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Theory of optical activity in doped systems with application to twisted bilayer graphene
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We theoretically study the optical activity in a doped system and derive the optical activity tensor from a light
wave vector dependent linear optical conductivity. Although the light-matter interaction is introduced through the
velocity gauge from a minimal-coupling Hamiltonian, we find that the well-known “false divergences” problem
can be avoided in practice if the electronic states are described by a finite-band effective Hamiltonian, such as
a few-band tight-binding model. The expression we obtain for the optical activity tensor is in good numerical
agreement with a recent theory derived for an undoped topologically trivial gapped system. We apply our theory
to the optical activity of a gated twisted bilayer graphene, with a detailed discussion of the dependence of the
results on twist angle, chemical potential, gate voltage, and location of rotation center forming the twisted bilayer
graphene.
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I. INTRODUCTION

Optical activity, also known as optical rotatory power,
describes the rotation of the polarization direction as light
propagates through an optically active medium [1,2]. This
phenomenon arises from the different responses to left and
right circularly polarized light; the difference in absorption of
the two polarizations is referred to as circular dichroism [3].

Despite the broad application of circular dichroism in de-
tecting the chirality of molecules [4,5], the relevant research in
crystals is limited [6,7]. The quantum treatment of the optical
activity tensor is usually obtained from the charge-current
density response [1,8–10] with the light-matter interaction
included via the minimal-coupling Hamiltonian [9]. However,
this method can lead to “false divergences” when the set
of bands involved in the calculation is inevitably truncated
[11,12], and appropriate “sum rules” must be applied to show
that the prefactors multiplying the divergent terms in fact van-
ish. To avoid this difficulty in calculating the optical activity,
Mahon and Sipe [1] proposed a multipole moment expansion
method for optical conductivity, where the macroscopic fields
are introduced through the interactions with electric dipole,
magnetic dipole, and electric quadrupole moments associated
with Wannier functions at the lattice sites. Despite the link
this approach identifies with treating the optical response of
isolated molecules, the derivation is complicated and the treat-
ment is at present limited to undoped, topologically trivial
insulators.

Alternate derivations—particularly if they are simpler—
can often stimulate new research. Starting from a
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minimal-coupling Hamiltonian, in this paper we derive
the expressions for the optical activity from the linear
conductivity tensor at a finite light wave vector. We then
apply this method to study the optical activity of twisted
bilayer graphene (TBG) using a simple tight-binding model
[13–15] to describe its electronic states. The optical response
of TBG has been extensively studied [16–19], with the optical
activity of undoped TBG investigated both experimentally
[20] and theoretically [13]. In the undoped limit we find
agreement with the results of Mahon and Sipe [1], except
for an extra term that indeed seems to exhibit a “false
divergence”; however, while we cannot confirm analytically
that the prefactor of this term vanishes, we can verify that it
has a negligible value in our finite-band tight-binding model.
And our approach is more general than that of Mahon and
Sipe [1] in that it can be extended to doped systems; as
well, it does not explicitly involve Wannier functions and
the topological considerations necessary to construct them
as localized functions. With our results in hand, we explore
the dependence of the optical activity tensor on twist angle,
chemical potential, gate voltage, and location of rotation
center forming twisted bilayer graphene.

II. MODELS

A. Optical activity tensor

An optically active material has different responses to
left and right circularly polarized light, which are described
by its linear optical conductivity σ da(q, ω). For an elec-
tric field E(r, t ) = E(q, ω)ei(q·r−ωt ) + c.c., the induced optical
current is J(r, t ) = J(q, ω)ei(q·r−ωt ) + c.c. with Jd (q, ω) =
σ da(q, ω)Ea(q, ω). The Roman letters in the superscript de-
note Cartesian directions x/y/z, and the repeated superscripts
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are summed over. Without losing generality, considering an
incident light propagating along the z direction, the response
to the circularly polarized light can be written as [21]

Jδ1 (qẑ, ω) = σ δ1δ2 (qẑ, ω)E δ2 (qẑ, ω), (1)

where Jδ = (Jx + iδJy)/
√

2 with δ = ± gives the left
(+)/right (−) circular component of the current; a similar def-
inition applies to E δ . Then the diagonal response coefficients
are

σ δδ (qẑ, ω) = σ xx + σ yy − iδ(σ xy − σ yx )

2
. (2)

For nonzero σ xy − σ yx, the responses to the left and right
circularly polarized lights are not the same, and the circular
dichroism can be characterized by the ellipticity spectra � =
(α+ − α−)/[2(α+ + α−)], where αδ is the absorption of the δ

circularly polarized light [22]. For two-dimensional materials,
the absorption is proportional to Re[σ δδ], and we can get

� = Im[σ xy − σ yx]

2Re[σ xx + σ yy]
. (3)

The wave vector q appearing in the linear conductivity
σ da(q, ω) is very small compared to most electron wave vec-
tors, and up to the first order in q the conductivity can be
expanded as

σ da(q, ω) = σ da(ω) + Sdac(ω)qc + · · · , (4)

with σ da(ω) ≡ σ da(0, ω) giving the long-wavelength limit,
and

Sdac(ω) ≡ ∂σ da(q, ω)

∂qc

∣∣∣∣
q=0

. (5)

The latter arises from effects of magnetic dipole and electric
quadrupole, and modified electric dipole effects [21]. From
macroscopic optics, it gives the response of the current to the
spatial derivative of the electric field, including contributions
following from Faraday’s law.

