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An accurate and fast three-step self-calibrating generalized phase-shifting interferomertry (SGPSI) is proposed. In
this approach, two new phase-shifting signals are constructed by the difference interferograms normalization and noise
suppressing, then the unknown phase shift between the two difference phase-shifting signals is estimated quickly through
searching the minimum coefficient of variation of the modulation amplitude, a limited number of pixels are selected to
participate in the search process to further save time, and finally the phase is reconstructed through the searched phase
shift. Through the reconstruction of phase map by the simulation and experiment, and the comparison with several mature
algorithms, the good performance of the proposed algorithm is proved, and it eliminates the limitation of requiring more
than three phase-shifting interferograms for high-precision SGPSI. We expect this method to be widely used in the future.

Keywords: self-calibrating generalized phase-shifting interferomertry, phase shift, difference interferograms,
modulation amplitude
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1. Introduction
Self-calibrating generalized phase-shifting interferometry

(SGPSI) is a technique for extracting the phase map from
three or more phase-shifting interferograms without know-
ing the phase shifts.[1] It removes the restriction that accu-
rate phase-shifting interferometry (PSI) needs accurate phase
shifter, thus, it has been widely used in high precision optical
metrology. Over the past few decades, many ingenious SGP-
SIs have been developed, and they can be divided into iterative
and non-iterative ones.[2]

Among the iterative SGPSIs, an overdetermined approach
that uses least-squares algorithms has been studied extensively
for randomly phase-shifting interferograms. In 2004, Wang
proposed an advanced iterative algorithm (AIA), which can
obtain accurate phase distribution from more than three ran-
domly phase-shifting interferograms.[3] It resolves the limita-
tion of the existing iterative phase-shifting algorithms (PSAs)
and separates the frame-to-frame iteration from the pixel-to-
pixel iteration. After that, many iterative PSAs based on AIA
were proposed. In 2008, a new generalized iterative algorithm
for extracting phase distribution from randomly and spatially
nonuniform phase-shifting interferograms was proposed, it re-
quires only four randomly phase-shifting interferograms, and
finally an accurate phase map is extracted by reducing the ef-
fects of transition and tilt errors.[4] In 2019, Chen et al. evalu-
ated the performance of AIA, and proposed an enhanced AIA
(eAIA) which can control the phase shifts, frame numbers and
suppress noise.[5] In general, the iterative SGPSI is relatively

accurate, but the convergence of the algorithm requires more
time. Moreover, a moderate number of interferograms are re-
quired to ensure high performance.

To save time, lots of non-iterative SGPSIs have been de-
veloped. In 2011, Vargas et al. designed a well-evaluated
PSI based on the principal component analysis (PCA), which
can obtain two orthogonal signals by PCA. It is very fast
and requires very low computational requirements, so it can
be used for very large images or very large image sets.[6]

In 2015, Deng et al. presented an advanced principal com-
ponent analysis method, two difference maps were obtained
by a simple subtraction operation easily, and then the phase
can be calculated by the traditional PCA.[7] From 2016 to
2017, Yatabe et al. proposed a series of PSAs based on PCA
which can accurately extract the phase by integrating spatial
information.[8–10] PCA is very fast, however, it needs to sub-
tract the background intensity by acquiring more than three
phase-shifting interferograms, and the phase shift should be
well distributed between 0 and 2π . In addition, PCA needs
to confirm the sign of the phase by extra method. In 2014,
Wang et al. designed an advanced Gram–Schmidt orthonor-
malization algorithm (GS3), it needs only three phase-shifting
interferograms. Although it costs less time than PCA, its ac-
curacy is lower than PCA with more than three phase-shifting
interferograms.[11] Non-iterative SGPSIs cost less time, how-
ever, their accuracies are lower than that of iterative SGPSIs.

Note that all these SGPSIs here can only deal with accu-
racy or computational time problem, and they are hard to get
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high accuracy and high speed at the same time. In order to
balance the speed and accuracy, it is essential to study the fast
and accurate SGPSI.

