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The optical nonlinearity of Dirac fermions in two and three dimensions show unique properties determined by
analytic expressions in the independent particle approximation, which promotes their host materials as potential
candidates for providing optical nonlinear functionalities. In this work we theoretically study the third-order
optical nonlinearity for one-dimensional Dirac fermions and obtain analytical expressions for third-order optical
conductivities at general light frequencies. The conductivity includes many resonant peaks induced by the
resonant optical transitions associated with intraband motion as well as one-, two-, and three-photon interband
processes. The conductivities for field-induced second harmonic generation and third harmonic generation are
discussed in detail. To connect with real materials, we choose armchair graphene nanoribbons, which host
one-dimensional Dirac fermions for its low energy electronic excitation, and our analytical expressions are
applied to get the third-order conductivity for harmonic generations with different ribbon width. By comparing
with numerical results evaluated from a full band structure in a tight binding model, the analytic and numerical
results agree pretty well for photon energy below 2.5 eV.
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I. INTRODUCTION

Dirac fermions (DFs) have attracted much attention in var-
ious research fields after their discovery in crystals, mostly
ascribed to the unique linear dispersions [1–6]. Nowadays
many properties of DFs that have been well studied in
high energy physics can be experimentally demonstrated in
solids much easier, which also inspires new research fields
in nontrivial topological materials. DFs can be realized in
the low energy electronic excitations of different dimensions:
graphene [1,7–9], twisted bilayer graphene [10–12], transi-
tion metal dichalcogenides [13–15], and surface states of
topological insulators [16,17] for two dimensional (2D) DFs;
Dirac semimetals [4,18,19] and Weyl semimetals [3,5,20] for
three dimensional (3D) DFs; and nanoribbons, nanotubes,
nanorings [21–25], SSH model of polyacetylene [6,26],
and edge states of 2D topological insulators [27,28] for
one-dimensional (1D) DFs. DFs exhibit unique and remark-
able optical properties, including the universal conductance
[29,30], broadband absorption from terahertz wavelength to
visible light [31,32], extremely strong optical nonlinearities
[9,33–37], and easy tunability either by external field [38–41]
or by thickness [42,43]; their host materials become potential
candidates for applications in optoelectronics and nonlinear
photonics.

The optical nonlinearities of 2D and 3D DFs have been
extensively studied [9,44], and huge nonlinear conductivi-
ties are both theoretically predicted [35,45,46] for general
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light frequencies and experimentally demonstrated [39,47]
in various nonlinear optical phenomena. The nonlinear opti-
cal conductivities of massless 3D DFs can be calculated by
integrating those of 2D DFs over the mass [48], and they
show many similarities in the spectra, including the huge
susceptibility that is orders of magnitude larger than usual
semiconductors or insulators [49], the existence of many reso-
nances induced by both intraband motion for involved photon
energies approaching zero [50,51] and interband transitions
for involved photon energies matching the chemical potential
induced gap [36], and the easy tunability by the chemical
potential [52]. Furthermore, their spectra show almost the
same fine structures. However, the quantum confinement also
leads to significant differences between 2D and 3D DFs: (1)
the effective third-order optical conductivities of 2D DFs are
in general two orders of magnitude larger than that of 3D
DFs, (2) they have different dependence on the Fermi velocity,
and (3) they show different chemical potential dependence.
It is interesting to understand how the optical nonlinearities
behave with further reducing the dimension to 1D, which is
the focus of this work.

In this paper we study the third-order nonlinear response
for 1D DFs. The expressions of perturbative conductivities
are obtained from the perturbation solution of equation of
motion with describing the light matter interaction in the
length gauge [53]. Further, the electronic states of 1D DFs
are described by an effective Hamiltonian linearly depending
on the wave vector. In this model, the expressions for lin-
ear and third-order conductivities can be analytically worked
out for arbitrary light frequencies, and based on them we
give a detailed discussion on the electric-field-induced second
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harmonic generation (EFISH) and third harmonic generation
(THG). To connect with real materials, we find that the low
energy electronic excitations of armchair graphene nanorib-
bons can be well described by 1D DFs. EFISH and THG of
armchair graphene nanoribbons are calculated by two meth-
ods: (1) the analytical expressions obtained from the effective
model of 1D DFs and (2) a direct numerical evaluation where
the electronic states of the ribbons are described by a tight
binding model; both methods show good agreement for pho-
ton energy less than 2.5 eV. With changing the dimension,
new control methods can be introduced to tune the nonlinear
response. Compared to graphene, for 3D DFs the thickness
of its host materials is a good control variable, which allows
a flexible structure design toward realizing the device non-
linear functionalities; while for 1D DFs, a patterned array of
nanoribbons can provide an extra degree of freedoms, includ-
ing the period and the coverage rate, in possible devices. The
precondition for such application requires understanding of