For nonmagnetic materials, the conductivity tensor σ da(ω)
has either no off-diagonal components or equal off-diagonal
components σ da(ω) = σ ad (ω) [23], and the optical activity
mainly comes from the terms involving Sdac(ω), which is our
focus in this paper. Because Sdac(ω) is a third-order tensor,
it is nonzero only for crystals breaking inversion symmetry;
more specifically, the nonzero Im[σ xy − σ yx] indicates a chiral
structure.

B. A microscopic response theory for Sdac(ω)

For very weak electromagnetic fields, the Hamiltonian with
the inclusion of light-matter interaction is taken from the
minimal coupling as

Ĥ (t ) = Ĥ0 + −e

2
[v̂aAa(r, t ) + Aa(r, t )v̂a]

+ (−e)2

4
[M̂daAd (r, t )Aa(r, t )

+ Ad (r, t )Aa(r, t )M̂da] + · · · , (6)

with the electronic charge e, v̂a = [r̂a, Ĥ0]/(ih̄), and M̂da =
[r̂d , v̂a]/(ih̄). Here Ĥ0 is the crystal Hamiltonian without

external field, v̂a is the velocity operator, M̂da is an oper-
ator associated with the mass term, and Aa(r̂, t ) is the ath
component of the vector potential of the electromagnetic
field. The detailed explanation of this Hamiltonian is listed in
Appendix A. The field operator can be expanded as

�̂(r, t ) =
∑

n

∫
dkânk(t )φnk(r). (7)

Here φnk(r) = 1/
√

(2π )3eik·runk(r) are the band eigenstates of
Ĥ0 with band eigenenergies εnk and periodic functions unk(r),
and ânk(t ) is an annihilation operator of this state. The second
quantization form of the Hamiltonian Ĥ (t ) is

Ĥ (t ) =
∑

n

∫
BZ

dkεnkâ†
nkânk +

∫
dq

(2π )3
(−e)Aa

q(t )

×
∑
nm

∫
BZ

dkV (1);a
nk+q,mkâ†

nk+qâmk

+ 1

2

∫
dq1dq2

(2π )6
(−e)2Aa

q1
(t )Ab

q2
(t )

×
∑
nm

∫
BZ

dkV (2):ab
nk+q1+q2,mkâ†

nk+q1+q2
âmk. (8)

Here Aa
q(t ) = ∫

drAa(r, t )e−iq·r is the Fourier component of
the vector potential, and the matrix elements are given by

V (1);a
nk,mk1

= 1

2

∑
l

(
va

nlkUlk,mk1 + Unk,lk1v
a
lmk1

)
, (9)

V (2);ab
nk,mk1

= 1

2

∑
l

(
Mab

nlkUlk,mk1 + Unk,lk1 Mab
lmk1

)
, (10)

Unk,mk1 =
∫

uc

dr
�

u∗
nk(r)umk1 (r), (11)

where va
nmk and Mab

nmk are the matrix elements of single-
particle operators v̂a and M̂ab, respectively; � is the volume
of the unit cell. The current density operator is given as

Ĵa(q, t ) =
∫

drĴa(r, t )eiq·r = −
∫

dr
δĤ (t )

δAa(r, t )
eiq·r

= −(2π )3 δĤ (t )

δAa−q(t )
, (12)

and the conductivity can be obtained from the Kubo formula
as [24]

σ da(q, ω)

= −gs
|e|2
iω

∑
nm

∫
BZ

dk
(2π )3

V (1);d
mk,nk+qV

(1);a
nk+q,mk( fmk − fnk+q)

h̄ω − (εnk+q − εmk) + i0+

− gs
|e|2
iω

∑
n

∫
BZ

dk
(2π )3

V (2);da
nk,nk fnk, (13)

where the prefactor gs is the spin degeneracy and fmk =
[1 + e(εmk−μ)/kBT ]−1 gives the Fermi-Dirac distribution at the
state φmk(r) for a given temperature T and chemical poten-
tial μ. Furthermore, the optical activity tensor in Eq. (5)
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is obtained as

Sdac(ω) = −gs
|e|2
2iω

∑
nm

∫
BZ

dk
(2π )3

{
ivd

mnk{rc
k, v

a
k}nm − i{rc

k, v
d
k }mnv

a
nmk

h̄ω+ − h̄ωnmk
fmnk

+ vd
mnkv

a
nmk

h̄ω+ − h̄ωnmk

[
h̄(vc

nnk + vc
mmk) fmnk

h̄ω+ − h̄ωnmk
− ∂ ( fnk + fmk)

∂kc

]}
, (14)

with h̄ω+ = h̄ω + i0+, h̄ωnmk = εnk − εmk, and fnmk = fnk −
fmk. Here rnmk = (1 − δnm)i∇qUnk,mk+q|q=0 gives the off-
diagonal terms of the Berry connection, which can be further
calculated through rnmk = vnmk/(iωnmk). The detailed deriva-
tion is given in Appendix B.