In this paper, a fast and accurate three-step SGPSI to cope
with the above problems is proposed. We first discuss the prin-
ciples of the proposed method and then give its verification by
computer simulations and experiments. Moreover, we com-
pare the proposed method with AIA, PCA and GS3 to verify
its outstanding performance.

2. Algorithm description
The expression of the ith frame phase-shifting interfero-

gram is

Ii(x,y) = ai(x,y)+bi(x,y)cos(ϕ(x,y)+θi) , (1)

where ai (x,y) and bi (x,y) respectively represent the back-
ground intensity and modulation amplitude of the interfero-
grams, ϕ (x,y) is the tested phase, θi is the phase shift, i rep-
resents the image index (i = 1, 2, 3), and the size of interfer-
ograms is Nx×Ny. θ1 can be considered to be zero without
losing generality. The spatial coordinates have been omitted
below for convenience.

Firstly, we implement the subtraction between the 1st

phase-shifting interferogram and the ith phase-shifting inter-
ferogram. Generally for the background intensity and mod-
ulation amplitude distributions, both the fluctuation between
different interferograms and the non-uniformity between dif-
ferent pixels exist, however, the subtraction can still filter most
of the background intensity. Hence, for simplicity, we assume
that ai(x,y) and bi(x,y) are irrelevant to the image index, and
only relevant to the pixel position in the subtraction process.

We calculate the intensity of difference maps between the
1st phase-shifting interferogram and the ith phase-shifting in-
terferogram as

D1 = I1− I2 = 2bsin
(

θ2

2

)
cos
(
Φ
′) , (2)

D2 = I1− I3 = 2bsin
(

θ3

2

)
cos
(
Φ
′+∆

)
, (3)

where Φ = ϕ + θ2
2 , ∆ = θ3−θ2

2 , and Φ ′ = Φ− π

2 .
Then two difference vectors D1 and D2 were normalized

by

D̂1 =
D1

‖D1‖
=

bcos(Φ ′)√
∑

Nx×Ny

b2 cos2 (Φ ′)
, (4)

D̂2 =
D2

‖D2‖
=

bcos(Φ ′+∆)√
∑

Nx×Ny

b2 cos2 (Φ ′+∆)
, (5)

where ‖·‖ represents the 2-norm.

When the number of fringes is more than one, there is an
approximation as√

∑
Nx×Ny

b2 cos2 (Φ ′)≈
√

∑
Nx×Ny

b2 cos2 (Φ ′+∆). (6)

Then, Eqs. (4) and (5) can be rewritten as

D̂1 = ccos
(
Φ
′) , (7)

D̂2 = ccos
(
Φ
′+∆

)
, (8)

where

c =
b√

∑
Nx×Ny

b2 cos2 (Φ ′)
=

b√
∑

Nx×Ny

b2 cos2 (Φ ′+∆)
.

Here D̂1 and D̂2 can be considered as two phase-shifting inter-
ference signals with no background intensity, ∆ is the phase
shift, and c represents the new modulation amplitude. The dif-
ference between ϕ and Φ ′ is a constant, which does not affect
the phase distribution, so Φ ′ can express the tested phase. Be-
cause of the fluctuation, non-uniformity of the original modu-
lation amplitude b and the approximation error of Eq. (6), the
new modulation amplitude c is both relevant to the pixel po-
sition and image index. Hence Eqs. (7) and (8) are rewritten
as

D̂m(x,y) = cm(x,y)cos
(
Φ
′(x,y)+∆m

)
, (9)

where m = 1, 2 denotes the index of the new phase-shifting
interference signals, ∆1 = 0 and ∆2 = ∆ .

To depress the noise, we use the mean of the adjacent
pixels to generate the new pixel, then the new phase-shifting
interferograms are generated. The distribution diagram of the
adjacent pixels is shown in Fig. 1, and M is the number of
adjacent pixels.