the optical nonlinearity of 1D DFs in a similar way compared
to that of 2D and 3D DFs.

In Sec. II we give the effective Hamiltonian as well as the
expressions for linear and third-order optical conductivities.
In Sec. III we discuss the general properties of these expres-
sions and the spectra of harmonic generations. In Sec. IV the
analytic expressions are compared with the numerical results
for armchair graphene nanoribbons. In Sec. V, we discuss and
conclude.

II. MODELS

A. Effective Hamiltonian for 1D Dirac fermions

The effective Hamiltonian for 1D DFs is written as [54]

Hk = h̄vF (kσx + qσz ), (1)

where vF is the Fermi velocity, h̄vF q is a mass term, and σx,y

are Pauli matrices. The velocity operator is

vk = h̄−1∂kHk = vF σx. (2)

The eigenstates and eigenenergies of Hk are

ψ+k = 1√
2

( √
1 + Nk√

1 − Nksgn(k)

)
, ε+k = +h̄vF εk, (3)

ψ−k = 1√
2

(−√
1 − Nksgn(k)√

1 + Nk

)
, ε−k = −h̄vF εk, (4)

with the band index s = ±, εk =
√

k2 + q2 and Nk = q/εk . For the latter use we give the velocity matrix elements

vssk = svF
k

εk
, vss̄ = vF

q

εk
, (5)

and the matrix elements of Berry connections

ξs1s2k ≡ ψ
†
s1ki∂kψs2k = δs1 s̄2 is2

q

2ε2
k

, (6)

where s̄ represents the index of the band distinguished from the s band.

B. Linear and third-order optical conductivities

Using the electronic states described above and following Ref. [53], we first set up equation of motion with describing the
light matter interaction in a length gauge, then we perturbatively solve the density matrix at different power orders of light
fields, and finally we obtain the formulas for linear and third-order optical conductivities, which are the same as those presented
in Appendix A of Ref. [53] with taking the directions of both the electric field and the current along the x direction. For the
effective model of 1D DFs discussed in the previous section, these formulas depend on the electron eigen energies in Eqs. (3)
and (4), the velocity matrix elements in Eq. (5), and the Berry connection in Eq. (6); they can be worked out analytically. The
linear conductivity is then

σ (1)(ω) = ie2vF

πEq
Sl

(
h̄ω + i�(1)

a

Eq
,

h̄ω + i�(1)
e

Eq
,

2|μ|
Eq

)
, (7)

where Eq = 2h̄vF |q| is the band gap, μ is the chemical potential, and �
(1)
a/e are the phenomenological relaxation energy parameter

for intraband/interband transition in the linear response. The dimensionless function Sl is

Sl (v,w, u) = 1

v

√
u2 − 1

u
θ (u − 1) + I2(g)

w
+ G(g; w)

2w2
, (8)
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with g = max{1, u}, and

I2(g) = 1

g2 + g
√

g2 − 1
, (9)

G(g; w) = 1√
w2 − 1

ln

(
−

√
w2 − 1 + w√
w2 − 1 − w

× w − g

w + g
×

√
w2 − 1

√
g2 − 1 − 1 − wg√

w2 − 1
√

g2 − 1 − 1 + wg

)
. (10)