C. Discussion of the expression Eq. (14)

When the light-matter interaction is described using the
vector potential, sum rules can be required to remove the
“false divergences” occurring at zero frequency [11,12]. To
address this, we first perform an analysis of the expression in
Eq. (14) for the behavior as ω → 0. Utilizing

1

ω+−ωnmk
= − 1

ωnmk
− ω+

(ωnmk)2
+ (ω+)2

(ωnmk)2(ω+−ωnmk)
,

(15a)

1

(ω+−ωnmk)2
= 1

ω2
nmk

+ 2ω+

(ωnmk)3
+ (3ωnmk − 2ω+)(ω+)2

(ωnmk)3(ω+−ωnmk)2
,

(15b)

the expression of Sdab(ω) is reorganized as

Sdac(ω) = Sdac
f (ω) + Sdac

−1

h̄ω
+ Sdac

0 + Sdac
r (ω). (16)

Here Sdac
f (ω) is the term involving derivatives of the popu-

lations; Sdac
−1 and Sdac

0 are independent of ω, and they come
from the first two terms of Eqs. (15), respectively; Sdac

r (ω)
collects all the remaining terms. Their expressions are given
in Appendix C.

For an insulator, the term Sdac
f (ω) vanishes, while Sdac

r (ω)
is at least proportional to ω, and is exactly the same as the
optical activity tensor derived by Mahon and Sipe [1]. The
term Sdac

0 vanishes for a system with time-reversal symmetry,
as we show in Appendix C. Thus for a topologically trivial
insulator the only difference between our result and that of
Mahon and Sipe [1] is the term involving Sdac

−1 . It leads to
an ω−1 dependence in the conductivity, and for a cold clean
insulator, a nonzero Sdac

−1 would lead to a divergent response
as ω → 0, which is unphysical, and thus a zero value of
Sdac

−1 is required in this case. Adopting a nonzero value for
Sdac

−1 would lead to a “false divergence” in the optical activity
tensor, similar to those that arise in calculations of the linear
susceptibility [11,12]; as is the situation there, the vanishing
of Sdac

−1 should be confirmed by the use of sum rules. Though
we have not found an analytic proof that Sdac

−1 vanishes, as it
must if our results are both to agree with Mahon and Sipe [1]
for a cold, clean, topologically trivial insulator, and indeed to
be physically meaningful for such a system as ω → 0, we do

numerically verify its value is negligible as long as a proper
model Hamiltonian is adopted, as shown in the next section.

Compared to the approach of Mahon and Sipe [1], ours has
several advantages: (1) Since it does not rely on a Wannier
function basis, and the topological considerations that must
be invoked to identify when localized Wannier functions can
be introduced, it should be free of any assumptions on the
topology of the band structure. (2) The contributions from free
carriers are included. (3) Even beyond the small wave vector
approximation—for example, when the material interacts with
confined light in nanostructures—our expression in Eq. (13)
can still be applied. For a model Hamiltonian composed of
finite numbers of bands, the correct use of this expression for a
numerical calculation requires the inclusion of all bands inside
the model Hamiltonian and the integration over the whole
Brillouin zone (BZ). Therefore, the direct application of the
ab initio calculation is not suitable, while the combination
with the Wannier90 package [25] could provide a finite-band
Hamiltonian.

III. RESULTS

We apply the theory developed above to commensurate
TBG, with the electronic states described by tight-binding
models, as listed in Appendix D. To use the expressions for a
two-dimensional structure, the integration

∫
BZ

dk
(2π )3 should be

replaced by
∫

BZ
dk

(2π )2 with a two-dimensional k. A TBG can be
identified by the quantities (m, n,�,Vg, δ): the integer pairs
(m, n) are utilized to indicate the supercell and the twist angle
θ [16,26]; � represents the on-site energy differences between
A and B sites which can be induced by asymmetric substrate
effects [27,28]; Vg describes the potential differences between
layers, which can be tuned by the gate voltage [29,30]; and
δ describes the position of the rotation center, either at one
carbon atom (for δ = 0) or at the center of one hexagon [for
δ = δc ≡ 2(a1 + a2)/3].

In this work, we are interested in the TBGs with in-
teger pairs (m, n) = (2, 1), (3,2), (4,3), (5,4), (6,5), (7,6),
which correspond to twist angles of 21.8◦, 13.2◦, 9.4◦, 7.3◦,
6.0◦, and 5.1◦, respectively. For numerically evaluating the
expressions in Eq. (14), the BZ is divided into a uniform
grid of 1000×1000 for (m, n) = (2, 1), (3,2), (4,3), (5,4) and
500×500 for (m, n) = (6, 5), (7,6), the temperature is taken
as zero, and to avoid the divergences all frequencies ω are
broadened as ω + iγ by a phenomenological parameter γ

with h̄γ = 10 meV, unless otherwise specified. The derivative
of the population is converted to

∂ fnk

∂ka
= −h̄va

nnk
∂ fnk

∂μ
, (17)
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TABLE I. Nonzero components of the optical activity tensor for different parameters [23].