M/ M/ M/ M/

M/ M/ M/ M/

Fig. 1. Distribution diagram of the adjacent pixels.

Note that the boundary of new phase-shifting interfer-
ence signals must be extended properly so that M adjacent
pixels are valid, such as D̂m(Nx + 1,Ny) is out of the range.
According to the above eight situations in Fig. 1, we extend
the size of the normalized difference maps from Nx ×Ny to
(Nx +4)× (Ny +4). The values of the 1st and the 2nd rows
for the extended maps with the size of (Nx +4)× (Ny +4) are
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the same as that of the 1st row for the original maps with the
size of Nx×Ny. The values of the (Nx +3)th and the (Nx +4)th

rows for the extended maps are the same as that of the Nth
x row

for the original maps. Moreover, the values of the 3rd to the
(Nx +2)th rows for the extended maps are the same as that of
the 1st to the (Nx)

th rows for the original maps. Finally, the
extension of the column is the same as the row.

The expression of the new phase-shifting interferograms
can be written as

Wm = η cos
(
Φ
′+δm

)
, (10)

where η and δm represent the modulation amplitude and phase
shift, respectively, and we set δ1=0 and δ2 = δ .

According Eq. (10), η can be expressed as a function of
δ

η =

√
W 2

1 +

[
W1

tan(δ )
− W2

sin(δ )

]2

. (11)

The coefficient of variation (CV) of η is defined as

CV(η) =
std(η)

mean(η)
, (12)

where std(·) denotes the standard deviation, and mean(·) de-
notes the mean value. The normalization to the mean can make
this quantity independent of different measurements. Accord-
ing to Eq. (12), CV can be used as a parameter to evaluate the
variation of the modulation amplitude η . η will be irrelevant
to the pixel position and image index ideally. However, be-
cause of the fluctuation, non-uniformity of the original mod-
ulation amplitude b, the approximation error of Eq. (6) and
noise depression error, η is both relevant to the pixel posi-
tion and image index. Although η is not a constant for differ-
ent pixel positions, the difference between different pixels will
also be very small. Hence, when the phase shift δ is accurate,
η is also accurate, and CV will be minimum, so the phase shift
δ can be determined through searching the minimum of CV,

δ = arg min
δ

CV(η) . (13)

Finally, the phase can be obtained by

Φ
′ = tan−1 W1 cos(δ )−W2

W1 sin(δ )
. (14)

In order to further save time, a limited of pixels with equal
interval can be chosen to take part in the searching process.

3. Simulation verification
The validity of the proposed method have been verified by

the numerical simulations. In the following, all computations
are performed with the CPU of Intel(R) Core(TM) i5-8265U

and the 8 GB memory, and we use the Matlab software for
coding.

Firstly, we simulate the circular fringes, the back-
ground intensity and modulation amplitude are set
as ai (x,y) = Na exp

[
−0.02

(
x2 + y2

)]
and bi (x,y) =

Nb exp
[
−0.02

(
x2 + y2

)]
, respectively, with −1 ≤ x ≤ 1 and

−1≤ y≤ 1. Generally, the background intensity and modula-
tion amplitude have frame-to-frame fluctuation, hence, Na of
the 1st, 2nd and 3rd interferograms are set as 1, 0.95 and 0.9,
Nb of the 1st, 2nd and 3rd interferograms are set as 0.9, 0.85
and 0.8, the phase is set as ϕ (x,y) = 4π

