)

h + A(n)

h

)
∂γp,h

+ ∂αh

∂γp,h

(
u(n−1)

h · u(n−1)

a,h + u(n)

h · u(n)

a,h

)
− ∂χh

∂γp,h

(
b(n−1)

p,h · u(n−1)

a,h + b(n)

p,h · u(n)

a,h

)]

× ∂γp,h

∂γ f ,h
γ̃ f a,h d� +

∫
�h

1

T

∂Ch

∂γp,h

∂γp,h

∂γ f ,h
γ̃ f a,h d� +

∫
�h

r2
f ∇�hγ f a,h · ∇�h γ̃ f a,h + γ f a,hγ̃ f a,h d� = 0, for ∀γ̃ f a,h ∈ S(1)

h ,

(69)

where γ f a,h is discretized adjoint variable of the filtered design variable on �h ; the time integration is implemented by 
using a trapezoid method.

Based on the nodal basis 
{
ψ

(1)
1 ,ψ

(1)
2 , · · · ,ψ

(1)
N1

}
of S(1)

h , γ f a,h has the following transformation:

γ f a,h =
N1∑

i=1

ϒ f a,h,i ψ
(1)
i (x) at ∀x ∈ �h, (70)

where ϒ f a,h,i is the nodal variable of γ f a,h . By substituting Eq. (70) into Eq. (69), and using the nodal basis of S(1)

h as the 
test functions, a linear system can be derived based on the assembly rule of stiffness matrix:

(K + N)ϒ f a = Fγ f a

(
U(1), · · · ,U(Nt ),P(1), · · · ,P(Nt ),U(1)

a , · · · ,U(Nt )
a ;ϒ f

)
, (71)
31



Y. Deng, W. Zhang, Z. Liu et al. Journal of Computational Physics 467 (2022) 111415
where the correspondence between the matrixes in Eq. (71) and terms in Eq. (69) has been provided in Section A.2.7; ϒ f a
is the discrete counterpart of γ f a,h . The variational formulation in Eq. (52) can be solved by using a PARDISO solver [65].

A.2.5. Computation of adjoint sensitivity in Eq. (19)
Based on the finite element space in Eq. (48) and adjoint sensitivity in Eq. (19), the adjoint sensitivity of J on �h is 

expressed as

� Jh = −T

∫
�h

γ f a,hδγh d�, (72)

where δγh ∈ S(1)

h is the first order variational of γh . Based on Eq. (51), δγh is expressed as

δγh =
N1∑

i=1

�ϒh,i ψ
(1)
i (x) . (73)

By substituting Eqs. (70) and (73) into Eq. (72), the discretized adjoint sensitivity in Eq. (72) can be transformed into

� Jh

�ϒ
= −T Nϒ f a, (74)

where �ϒ is the discrete counterpart of δγh .

A.2.6. Computation of adjoint sensitivity in Eq. (22)
Based on the finite element space in Eq. (48) and adjoint sensitivity in Eq. (22), the adjoint sensitivity of v on �h is 

expressed as

�vh = − 1

|�h|
∫
�h

γ f a,hδγh d�. (75)

By substituting Eqs. (70) and (73) into Eq. (75), the discretized adjoint sensitivity in Eq. (75) can be transformed into

�vh

�ϒ
= −Nϒ f a

1TN1
, (76)

where 1 is the N1 × 1 column vector with all elements equal to 1; |�h| is computed as 1TN1.

A.2.7. Notifications
The formulations in Section A.2.2-A.2.5 can degenerate into the ones for the steady surface flows by setting the terminal 

time to be T = 1, removing the terms corresponding to the discretization of the initial and terminal conditions and the 
time derivative in the form of ∂v/∂t with v representing a vector variable, and reducing the terms in the average form 
of 1/ (2Nt)

∑Nt
n=1

∫
�h

fn d� based on the time-independence of the related variables, where fn represents an integrand. By 
using a similar discretization approach for the steady surface flows, the stabilized variational formulations and the adjoint 
formulations in Section 4.3 can be discretized on the finite element space in Eq. (48).