TBG Parameters Point Group Nonzero Tensor Components

(m, n, 0, 0, 0) D3 xxx = −xyy = −yyx = −yxy, xyz = −yxz,
xzy = −yzx, zxy = −zyx

(m, n, 0,Vg, 0) C3 xxx = −xyy = −yyz = −yxy, xyz = −yxz,
xzy = −yzx, zxy = −zyx, xzx = yzy, xxz = yyz,
zxx = zyy, yyy = −yxx = −xxy = −xyx, zzz

(m, n, 0, 0, δc ) D6 xyz = −yxz, xzy = −yzx, zxy = −zyx
(m, n, 0,Vg, δc ) C6 xyz = −yxz, xzy = −yzx, zxy = −zyx,

xzx = yzy, xxz = yyz, zxx = zyy, zzz

and ∂ fnk/∂μ is numerically calculated by a difference be-
tween chemical potentials μ + δμ/2 and μ − δμ/2 with
δμ = 5 meV.

Before presenting numerical results, we perform a symme-
try analysis on the tensor components. The crystal symmetry
depends on the values of Vg and δ. For Vg = 0, the point group
is D6 for δ = δc and D3 for δ = 0, and they are reduced to C6

and C3 for nonzero Vg, respectively. The nonzero components
of the optical activity tensor are summarized in Table I, and
all cases include the tensor components xyz = −yxz, xzy =
−yzx, and zxy = −zyx. Considering the geometry discussed
in Sec. II A, we mainly focus on the component Sxyz.

A. Comparison with literature

We numerically validate the derived expression by com-
paring with two theories presented in the literature [1,13].
The first concerns the “sum rules” of Sdab

−1 = 0 in an undoped
topologically trivial insulator at zero temperature, which van-
ishes automatically for an insulator in the theory by Mahon
and Sipe [1]. To get a gapped system, we choose the parame-
ters as (m, n,�,Vg, δ) = (2, 1, 2 eV, 0, δc), which generates
a band gap of 0.77 eV. In Fig. 1(a), we show the spectra
of Sxyz obtained from our expressions and those from the
expression by Mahon and Sipe [1]. The excellent agree-
ment indicates the existence of the sum rule Sdab

−1 = 0. More

specifically, we find |Sxyz
−1 /σ0| ≈ 3.17×10−30 eV m with σ0 =

e2/4h̄. Note that such negligible values are obtained with all
bands in the model Hamiltonian and with the inclusion of
the whole BZ. When only half of the bands on both sides of
the Fermi level are used in the calculation, for example, we
obtain |Sxyz

−1 /σ0| ≈ 4.70×10−17 eV m. Similarly, it becomes
|Sxyz

−1 /σ0| ≈ 4.43×10−17 eV m, if the calculation is performed
for all bands but includes only k points satisfying that the
transition energies between the lowest conduction band and
the highest valence band are less than 2 eV. Over ten orders of
magnitude difference confirms that the calculation can only
be trusted with the inclusion of all bands and the integration
over the whole BZ, where the “sum rule” can be numerically
satisfied.

Then we compare the ellipticity spectra obtained from our
expressions with those of Morell et al., where a different
tight-binding model is used (also listed in Appendix D). As
shown in Fig. 1(b), the results from the two tight-binding
models are very similar with respect to the spectra shape,
except that the locations of the peaks and valleys for our model
are shifted to lower energies. These differences are induced
by the different intralayer hopping terms, where in Ref. [13]
only the nearest-neighbor coupling is considered. The two
band structures agree well at the low-energy region, and differ
significantly at the high-energy region, as shown in the inset of

FIG. 1. Comparisons between our theory and those in the literature. (a) The spectra of Sxyz using the method in Ref. [1] (black lines) and in
our work (red lines) for a (2, 1, 2 eV, 0, δc ) TBG. The solid (dashed) curves give the real (imaginary) parts. The insets are the band structure of
a gapped TBG. (b) The ellipticity spectra for a (2, 1, 0, 0, δc ) TBG using the Hamiltonian provided in Ref. [13] (black lines) and in our work
(red lines). The damping energy is adjusted to 25 meV for comparison. The inset gives the band structures for two different Hamiltonians.
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FIG. 2. The real (a) and imaginary (b) parts of Sxyz for twist angles 21.8◦, 13.2◦, 9.4◦, 7.3◦, 6.0◦, and 5.1◦. (c) Band structures for twist
angles 21.8◦, 13.2◦, and 9.4◦. Here the lower-energy and higher-energy transitions between different VHS points are denoted by the blue and
red arrows, respectively.