(
x2 + y2

)
, the phase

shifts are 0, 1 and 3 rad, and the noise satisfies the Gaussian
distribution, whose signal-to-noise ratio (SNR) is 20 dB. The
background intensity, modulation amplitude and theoretical
phase maps and three phase-shifting interferograms are shown
in Figs. 2(a)–2(f). The normalized difference signals with-
out the background intensity as Eqs. (7) and (8) are given by
Figs. 2(g) and 2(h). To choose the optimal M and number
of chosen pixels searching the minimum of CV, we test the
proposed method with different M and number of chosen pix-
els. Figures 2(i) and 2(j) present the root mean square (RMS)
phase errors and computational time of the proposed method
with different M, and it can be seen that, when M is increas-
ing, the RMS phase error is decreasing, and large M costs only
a little more time than small M. Figures 2(k) and 2(l) show
the RMS phase errors and computational time of the proposed
method when the number of chosen pixels is different, and
we can see that the RMS phase errors are similar for differ-
ent number of chosen pixels, especially when the number of
chosen pixels is larger than 41× 41, and the RMS phase er-
rors are the same. When the number of chosen pixels is less
than 101×101, it costs relatively less time, otherwise, it takes
more time to compute. In summary, when the noise of the
phase-shifting interferograms with 401×401 pixels is 20 dB,
the optimal number of chosen samples is 41×41, the optimal
M is 25, and it can obtain high accuracy and high speed at the
same time.

Figures 2(m) and 2(n) present the new phase-shifting in-
terferograms after suppressing the noise as Fig. 1 (M = 25),
and we can see that the new phase-shifting interferograms are
more clear than the original phase-shifting interferograms. Af-
ter calculating the CV of the modulation amplitude with dif-
ferent phase shifts (the number of chosen samples is 41×41),
Fig. 2(o) is obtained, and the phase shift between Figs. 2(m)
and 2(n) corresponding to the valley can be just used to rebuild
the phase map. The rebuilt phase map using the found phase
shift and phase error map are given in Fig. 2(p) (note that,
there are two steps to obtain the phase error map, firstly, we
implement the subtraction between the rebuilt phase map and
theoretical phase map, then we subtract the minimum from the
existing phase error map), and the results of AIA method and
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PCA/GS3 method are shown in Figs. 2(q) and 2(r). We calcu-
late the RMS of phase error and computational time, as listed
in Table 1. From Figs. 2(p)–2(r) and Table 1, it can be seen
that the accuracy of the proposed method is higher than that
of AIA, PCA and GS3, and it costs relatively less time, the
accuracy of PCA and GS3 are same, but GS3 costs less time.

We also study the effect of noise to the optimal M, and
the number of chosen pixels is 41×41. Figure 2(s) shows the
results, and it can be seen that, if the SNR is 20 dB, when M
is increasing, the phase error is decreasing, and for other situ-
ations, when M is equal to 2, the phase error is maximum due
to the asymmetric error of the adjacent pixels (see Fig. 1). In

fact, for any level of noise, the asymmetric error always exists
when M is equal to 2, however, the effect of 20 dB of noise is
larger than that of the asymmetric error. In the actual experi-
ments, the level of noise is unknown, so it is best not to set M
equal to 2 to avoid the effect of asymmetric error. In addition,
if the SNR is greater than 30 dB, the phase error when M is
equal to 3 is minimum. Therefore, it can be concluded that the
optimal M is 25 when the SNR is 20 dB, and the optimal M is
3 if the SNR is greater than 30 dB. Although the optimal M is
different for different levels of noise, when M is equal to 3, the
phase error with 20 dB noise is also relatively small, therefore,
3 can be chosen as the common M in different cases.

(d) (e) (f)

(g) (h)

(m) (n)

(a)

Phase
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Fig. 2. Illustration of the proposed method with simulated circular fringes. (a) and (b) Background intensity and modulation amplitude maps. (c)
Theoretical phase map. (d)–(f) Three simulated interferograms (size: 401×401) with phase shifts θ = (0,1,3) rad. (g) and (h) Normalized difference
signals as Eqs. (7) and (8). (i) and (j) RMS phase errors and computational time with different M. (k) and (l) RMS phase errors and computational
time with different number of chosen pixels. (m) and (n) New phase-shifting interference signals of Eq. (10). (o) Coefficients of variation calculated by
Eq. (12). (p)–(r) Reconstructed phase maps and phase error maps from the proposed, AIA, and PCA/GS3 methods, respectively. (s) RMS phase errors
with different M for different levels of noise.