Note that the logarithmic function is taken as ln(x + iy) = ln
√

x2 + y2 + i[π
2 sgn(y) − arctan x

y ]. The third-order conductivity is
expressed as

σ (3)(ω1, ω2, ω3) = 1
6 [σ̃ (3)(ω,ω2 + ω3, ω3) + σ̃ (3)(ω,ω2 + ω3, ω2) + σ̃ (3)(ω,ω1 + ω3, ω3)

+ σ̃ (3)(ω,ω1 + ω3, ω1) + σ̃ (3)(ω,ω1 + ω2, ω1) + σ̃ (3)(ω,ω1 + ω2, ω2)], (11)

with ω = ω1 + ω2 + ω3 and the unsymmetrized conductivity σ̃ (3)(ω,ω0, ω3) giving as

σ̃ (3)(ω,ω0, ω3) = ie4h̄2v3
F

2π

4

E5
q

Snl

(
h̄ω + i�(3)

a

Eq
,

h̄ω0 + i�(2)
a

Eq
,

h̄ω3 + i�(1)
a

Eq
;

h̄ω + i�(3)
e

Eq
,

h̄ω0 + i�(2)
e

Eq
,

h̄ω3 + i�(1)
e

Eq
;

2|μ|
Eq

)
. (12)

Here ω0 stands for the sum of any two photon energies and �
(2/3)
a/e are phenomenological relaxation parameters for the

second/third-order transition processes. The dimensionless function Snl is

Snl (ν, ν0, ν3; w,w0,w3; u) = θ (u − 1)

√
u2 − 1

u5

[
6

νν0ν3
+ S3(w0; u)

νν3
+ S5(w; u)

ν0ν3
+ S7(w,w0; u)

ν3
+ S8a(w,w0,w3; u)

]
+ S2(w3; g)

νν0
+ S4(w0,w3; g)

ν
+ S6(w,w3; g)

ν0
+ S8b(w,w0,w3; g). (13)

All dimensionless functions S j can be obtained analytically
and are given in Appendix.

III. RESULTS

A. General properties

We first discuss some general properties of the linear
conductivity in Eq. (7) and the third-order conductivity in
Eq. (11). In the perturbative treatment, the optical transitions
include the intraband and interband transitions. For the linear
conductivity, the first term of Sl in Eq. (8) gives the contri-
bution from the intraband transition, and the remaining terms
originate from the interband transitions. As one expects, the
intraband transition gives the Drude term which is nonzero
only for a doped system u > 1. For the third-order conductiv-
ity in Eq. (13), besides that the term ∝ 1

νν0ν3
is purely from

intraband transitions and the terms S8a and S8b are purely
from interband transitions, all other terms are mixtures of
both transitions. We consider several general cases in certain
limits.

(1) In the clean limit, there exist multiple divergences in
Eq. (7) for linear conductivity and in Eq. (11) for third-order
conductivity, which become resonant peaks with the inclusion
of scatterings. These divergences are induced either by inter-
band transitions associated with one-, two-, and three-photon
processes, or by intraband motion. The interband resonances
are identified by the function G(g,w), with a singularity point
at w = g, which gives resonant conditions h̄ω/Eq = g for
one-photon process [left arrows in Fig. 1(a)] with gEq being
the effective band gap, (h̄ωi + h̄ω j )/Eq = g with i �= j for
two-photon process [right arrows in Fig. 1(a)], and (h̄ω1 +

h̄ω2 + h̄ω3)/Eq = g for three-photon process [Fig. 1(b)]. The
interband resonance diverges as a logarithmic function. The
intraband motion-induced divergences arise from the Drude-
like contribution and occur at ν3 = 0, ν0 = 0, or ν = 0,
illustrated in Figs. 1(c) and 1(d). Around these singularities,
the value of the conductivity sensitively depends on the re-
laxation parameters and the realistic scattering processes are
important. These resonances are similar to that in 2D and 3D
DFs [9,48,53].