Fig. 1(b). In this work, we are interested in the optical activity
affected by the doped carriers mostly in the low-energy region
of the band structure, where both tight-binding models agree.

B. Twist angle dependence of Sdac

Figures 2(a) and 2(b) show the spectra of Sxyz for the
(m, n, 0, 0, δc) TBG at various (m, n) or twist angles with μ =
0 eV. The spectra for each twist angle consist mainly of two
peaks in different regions of photon energies: One is at low
photon energies—less than 3 eV (see the blue arrows)—which
moves to smaller photon energies for smaller twist angles;
the other is at the high-energy region around 4–5 eV (see the
red arrows), which changes little with twist angles. We find
both features are associated with the optical transitions around
Van Hove singularity (VHS) points. As shown in Fig. 2(c),
in TBG, there are two types of VHS: (1) The first is formed
by the intersection of the two Dirac cones of the upper and
lower graphene layer; it lies in the lowest conduction band and
highest valence band, and the transition energy decreases with
the decreasing twist angle [18] (see blue arrows). (2) The sec-
ond is inherited from the VHS of each monolayer graphene,
for which the energy changes little with twist angle (see red

arrows). Because our approach requires the inclusion of all
bands and the integration is over the whole BZ, the calculation
becomes extremely time consuming for small twist angles,
especially for the “magic angles”, due to the large number of
bands.

C. Chemical potential dependence of Sdac

Next, we discuss the spectra of Sdac for (2, 1, 0, 0, δc)
TBG at different chemical potentials μ = 0, 0.3, and 0.5 eV.
Figure 3 displays the spectra of the linear conductivity σ xx,
the optical activity Sxyz, and the ellipticity � at the photon
energies less than 2 eV, where the chemical potential has
significant effects. For undoped TBG, the real part of the
linear conductivity has a flat curve with values around 2σ0

[31] and the imaginary part is near zero. Due to the zero gap,
the real part of Sxyz is nearly proportional to the photon energy,
while the imaginary part shows a quadratic relation; these
tendencies are very similar to that of a gapped insulator with
the gap approaching zero. As the chemical potential increases
to 0.3 eV or 0.5 eV, there are free carriers and partially filled
bands, which lead to the appearance of the intraband transition
for states around the Fermi surface and the Pauli blocked
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FIG. 3. Spectra of (a) σ xx , (b) Sxyz, and (c) � for the (2, 1, 0, 0, δc ) TBG at different chemical potentials μ = 0, 0.3, and 0.5 eV. The solid
(dashed) curves give the real (imaginary) part. The inset in (b) indicates the position of chemical potentials in the band structure.

interband transition for states below the Fermi level. For the
conductivity σ xx, the intraband transition gives a Drude con-
tribution ∝ (ω + iγ )−1 at small photon energies, while for
optical activity Sxyz, the intraband transition lies in the term of
S f , and it can give a Drude-like contribution ∝ (ω + iγ )−2;
note that, due to free carriers, the term S−1 becomes nonzero
and contributes by (ω + iγ )−1. Therefore, for a finite chemi-
cal potential, both σ xx and Sxyz show behavior that would be
divergent for small photon energies. The interband transition
leads to an effective band gap Eg ≈ 2|μ|, which determines
the onset of the real part of σ xx and the imaginary part of Sxyz.
Similarly, the imaginary part of σ xx and the real part of Sxyz

show divergent peaks in their magnitudes as the photon energy
matches the effective gap. Despite the rich structure in the
spectra of σ xx and Sxyz, changing the chemical potential only
slightly changes the value of �, as shown in Fig. 3(c). For the
twist angles larger than the magic angles, the low-energy dis-
persion of TBG is mainly determined by a linear dispersion,
which is very similar to that of graphene but with a different
Fermi velocity. Considering a graphene monolayer, the optical
activity vanishes due to its center inversion symmetric lattice
structure. It can be expected that the optical activity of a TBG
at large twist angle should be small at low photon energies,
which is consistent with our results in Figs. 2(a) and 2(b),
where the ellipticity spectra of TBG at θ = 21.8◦ tend to zero
as the photon energy decreases to zero.

D. Gate voltage dependence of Sdac

We now turn to the effects of the gate voltage on the optical
activity. Figure 4 gives the spectra of linear conductivity σ xx,
optical activity Sxyz, and the related ellipticity spectra � of
(2, 1, 0,Vg, δc) TBG for different gate voltages Vg = 0, 0.3,
0.5 eV. Note that while the applied gate voltage lowers the
symmetry and leads to new nonzero components of the optical
activity tensor, we still focus on the component Sxyz here. The
gate voltage affects the band structure in two ways [29,30,32]:
one is to split the nearly degenerate Dirac cones at the Dirac
points by lifting the energy of one cone and lowering that of

the other, which is analogous to tuning the upper and lower
graphene layers with different chemical potentials, and the
other is to split both types of VHS points. Therefore, the real
part of linear conductivity shows a dip-peak curve at photon
energies around Vg, and its imaginary part shows a valley,
due to the inhibited interband transition at the lower-energy
region. Here the effects of the gate voltage on the linear
conductivity are similar to those of the chemical potential. As
for the optical activity, a dip-peak structure in the real part and
a valley in the imaginary part are observed. However, at the
higher-energy region, unlike the chemical potential, the gate
voltage significantly lowers the peak values of both the linear
conductivity and the optical activity. As shown in Fig. 4(d),
the gate voltage has significant effects on the ellipticity spec-
tra, where at the lower-energy part a peak appears at energy
around Vg, and at the higher-energy part the peak values are
reduced with the increasing Vg.