In the derived linear systems (Eqs. (52), (61), (68) and (71)) and the discretized adjoint sensitivities (Eqs. (74) and (76)), 
several sub-matrixes can be reused to avoid the reassembly operations. This can effectively reduce the cost of the CPU-time 
during the implementation of the surface finite element solution. The correspondence between the finite element matrixes 
of the linear systems and the terms of the variational formulations defined on the discretized 2-manifold is provided as 
follows. The correspondence between the matrixes in Eq. (52) and the terms in Eq. (51) can be described as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Kϒ f ←→
∫
�h

r2
f ∇�hγ f ,h · ∇�h γ̃ f ,h d�,

Nϒ f ←→
∫
�h

γ f ,hγ̃ f ,h d�,

Nϒ ←→
∫
�h

γhγ̃ f ,h d�.

(77)
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where the symbol ←→ is used to indicate a correspondence relation. The correspondence between the matrixes in Eq. (59)
and the terms in Eqs. (55) and (56) can be described as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(n)

ut ,k

(
U(n)

k ,U(n−1)

k , · · · ,U(n−m)

k

)
←→ R(n)

ut ,k

(
ũh
)
,

R(n)

u,k

(
U(n)

k ,P(n)

k ,�
(n)

k ;ϒp

)
←→ R(n)

u,k

(
ũh
)
,

R(n)

p,k

(
U(n)

k

)
←→ R(n)

p,k

(
p̃h
)
,

R(n)

λ,k

(
U(n)

k

)
←→ R(n)

λ,k

(
λ̃h

)
,

(78)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A�U(n)

k ←→
∫
�h

ρ
θm

�t
δu(n)

h,k · ũh d�,

B1

(
U(n)

k

)
�U(n)

k ←→
∫
�h

ρ
[(

u(n)

h,k · ∇�h

)
δu(n)

h,k

]
· ũh d�,

B2

(
U(n)

k

)
�U(n)

k ←→
∫
�h

ρ
[(

δu(n)

h,k · ∇�h

)
u(n)

h,k

]
· ũh d�,

C�U(n)

k ←→
∫
�h

η

2

(
∇�h δu(n)

h,k + ∇�h δu(n)T
h,k

)
:
(
∇�h ũh + ∇T

�h
ũh

)
d�,

D1�P(n)

k ←→
∫
�h

−δp(n)

h,k div�h ũh d�,

E
(
ϒp

)
�U(n)

k ←→
∫
�h

⎛
⎝αhδu(n)

h,k − χh

∂b(n)

p,h

∂u(n)

h,k

· δu(n)

h,k

⎞
⎠ · ũh d�,

F��
(n)

k ←→
∫
�h

δλ
(n)

h,k

(
ũh · nh

)
d�,

DT
2�U(n)

k ←→
∫
�h

δu(n)

h,k · ∇�h p̃h d� −
∫

∂�h\lv,h

δu(n)

h,k · nτ ,h p̃h dl,

FT�U(n)

k ←→
∫
�h

λ̃h

(
δu(n)

h,k · nh

)
d�.

(79)

The correspondence between the matrixes in Eq. (67) and the terms in Eqs. (63) and (64) can be described as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
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(
n′)

uat

(
U
(
n′+1

)
a ,U

(
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)
a , · · · ,U

(
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)
a

)
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(
n′)

uat

(
ũa,h

)
,

F
(
n′)

ua

(
U
(
n′)

,P
(
n′);ϒp

)
←→ F

(
n′)

ua

(
ũa,h

)
,

F
(
n′)

pa

(
U
(
n′)

,P
(
n′);ϒp

)
←→ F

(
n′)

pa

(
p̃a,h

)
,

(80)

and
33
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AU
(
n′)

a ←→
∫
�h

ρ
θm

�t
u
(
n′)

a,h · ũa,h d�,
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(
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u
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(
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(
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(81)

The correspondence between the matrixes in Eq. (71) and the terms in Eq. (69) can be described as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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r2
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(
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)
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(
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p,h · u(n)
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× ∂γp,h

∂γ f ,h
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∫
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1

T

∂Ch
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∂γ f ,h
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(82)
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