It is interesting to analyze the performance of the pro-
posed method, AIA, PCA and GS3 with various phase shifts.
For the proposed method, M is chosen as 25, the number
of chosen pixels is 41× 41, and other conditions remain un-
changed as the circular fringes. The phase shifts of the 1st and
2nd phase-shifting interference signals remain the same, and
the phase shift of the 3rd phase-shifting signal is changed from
1.3 rad to 6.0 rad. Figure 3(a) shows the results, and it can be
seen that the phase error varies with the change of the phase
shift with regard to different methods, and the closer to 1.3 rad
and 6 rad, the larger the RMS phase error is, when the practical
phase shift (θ3−θ2)/2 is close to 0 rad or π rad, and the RMS

phase error will be significantly large. In addition, the range of
phase shift of the proposed method is larger than that of other
methods. In the whole range of phase shift, the accuracy of
the proposed method is higher than that of other methods, and
the accuracies of AIA and PCA/GS3 are similar for most of
the phase shifts. Moreover, we also simulate the situation of
small phase shifts, such as the phase shifts are set as 0, 0.1 rad
and 0.2 rad. When the SNR of noise is greater than 50 dB,
all methods work, otherwise, they do not work because of the
large noise. In the actual experiment, the noise distribution
is more complex and must exist, so very small phase shifts
are not suitable for general methods, including the proposed
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method. In the future work, we may find or study a method to
slove this problem.[12]

We also test the proposed method at different levels of
noise in Fig. 3(b), compared with the current well-evaluated
SGPSI. The accuracy of the proposed method is higher than
that of AIA, PCA/GS3, and they are almost stable for differ-
ent levels of noise. If the SNR of noise is less than 40 dB,
the RMS phase error of AIA, PCA/GS3 is decreasing with the
decrease of the noise, and if the SNR of noise is greater than
40 dB, they are all stable. Moreover, the RMS phase error of
PCA/GS3 is large as AIA when the noise is large, but it can be
similar to the proposed method if the SNR of noise is greater
than 40 dB. From the above analysis, we can conclude that the
proposed method is more insensitive to the noise, and suitable

for any levels of noise.

As mentioned before Eq. (6), the proposed method re-
quires more than one fringe in the interferograms. In fact, if
the number of fringes is less than one, the phase error may be
relatively large, but it can also reconstruct the phase distribu-
tion. To verify this point, we compute the RMS phase errors
with different number of fringes from 0 to 4, and the other
parameters are same as Figs. 2(d)–2(f). Figure 3(c) presents
the results, the RMS phase errors of all methods are almost in-
variable if the number of fringes is larger than one. However,
when there is less than one fringe in the interferograms, the
performance of AIA, PCA/GS3 gets worse. By contrast, the
proposed method always performs well.
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Fig. 3. Comparisons on the RMS phase errors between different methods. (a) RMS phase errors with different phase shifts θ3 (θ1 = 0,
θ2 = 1 rad). (b) RMS phase errors with different levels of noise. (c) RMS phase errors with different number of fringes.

We also simulate the complex fringes, the phase is set as ϕ (x,y) = 4x2+4y2+4x3+4y3+4peaks(401), other conditions are
the same as the circular fringes, and finally the conclusion is the same as the circular fringes. As shown in Fig. 4 and Table 1,we
can conclude that the proposed method is accurate and efficient for different kinds of fringes.
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Fig. 4. Illustration of the proposed method with simulated complex fringes. (a)–(c) Three simulated interferograms (size: 401× 401) with
phase shifts θ = (0,1,3) rad. (d) Theoretical phase map. (e) and (f) Normalized difference signals as Eqs. (7) and (8). (g) and (h) New
phase-shifting interference signals of Eq. (10). (i) Coefficients of variation calculated by Eq. (12). (j)–(l) Reconstructed phase maps and phase
error maps from the proposed, AIA, and PCA/GS3 methods, respectively. (m) RMS phase errors with different M for different levels of noise.