E. Rotation center dependence of Sdac

Here we consider how the rotation center affects the op-
tical activity tensor. Figure 5 gives the spectra of the three
nonzero tensor components for the (2, 1, 0, 0, δc) TBG and
(2, 1, 0, 0, 0) TBG. The results show minor differences. This
is very similar to the effect of the rotation center on the linear
conductivity [26], mostly because the rotation center modifies
the band structure very slightly. Although the symmetry anal-
ysis gives additional nonzero independent tensor components
for δ = 0, their values are about several orders of magnitude
smaller than other nonzero components.

IV. CONCLUSIONS

We have derived the optical activity tensor by describing
the light-matter interaction using the minimal-coupling
Hamiltonian. Considering the “false divergences” that can
arise in this framework, we found that the expression for
the prefactor that should vanish is numerically stable and
negligibly small if a finite-band model Hamiltonian is used
and the integration is extended over the whole Brillouin
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FIG. 4. The spectra of (a) σ xx , (b) real part of Sxyz, (c) imaginary part of Sxyz, and (d) � of the (2, 1, 0,Vg, δc ) TBG for different gate voltages
Vg = 0, 0.3, and 0.5 eV. Values at h̄ω < 1 eV of Sxyz and of � are zoomed in 100 and 300 times, respectively. The inset in (b) illustrates how
the gate voltage affects the band structure around the Dirac points.

FIG. 5. Spectra of optical activity tensors (a) Sxyz, (b) Sxzy, and (c) Szxy of TBG with rotation centers at the atom (red curves) and at the
center of the hexagon (black curves).
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zone. Our expressions are valid for doped systems as well
as topological nontrivial materials. We then applied the
expressions to a twisted bilayer graphene and studied the
effects of the twist angle, chemical potential, gate voltage,
and rotation center. The doping can cause a Drude-like
contribution to the optical activity tensor for small photon
energies, the imaginary parts of the tensor components show
onset from the interband transition around the chemical
potential induced gap, and the real parts exhibit peaks at the
same frequencies. The chemical potential affects the optical
activity at very high energies. The gate voltage can modify
the band structure at either low or high photon energies, and
correspondingly affects the optical activity significantly. We
find that the optical activity of twisted bilayer graphene is
weakly affected by the rotation center.

Our theory provides a very preliminary study using the
minimal-coupling Hamiltonian in the single-particle approx-
imation. Considering that the excitonic effects are very
important for the optical response of two-dimensional mate-
rials, it is necessary to extend the theory to include excitonic
effects as well as local field corrections [10].
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APPENDIX A: FORM OF EQ. (6)

We briefly explain how to obtain the Hamiltonian in
Eq. (6). For an unperturbed Hamiltonian Ĥ0(r, p), which
could be used to describe the system with a static magnetic
field as well, the interaction between the electrons and the
light is introduced by minimal coupling to a time-dependent
vector potential A(r, t ) = ∫ dq

(2π )3 Aq(t )eiq·r as the Hamiltonian

Ĥ0(r, p − eA(r, t )). After expanding it in terms of Aq(t ), we
formally get

Ĥ0(r, p − eA(r, t ))

= Ĥ0(r, p) + (−e)
∫

dq
(2π )3

V̂ (1);a
q (r, p)Aa

q(t )

+ (−e)2

2

∫
dq

(2π )3
V̂ (2);ab

q1+q2
(r, p)Aa

q1
(t )Ab

q2
(t ) + · · · .

(A1)

For a standard local Hamiltonian Ĥ0(r, p) = p2

2m0
+ V (r), the

expressions of V̂ (1) and V̂ (2) are

V̂ (1);a
q (r, p) = 1

2

(
p̂

m0
eiq·r + eiq·r p̂

m0

)
, (A2)

V̂ (2);ab
q (r, p) = δab

1

m0
eiq·r, (A3)

respectively. However, in many effective models or ab initio
calculations, Ĥ0(r, p) includes the contributions from non-
local potentials, or perhaps even only its matrix elements
between tight-binding basis functions are specified. In such
situations, the explicit form of the light-matter interaction
term is not very straightforward. To obtain a Hamiltonian that
is appropriate for our calculations, and especially to eliminate
in practice the “false divergences” that can plague minimal-
coupling calculations, we find it is necessary to choose the
expansion coefficients so that gauge invariance is satisfied, at
least up to the linear order of light wave vector q. For a gauge
transformation

A(r, t ) → A(r, t ) + ∇g(r, t ), (A4a)