(2) As the gap Eq → 0, the conductivities are approxi-
mated as

σ (1)(ω) ≈ ie2vF

π
(
h̄ω + i�(1)

a
) , (14)

σ (3)(ω1, ω2, ω3) ∝ O
(
E2

q

)
. (15)

In this limit, only the Drude term in the linear conductivity
survives and gives a chemical potential independent value,
while the third-order conductivity vanishes. This can be un-
derstood as following: because the optical transition between
these two bands is proportional to the gap parameter Eq as
shown in Eq. (6), there is no interband optical transition at
zero gap Eq = 0, and the electrons can move only inside one
band. For 1D DFs, the intraband movement of the electron
has a constant velocity. Therefore, as long as it moves inside
one band, the current does change, which cannot induce any
optical nonlinearity. Different from DFs at higher dimensions,
the third-order optical nonlinearity for 1D DFs only exists for
a gapped system.
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(a) (b) (c) (d)

FIG. 1. Illustration of the resonant transitions in third-order optical nonlinearity. (a) One-photon interband resonant process (left) and
two-photon interband resonant process (right), (b) Three-photon interband resonant process, (c) One-photon intraband resonant process with
h̄ωi = 0 (left) and two-photon intraband resonant process with h̄ω j + h̄ωk = 0 (right), and (d) Three-photon intraband resonant process with
h̄ωi + h̄ω j + h̄ωk = 0.

(3) The responses at very low photon energies can be re-
vealed by the limits of σ (1)(xω) and σ (3)(xω1, xω2, xω3) with
taking x → 0. With all damping parameters approaching zero,
we get

σ (1)(ω) ≈
⎧⎨⎩ ie2vF

π

√
4μ2−E2

q

2μh̄ω
2|μ| > Eq,

− ie2vF
π

2h̄ω
3E2

q
2|μ| < Eq.

, (16)

and

σ (3)(ω1, ω2, ω3) ≈
⎧⎨⎩

ie4 h̄2v3
F

2π

E2
q

√
4μ2−E2

q

8h̄3ω1ω2ω3|μ|5 2|μ| > Eq,

− ie4 h̄2v3
F

2π

256h̄(ω1+ω2+ω3 )
45E6

q
2|μ| < Eq.

.

(17)

When the system is doped for 2|μ| > Eq, only the intra-
band contributions remain for both the linear and third-order
conductivities, giving the frequency dependence ω−1 and
(ω1ω2ω3)−1, respectively. This is similar to the results in
doped 2D or 3D DFs, but the optical conductivities show
different dependencies on the chemical potential and Fermi
velocity. While as the system is undoped 2|μ| < Eq, the con-
ductivities are linear with the frequencies, which gives zero
conductivities at zero frequencies but finite susceptibility.

(4) Table I gives a comparison on the features for the linear
and third-order optical conductivities at different dimensions.
The most direct effect of the dimension is the Fermi veloc-
ity dependence, which gives ∝v2−n

F for linear conductivity
and ∝v4−n

F for third-order conductivity in n dimension. At
small photon energies, the responses have the same frequency
dependence, but different chemical potential and gap param-
eter dependencies. Interestingly, when there exists a real gap

Eq > 2|μ| > 0, the conductivities at low photon energies are
proportional to the frequencies and inversely proportional to a
power of the gap parameter with the power index depending
on the dimension; for the chemical potential induced gap
2μ > Eq, the Drude-like contribution gives the conductivities
inversely depending on the frequencies. When the frequencies
are much higher than the effective gap, the frequency depen-
dencies of these conductivities vary with the dimension. These
features might be used to identify the dimension of the DFs.

B. Harmonic generations

As an illustration of these results, we give the spectra of
the linear conductivity σ (1)(ω), σ (3)(ω,ω, 0) for EFISH, and
σ (3)(ω,ω,ω) for THG at different chemical potentials. Be-
cause armchair graphene nanoribbons are centrosymmetric,
there is no SHG in the electric dipole approximation. How-
ever, applying a static electric field along the ribbon direction
can break the inversion symmetry and make it to be SHG
active (usually called as EFISH), which indeed is a third-order
optical process with taking one of the incident frequencies as
zero. After writing these conductivities as

σ (1)(ω) = e2vF

πEq
S1

(
h̄ω

Eq
,

2|μ|
Eq

)
, (18)

σ (3)(ω,ω, 0) = 2e4h̄2v3
F

πE5
q

SSHG

(
h̄ω

Eq
,

2|μ|
Eq

)
, (19)