4. Demonstration with experimental data

The performance of the proposed method is also veri-

fied by the experimental interferograms with different kinds

of fringes. Four phase-shifted interferograms with the phase

shifts 0, π/2, π , and 3π/2 are acquired by the snapshot phase-
shifting interferometer, the phase shift error will be very small
because only a single image snapshotted is extracted by the
polarization camera, and the highly accurate phase extracted
by standard 4-step PSI can be set as the reference phase. Ac-
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cording to the conclusion of above simulations, the number
of chosen pixels to search the minimum CV with different
phase shifts is set as 41×41. The interferograms with circular
fringes are shown in Figs. 5(a)–5(d), and the reference phase
map is shown in Fig. 5(e). The normalized difference signals
without the background intensity are presented in Figs. 5(f)–
5(g), the curve of RMS phase errors with various M is plotted
in Fig. 5(h), and it can be seen that, when M is equal to 3, the
RMS phase error is minimum, and it is the same as the simula-
tion with the SNR of noise greater than 30 dB. Therefore, 3 can
be chosen as the optimal M. The new phase-shifting interfer-

ograms after suppressing the noise are presented in Figs. 5(i)

and 5(j), after calculating the CV of the modulation ampli-

tude with different phase shifts (Fig. 5(j)), the phase shift be-

tween the new phase-shifting interferograms corresponding to

the valley can be just used to reconstruct the phase map, the

difference map between the reference and rebuilt phase maps

is regarded as the phase error map, and then subtract the min-

imum from the existing phase error map, the phase and phase

error maps are shown in Fig. 5(l), and the results of AIA,

PCA/GS3 are given in Figs. 5(m) and 5(n).
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We also test the proposed method, AIA, PCA and GS3
with experimental complex fringes from a deformable mirror,
as shown in Fig. 6, where the optimal M is also 3. The RMS of
phase errors and computational time of different methods are
listed in Table 1. From Figs. 5, 6 and Table 1, if M = 1, the
RMS phase error is so large because the phase map after un-
wrapping is unsmooth, so the suppression of noise is very im-
portant, and the RMS phase errors of AIA, PCA and GS3 are
also large due to the same reason as the proposed method with
the situation of M = 1. For the experiment, whether the back-
ground intensity and modulation amplitude distributions or the
noise distribution may be more complex than the simulation,
and PCA and AIA generally need more than three interfero-
grams to obtain good performance, hence when the conditions
are more complex, they do not work. However, the proposed
method is suitable for different experimental conditions, and it
can obtain highly accurate phase map and cost relatively less
time simultaneously with only three randomly phase-shifting
interferograms.

Table 1. RMS phase errors and computational time via proposed, AIA,
PCA and GS3 methods.

Proposed AIA PCA GS3

Fig. 2
RMS phase error (rad) 0.058 0.159 0.155 0.155

Time (s) 0.190 17.123 0.094 0.005

Fig. 4
RMS phase error (rad) 0.063 0.160 0.155 0.155

Time (s) 0.191 16.641 0.095 0.005

Fig. 5
RMS phase error (rad) 0.044 0.246 0.246 0.246

Time (s) 0.187 18.216 0.012 0.006

Fig. 6
RMS phase error (rad) 0.207 0.389 0.430 0.430

Time (s) 0.095 5.599 0.006 0.003

5. Conclusions
In conclusion, an accurate and timesaving three-step self-

calibrating phase-shifting interferometry is proposed. Both

simulated and experimental results indicate that the proposed
method can reconstruct the accurate phase map with high effi-
ciency, even compared with the well-evaluated SGPSIs-AIA,
PCA and GS3. Moreover, the proposed method performs well
in different phase shifts, levels of noise and number of fringes.
Lastly, the proposed method is suitable for different kinds of
fringes and experimental conditions. We expect this method
to be widely used in the future.
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