φ(r, t ) → φ(r, t ) − ∂g(r, t )

∂t
, (A4b)

where φ(r, t ) is the scalar potential and g(r) = gqeiq·r + c.c.
implements the gauge transformation, we require that the form
(A1) of the coupling be the same whether the new or old
potentials are employed. Using

Ĥ0(r, p − eA(r, t ) − e∇g(r))

= ei e
h̄ g(r)Ĥ0(r, p − eA(r, t ))e−i e

h̄ g(r), (A5)

and employing a perturbative expansion of the right-hand side
with respect to the orders of gq, gauge invariance requires that

iqaV̂ (1);a
q (r, p) = 1

ih̄
[eiq·r, Ĥ0(r, p)], (A6)

iqa
1V̂

(2);ab
q1+q2

(r, p) = 1

ih̄
[eiq1·r,V (1);b

q2
(r, p)]. (A7)

It can be verified that the expressions

V̂ (1);a
q (r, p) = 1

2 [v̂a(r, p)eiq·r + eiq·rv̂a(r, p)], (A8)

V̂ (2);ab
q (r, p) = 1

2 [M̂ab(r, p)eiq·r + eiq·rM̂ab(r, p)] (A9)

satisfy the conditions in Eqs. (A6), (A7) up to the first order
in q. Substituting V̂ (1) and V̂ (2) in Eqs. (A8), (A9) back to
Eq. (A1), we get Eq. (6).

APPENDIX B: DERIVATION OF EQ. (14)

For the conductivity in Eq. (13), only the first term at the
right-hand side includes q. Using the Berry connection

ξmnk = i∇qUmk,nk+q|q=0, (B1)
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and

∂

∂qc
V (1);d

mk,nk+q

∣∣∣∣
q=0

= 1

2

∂va
mnk

∂kc
+ i

2

∑
l

[
va

mlkrc
lmk + rc

nlkv
a
lmk

] + i

2

(
ξ c

nnk + ξ c
mmk

)
va

mnk

= 1

2

∂va
mnk

∂kc
+ i

2

{
rc

k, v
a
k

}
mn + i

2

(
ξ c

nnk + ξ c
mmk

)
va

mnk, (B2)

where the off-diagonal terms of ξnmk are noted as rnmk, we get

∂

∂qc

[
V (1);d

mk,nk+qV
(1);a
nk+q,mk

]∣∣∣∣
q=0

= 1

2

∂
(
vd

mnkv
a
nmk

)
∂kc

+ i

2
vd

mnk

{
rc

k, v
a
k

}
nm − i

2

{
rc

k, v
d
k

}
mnv

a
nmk, (B3)

with the notation {rc
k, v

a
k}nm = ∑

l (r
c
nlkv

a
lmk + va

nlkrc
lmk).

In calculating Sdac, the first term in Eq. (B3) appears as

∝
∫

BZ

dk
(2π )3

∂ (vd
mnkv

a
nmk )

∂kc fmnk

h̄ω+ − h̄ωnmk
= −

∫
BZ

dk
(2π )3

(
vd

mnkv
a
nmk

) ∂

∂kc

fmnk

h̄ω+ − h̄ωnmk
. (B4)

Using all these expressions, we find Eq. (14).

APPENDIX C: EXPRESSIONS OF Sf , S−1, S0, AND Sr

Substituting Eqs. (15) into Eq. (14), we can directly get

Sdac
f (ω) = gs

|e|2
2iω

∑
nm

∫
BZ

dk
(2π )3

vd
mnkv

a
nmk

h̄ω+ − h̄ωnmk

∂ ( fnk + fmk)

∂kc
,

(C1a)

Sdac
−1 = −gs

|e|2
2ih̄

∑
nm

∫
BZ

dk
(2π )3

[
rd

mnkra
nmk

(
vc

nnk + vc
mmk

)
− (

rd
mnk

{
rc

k, v
a
k

}
nm

+ {
rc

k, v
d
k

}
mn

ra
nmk

)]
fmnk, (C1b)

Sdac
0 = −gs

|e|2
2ih̄

∑
nm

∫
BZ

dk
(2π )3

[
2rd

mnkra
nmk

(
vc

nnk + vc
mmk

)

− (
rd

mnk

{
rc

k, v
a
k

}
nm + {

rc
k, v

d
k

}
mnra

nmk

)] fmnk

ωnmk
, (C1c)

and

Sdac
r (ω) = gs

e2h̄ω

2i

∫
BZ

dk
(2π )3

∑
mn

X dac
mnk(ω) fnmk

h̄ωmnk(h̄ωmnk − h̄ω+)
,

(C1d)

with

X dac
mnk = rd

nmk

{
va

k, rc
k

}
mn + ra

mnk

{
vd

k , rc
k

}
nm

− (
vc

mmk + vc
nnk

)
rd

nmkra
mnk

3h̄ωmnk − 2h̄ω

h̄ωmnk − h̄ω+ . (C2)

When simplifying the results of Mahon and Sipe [1], we
can find that all diagonal terms ξnnk are canceled out, and
only the off-diagonal terms rnmk remain. The final simplified
expression is found to be the same as Sdac

r (ω) after combining
different terms and alternatively using the relation between
rnmk and vnmk.