σ (3)(ω,ω,ω) = 2e4h̄2v3
F

πE5
q

STHG

(
h̄ω

Eq
,

2|μ|
Eq

)
, (20)

TABLE I. Comparison of some features for the optical conductivities σ (1);xx (ω) and σ (3);xxxx (ω1, ω2, ω3) at different dimensions with
respect to the Fermi velocity vF , the frequency ω or ωi, the chemical potential μ, and the mass term Eq. Here Eg = max{Eq, 2|μ|}, � = Eq/2,
“–” indicates unavailable or too complicated to be specified, “*” indicates for σ (3);xxxx (ω,ω,ω), ωi j = ωi + ω j , and ω123 = ω1 + ω2 + ω3.

vF h̄ω � Eg = 2|μ| h̄ω � Eg = Eq h̄ω 	 Eg

Dimension σ (1) ∝ σ (3) ∝ σ (1) ∝ σ (3) ∝ σ (1) ∝ σ (3) ∝ σ (1) ∝ σ (3) ∝

1D vF v3
F

√
μ2−�2

|μ|ω
�2

√
μ2−�2

|μ|5ω1ω2ω3

ω

�2
ω1+ω2+ω3

�6
1
ω

−
2D [36] 1 v2

F (1 − �2

μ2 ) |μ|
ω

(μ2−�2 )(μ2+3�2 )
ω1ω2ω3|μ|5

ω

�

ω1+ω2+ω3
�5 1 1

ω12ω23ω31ω123

3D [48] 1
vF

vF
|μ|2
ω

1
ω1ω2ω3

− − ω

|μ| ln ω

|μ|
1

ω3
∗
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FIG. 2. Spectra of (a) linear conductivity S1(x, y), its real and imaginary parts are given by solid and dashed curves, respectively;
(b) |SSHG(x, y)| for EFISH and (c) |STHG(x, y)| for THG at chemical potentials y = 0 (red lines) and y = 1.2 (blue lines). Arrows with labels
id/u for i = 1, 2, 3 indicate the position of i-photon interband resonant peaks for undoped (“u”) and doped (“d”) case; arrows 0d indicate the
intraband resonant peaks for a doped case. The intraband and interband relaxation parameters are all �

(n)
a/e = 0.01Eq.

these dimensionless functions S1(x, y), |SSHG(x, y)|, and
|STHG(x, y)| are plotted in Fig. 2 for 2|μ|/Eq = 0 and 1.2
with taking all �

(i)
a/e/Eq = 0.01. The interband resonant peaks

appear at h̄ω = Eg for one-photon resonant transition (in-
dicated by arrows 1d , 1u), Eg/2 for two-photon resonant
transition (indicated by arrows 2d , 2u), and Eg/3 for three-
photon resonant transition (indicated by arrows 3d , 3u) with
Eg = max{2|μ|, Eq} for both doped and undoped cases, while
the intraband resonant peaks (indicated by arrows 0d ) appear
at h̄ω = 0 only for doped case. All these results agree with

our discussion on the analytic expression of the conductivity
in previous sections.

IV. COMPARISON WITH THE OPTICAL RESPONSE OF
ARMCHAIR GRAPHENE NANORIBBONS

For armchair graphene nanoribbons with N dimers in
one unit as shown in Fig. 2(a), a simple tight bind-
ing Hamiltonian and position operator can be written
as [55]

Hk = γ0

(
0 Fk

F †
k 0

)
, (21)

Xk =
(

Ak 0
0 Ak + a0

3

)
, (22)

where the block matrix Fk has matrix elements Fnmk = δn,m + δn,m+1 + e−ika0δn+1,m for 1 � n, m � N with γ0 = 2.7 eV and a0 =√
3agh = √

3 × 2.46 Å being the lattice constant, and the matrix elements of position operator are given by Anmk = δnm
n−1

2 a0.
The velocity operator is

vk = 1

ih̄
[Xk, Hk] + 1

h̄
∂kHk . (23)

The Hamiltonian in Eq. (21) can be diagonalized analytically with the eigen energies [55]