For crystals with time-reversal symmetry, the matrix ele-
ments satisfy [33]

rnm(−k) = rmnk, vnm(−k) = −vmnk. (C3)

Using this relation, one can show Sdac
0 = 0.

APPENDIX D: TIGHT-BINDING MODEL FOR TWISTED
BILAYER GRAPHENE

The tight-binding Hamiltonian of a commensurate TBG
is adopted from the work by Moon and Koshino [26], and
slightly modified with the inclusion of the nonequivalent A
and B on-site energies. The Hamiltonian used here is different
from that used by Morell et al. [13], and the details are listed
below briefly.

Starting from an AA-stacked bilayer graphene, the TBG is
constructed by rotating the upper and lower layers by θ/2 and
−θ/2, respectively, and then translating the layer 2 relative to
the layer 1 by an in-plane vector δ. Here δ = 0 and δ = 2(a1 +
a2)/3 represent the rotation center at the atom and at the center
of hexagon, and correspond to the D3 and D6 point group, re-
spectively. Taking the lattice vectors of the unrotated graphene
as a1 = a(

√
3/2,−1/2) and a2 = a(

√
3/2, 1/2) with the lat-

tice constant a ≈ 2.46 Å, the supercell of the commensurate
TBG can be described by two integer numbers (m, n) as

A1 = ma(ν)
1 + na(ν)

2 , (D1a)

A2 = R(π/3)A1, (D1b)

where a(ν)
j is the rotated lattice vector in the ν = ± layer. The

corresponding twist angle θ is calculated through

cos θ = m2 + n2 + 4mn

2(m2 + n2 + mn)
. (D2)

Therefore, the tight-binding Hamiltonian is given by

Ĥ0 = −
∑

i j

[
t (Ri − R j ) + δi j

(
si

�

2
+ νi

Vg

2

)]
b̂†

i b̂ j . (D3)

Here Ri = nia
(νi )
1 + mia

(νi )
2 + τ (νi )

αi
+ d (νi ) indicates the atom

position with an abbreviated index i = (nimiαiνi ), where τ (νi )
αi

is the bias of the αi = A, B atom in the unit cell and d (νi ) is the
z position of the νi layer; |Ri〉 indicates the 2pz orbital at the
site Ri; � is the on-site energy with si = 1 for αi = A and −1
for αi = B; and Vg gives the layer potential (in experiments,
values of Vg in TBG were measured to be up to 1 eV, equating
to an electric field of roughly 3 V/nm [30,34]). The hopping
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term in the work by Moon and Koshino [26] is given by

−t (d ) = V 0
ppπ exp

(
−d − ab

δ0

)
·
[

1 −
(

d · ez

d

)2]

+ V 0
ppσ exp

(
−d − d0

δ0

)
·
(

d · ez

d

)2

, (D4)

with V 0
ppπ ≈ −2.7 eV, V 0

ppσ ≈ 0.48 eV, a0 = a/
√

3 ≈ 1.42
Å, d ≈ 3.35 Å, and δ0 = 0.184a ≈ 0.45 Å. In contrast, the
hopping term in the work by Morell et al. [13] is written as

−t (d ) = γ
∑
i, j

exp [−β(|d| − d )], (D5)

with γ = −0.39 eV and β = 3. The position operator r̂ is

r̂ =
∑

i

Rib̂
†
i b̂i. (D6)

The velocity operator v̂ is then

v̂ = 1

ih̄
[r̂, Ĥ0]. (D7)

Each supercell of TBG contains N = 4(n2 + m2 + nm)
carbon atoms, which can be identified by biases t l with an in-
dex l = 1, 2, . . . , N . By matching Ri = piA1 + qiA2 + t li , the
bias t li can be obtained and the abbreviated index i also stands

for integers (piqili ). After performing the transformation

b̂pql =
√

�

(2π )2

∫
dkeik·(pA1+qA2 )ĉlk, (D8)

the Hamiltonian becomes

Ĥ0 =
∑
l1l2

∫
dkH0

l1l2kĉ†
l1kĉl2k, (D9)

with

H0
l1l2k =

∑
pq

e−ik·(pA1+qA2 )t (Rpql1 − R00l2 )

+ δl1,l2

[
s(00l1 ) �

2
+ ν (00l1 ) Vg

2

]
. (D10)

It can be diagonalized into

Ĥ0 =
∑

s

∫
dkεskâ†

skâsk, (D11)

through the transformation

ĉlk =
∑

s

Csk;l âsk, (D12)

where the wave functions Csk;l satisfy the eigenequations∑
l2

Hl1l2kCsk;l2 = εskCsk;l1 , (D13)

with the band index s and eigenenergy εsk. Similar transfor-
mation gives the velocity operator as

v̂ =
∫

dk
∑
s1s2

vs1s2kâ†
s1kâs2k. (D14)
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