εsnk = sγ0

√
1 − 4 cos

(
ka0

2

)
cos

(
n

N + 1
π

)
+4 cos2

(
n

N + 1
π

)
, for s = ±; n = 1, · · · , N ; and k ∈ [−π/a0, π/a0). (24)

Note that the band index n does not correspond to the en-
ergy order of the bands at k = 0. The band structures for
N = 3 and N = 4 are plotted in Figs. 3(b) and 3(c), and there
exist two flat bands ±N+1

2 for odd number N . The veloc-
ity matrix elements are nonzero only between the band pair
±n, indicating that the optical transitions only occur between
these band pairs. Furthermore, we also find that the bands
m and N + 1 − m can be connected smoothly to form one
band (indexed by m) with double the size of Brillouin zone,
as giving by the solid curves in Figs. 3(b) and 3(c). Then
as 1 � n < N/2, these band pairs ±n around k = 0 can be
approximated by the 1D DFs with mass energy and Fermi

velocity

Eq = 2γ0

∣∣∣∣2 cos

(
n

N + 1
π

)
− 1

∣∣∣∣,
vF =

√
2 cos

(
n

N + 1
π

)√
3a0γ0

2h̄
. (25)

Around the band edge of these band pairs, their optical
conductivities can be approximately evaluated by using our
analytic expressions in Eq. (11).
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FIG. 3. (a) Illustration of a N-armchair graphene nanoribbon, the x direction is along the armchair direction. Black dashed curves are the
band structure in one Brillouin zone for (b) N = 3 and (c) N = 4. The red solid curves give the unfolded bands in an extended Brillouin zone.
The band indexes are shown around the position k = 0.

With the velocity matrix elements and eigen energies,
third-order conductivities for EFISH and THG in graphene
nanoribbons can be numerically calculated using the full per-
turbative expressions in Refs. [53]. Here we first perform the
calculation for N = 3 and N = 4 nanoribbons and at zero
chemical potential, and the results are shown in Fig. 4, where
the analytic results are also presented. The band gap for N=3
nanoribbon is about Eq = 2.2 eV, while that for N=4 is about
Eq = 2.1 eV for band pair ±2 and Eq = 3.3 eV for band pair
±1. From the analytic results, for undoped nanoribbons there
exist only interband resonances, located at h̄ω = Eq/i for i
photon process indicated by the arrows in Fig. 4. The analytic

expressions are applied to the band pair ±1 in the extended BZ
of N=3 nanoribbon, and the band pairs ±1 and ±2 for N=4
nanoribbons. For N=3 nanoribbons, the resonant transitions
between band pair ±1 locate at h̄ω = 2.2/i eV for i-photon
process (indicated by arrow i1); while for N=4 nanoribbons,
the locations become h̄ω = 2.1/i eV for band pair ±2 (in-
dicated by arrow i2) and h̄ω = 3.3/i eV for band pair ±1
(indicated by arrow i1). All these peaks match the numeri-
cal results very well. There also appear additional peaks at
h̄ω = 2.7 eV (arrow a) in Fig. 4(a), h̄ω = 1.8 eV (arrow b) in
Fig. 4(c) and h̄ω = 2.9 eV (arrow c) in Fig. 4(d), which cannot
be described by 1D DFs. The first two peaks (arrows a and

0 1 2 3 4
10-32

10-27

10-22

Numeric
Analytic

0 1 2 3
10-31

10-27

10-23

0 1 2 3 4
10-31

10-28

10-25

0 1 2 3 4

4

10-31

10-28

10-25

FIG. 4. Comparison of numeric and analytic result for EFISH and THG. (a), (b): EFISH; (c), (d): THG. The arrows with label i j indicate
the i-photon resonant transitions between the ± j band pair and arrows a, b, c refer to the additional peaks in numerical results.
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10-31

10-28
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FIG. 5. Comparison of numeric and analytic results for EFISH and THG with N = 30 and N = 40. (a), (b): EFISH; (c), (d): THG.

b) arise from the two- and three-photon interband resonant
transitions between the two flat bands ±2 of N=3 nanoribbon
[illustrated by the vertical arrow in Fig. 3(b)], while the third
one arises from the three-photon interband resonant transition
between the unfolded bands ±3 at k = 0 [illustrated by the
vertical arrow in Fig. 3(c)].

We estimate the effective bulk susceptibilities
of these coefficients through χ

(2)
eff (2ω) = Edcσ

(3)
SHG

(ω,ω, 0)/(−2iωε0W d ) for EFISH and χ
(3)
eff (3ω) =

σ
(3)
THG(ω,ω,ω)/(−3iωε0W d ) for THG, where W ≈ Nagh/2

and d = 3.3 Å are the width and thickness of a ribbon.
The width of a N = 4 nanoribbon is about W ≈ 5 Å. For
EFISH, the peak value around h̄ω = 1.05 eV is about
σ−1

0 |σ (3)
SHG| ∼ 6 × 10−24 m3/V2, then the effective bulk

susceptibility is |χ (2)
eff | ∼ 1.4 × 10−8 m/V for a static

field Edc = 106 V/m. For THG, the peak value around
h̄ω = 0.7 eV is about σ−1

0 |σ (3)
THG| ∼ 10−26 m3/V2, and

the effective bulk susceptibility is |χ (3)
eff | ∼ 10−16 m2/V2.

Compared to the values for DFs in higher dimensions at the
same photon energy, which are about 3.2 × 10−19 m2V−2

for 2D DFs [36] and 4 × 10−21 m2V−2 for 3D DFs [48], the
effective THG susceptibility of armchair nanoribbons is about
2 − 3 order of magnitude larger than theoretical values of
graphene, and much larger than those of Dirac semimetals.
The larger nonlinear susceptibility at lower dimension shows
significant impact of the quantum confinement on nonlinear
optical response.

We also perform such comparison in wider nanoribbons
with N = 30 and N = 40, and show the results in Fig. 5.
For fundamental photon energy below 2.5 eV, the analytic
and numerical results agree very well. The wider ribbons
include more bands, which give many resonant peaks. With
further increasing the width N → ∞, the armchair graphene
nanoribbon becomes graphene, then we can predict that the
analytic third-order optical conductivity of 1D DFs can be
used to produce the third-order optical conductivity σ (3);xxxx

for graphene, very similar to the case of producing the third-
order optical conductivity of 3D DFs from those of a gapped
2D DFs [45]. The disagreement for photon energy higher
than 2.5 eV mostly comes from the deviation of the tight
binding band structure from the bands obtained by the linear
dispersion Hamiltonian.

V. CONCLUSION

In conclusion, we have derived analytic expressions for
the linear and third-order conductivities of one-dimensional
Dirac fermions, with treating the scattering by phenomeno-
logical relaxation parameters. The spectra of third-order
conductivity show very similar structure to that of two- or
three-dimensional Dirac fermions, with multiple resonant di-
vergences induced by either intraband motion or interband
resonant transitions. Taking armchair graphene nanoribbon
as an example, our analytic results for the field-induced sec-
ond harmonic generation and third harmonic generation agree
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with the numerical values pretty well. Our one-dimensional
Dirac fermions model cannot be applied to another widely
studied graphene nanoribbons with zigzag edges, because of
the different band structure and selection rules for the optical
transition between different bands [56]. Due to the existence
of the nearly degenerate edge bands for zigzag graphene
nanoribbons, it is interesting to study its harmonic generation
using our numerical method, which is left for a future work.

Our treatment is in the single-particle approximation,
which works well for two-dimensional massless Dirac
fermions in graphene [9], mostly because the many-body
interaction does not change the single particle dispersion
relation, especially the zero value of the gap. However,
the third-order nonlinearity is nonzero only for massive
one-dimensional Dirac fermions, thus the many-body in-

teraction, especially the excitonic effects, could be im-
portant. For a real material such as graphene nanorib-
bons that hosts one-dimensional Dirac fermions, there
exist many bands, and how the many-body interaction be-
tween them affect the optical nonlinearity deserves further
investigation.
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APPENDIX: EXPRESSIONS OF THE DIMENSIONLESS FUNCTIONS SJ

S3(w0; u) = 1

w0 − u
+ 1

w0 + u
, (A1a)

S5(w; u) =
(

−3 + u
∂

∂u

)(
1

w − u
+ 1

w + u

)
(A1b)

S7(w,w0; u) = 2
∑

s

u2

w0 − su

∂

∂u

(
1

u

1

w − su

)
(A1c)

S8a(w,w0,w3; u) =
∑

s

u2

(w0 − su)(w3 − su)

∂

∂u

(
1

u

1

w − su

)
, (A1d)

and

S2(w3; g) = − 2

[
I6(g)

w3
+ I4(g)

w3
3

+ I2(g)

w5
3

+ G(g; w3)

2w6
3

]
, (A2)

S6(w,w3; g) = 2

[
1

ww3
I6(g) + w2 + w2

3

w3w3
3

I4(g)+w4 + w2
3w

2 + w4
3

w5w5
3

I2(g)− w3

2w6
(
w2 − w2

3

)G(g; w) + w

2w6
3

(
w2 − w2

3

)G(g; w3)

]
,

(A3)

with g = max{1, u} and

I4(g) = 2g3 −
√

g2 − 1(2g2 + 1)

3g3
(A4)

I6(g) = 8g5 −
√

g2 − 1(8g4 + 4g2 + 3)

15g5
. (A5)

The remaining S functions are

S4(w0,w3; g) = −
[

a1I6(g) + a2I4(g) + a3I2(g) + a4G(g; w0) − a5
∂

∂w0
G(g; w0) + a6G(g; w3)

]
, (A6)

with

a1 = 6

w0w3
, a2 = 4w2

0

(
1 − w2

3

) + 2(w0 + w3)2

w3
0w

3
3

, (A7a)

a3 = 6

w0w
5
3

+ 4

w2
0w

4
3

+ 2

w3
0w

3
3

− 4

w0w
3
3

− 2

w2
0w

2
3

− 2

w5
0w3

, (A7b)

a4 = 3w0 − 2w3 − 2w3
0 + w3w

2
0

w6
0 (w0 − w3)2

, a5 = 1 − w2
0

w5
0 (w0 − w3)

, (A7c)

a6 = 3w0 − 4w3 + 3w3
3 − 2w0w

2
3

w6
3 (w0 − w3)2

, (A7d)
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and

S8b(w,w0,w3; g) = 4

[
b1I6(g) + b2I4(g) + b3I2(g) + b4G(g; w) − b5

∂

∂w
G(g; w)

+ b6G(g; w0) + b7G(g; w3) − b8
∂

∂w3
G(g; w3)

]
, (A8)

with

b1 = − 1

ww0w3
, b2 = 2w2

0w3(1 + w2) − w2(w0 + 2w3)

2w3w3
0w

2
3

, (A9a)

b3 =

{−w3
3w

4(2w3 + w0) + w3
0w3w

[
w3 + w2

3 (w + w3) + 4w3
3

]
+2w2

0w
4
3w

2(1 + w2) + 2w4
0

[
w4 + w4

3 (3 − w2) + w3
3w

]}
2w5w5

0w
5
3

, (A9b)

b4 =

{
w2

[−12w3 + 4w0w
2
3 − ww3(11w0 + 6w3) + w2(9w0 + 16w3)

]
+(

18w3 − 8w0w
2
3 + ww3(21w0 + 10w3) − w2(15w0 + 26w3)

)}
4w6(w − w0)2(w − w3)3

, (A9c)

b5 = (1 − w2)(3w − 2w3)

4w5(w − w0)(w − w3)2
, b6 = (w − 2w0)

(
1 − w2

0

)
(3w0 − 2w3)

4(w − w0)2w6
0 (w0 − w3)2

, (A9d)

b7 =

{
w2

3

[−w2(w0 − 2w3) + 3w(w0 − 2w3)w3 − 4w0w
2
3 + 6w3

3

]
+w2(3w0 − 4w3) + 2(4w0 − 5w3)w2

3 + 3ww3(−3w0 + 4w3)

}
4(w − w3)3(w0 − w3)2w6

3

, (A9e)

b8 = (w − 2w3)
(
1 − w2

3

)
4(w − w3)2w5

3 (w0 − w3)
. (A9f)
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