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Abstract: The thermal design parameters of space telescopes are mainly optimized through traversal
and iterative attempts. These optimization techniques are time consuming, rely heavily on the
experience of the engineer, bear a large computational workload, and have difficulty in achieving
optimal outcomes. In this paper, we propose a design method (called SMPO) based on an improved
back-propagation neural network (called GAALBP) that builds a surrogate model and uses a genetic
algorithm to optimize the model parameters. The surrogate model of a space telescope that measures
the atmospheric density is established using GAALBP and then compared with surrogate models
established using a traditional BP neural network and radial-basis-function neural network. The
results show that the regression rate of the surrogate model based on the GAALBP reaches 99.99%,
a mean square error of less than 2 × 10−6, and a maximum absolute error of less than 4 × 10−3.
The thermal design parameters of the surrogate model are optimized using a genetic algorithm,
and the optimization results are verified in a finite element simulation. Compared with the design
results of the manually determined thermal design parameters, the maximum temperature of the
CMOS is reduced by 5.33 ◦C, the minimum temperature is increased by 0.39 ◦C, and the temperature
fluctuation is reduced by a factor of 4. Additionally, SMPO displays versatility and can be used in
various complex engineering applications to provide guidance for the better selection of appropriate
parameters and optimization.

Keywords: spacecraft thermal design; BP neural network; optimization; surrogate-model

1. Introduction

Space telescopes are developing toward deep space exploration and maneuver to
change orbit, with increasing demands on imaging quality, however, they experience
changing and complex thermal environments [1,2]. The temperature of a telescope directly
affects its imaging quality, and a reliable thermal design remains the basis for ensuring
the stable operation of the telescope [3]. The thermal design of telescopes involves the
iterative optimization of a large number of parameter combinations, which currently relies
on the design experience of engineers and involves a process of repeated attempts. The
process is time consuming and it is difficult to find an optimal solution. The development of
methods that allow the rapid optimization of the thermal design parameters of telescopes
has become an important issue [4], and techniques of parameter optimization have thus
received much attention in recent years.

Scholars have investigated the parameter optimization of space telescopes, but there
have been few studies on the optimization of the thermal design parameters of space
telescopes. As examples, del Rio et al. [5] optimized the design parameters of X-ray
mirrors using a genetic algorithm (GA) and Zhang et al. [6] used the inverse of the effective
temperature of a star for a given flux density obtained using a stochastic particle swarm
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optimization algorithm and angular parameters, and solved the problem where the band-
pass density of the detector is determined and fixed during the operational phase. Popular
parametric optimization methods such as particle swarm algorithms [7,8] and genetic
algorithms [9,10] reveal a better optimization speed and performance than the iterative
trial-and-error approach that relies on the engineer. Among these methods, a GA as a
global optimization probabilistic algorithm is employed to find an optimal value on the
basis of superiority and inferiority and adapts to arbitrary forms of objective functions and
constraints. Therefore, GA shows great potential and advantages in the design of thermal
parameters of future complex space telescopes. However, these optimization algorithms are
combined with traditional physical models to conduct finite element iterative calculations
after selecting parameter combinations, which is a time-consuming process of solving
partial differential equations that greatly reduces the speed of parameter optimization. The
technique of using a surrogate model has attracted attention in recent years for its ability to
accelerate the parameter optimization iterations and ensure the accuracy of design at the
same time.

A surrogate model [11–13] is commonly used for optimization in engineering problems.
When the actual problem (involving a high-precision model) is computationally intensive
and difficult to solve, a simplified model that is less computationally intensive and fast to
solve can be used in place of the original model to accelerate optimization. The surrogate
models most commonly used are those of the kriging method [13], polynomial response
surface method [14], and artificial neural network [15], which have various industrial
applications, including the thermal design of spacecraft. A back-propagation (BP) neural
network [16,17] is a multilayer feedforward network that can express almost any nonlinear
system and is widely used in various fields owing to its excellent fitting ability. As examples,
Cui et al. [18] established a three-component proxy ignition delay prediction model based
on a BP neural network, which had a computational speed that was nearly 9 times that of
the traditional ignition delay calculation, and Zhao et al. [19] proposed a surrogate model
for computational fluid dynamics simulation based on a GA–BP neural network to predict
the concentration of aerosols after diffusion, which solved the problem of the simulation not
being achieved in real time when predicting the concentration of diffused gas. Although
the BP neural network has a good fitting effect, the setting of the network hyperparameters
significantly affects the fitting efficiency and accuracy of the network. The learning rate,
initial weights, and thresholds are the parameters that most affect the network performance.
The learning rate of the traditional BP network is fixed, regardless of the magnitude of
error, always with a fixed learning rate to adjust the weights, etc. If the learning rate is too
high, it may not be possible to directly cross the global optimum resulting in a failure to
converge. If the learning rate is too low, the loss function changes slowly, there is a large
increase in the convergence complexity of the network, and the process is easily trapped
in local extremes. In addition, the neural network requires constant iterative updating of
weights and thresholds during the computation to perform well [20,21]. The initialization
of weights and thresholds of traditional BP networks is randomly generated, and during
the training process, phenomena such as gradient disappearance and gradient explosion
are often encountered. Therefore, proper initialization of the weights can effectively avoid
these two issues and improve the model performance and convergence speed.

On the basis of the above analysis, this paper proposes a design method (called
SMPO) that uses an improved BP neural network (called GAALBP) to establish a telescope
surrogate model and optimizes the model parameters using a GA to optimize the thermal
design of a telescope. GAALBP employs a GA to optimize the initial network weights and
thresholds, and the learning rate adaptively changes with the error during the training,
allowing for the training of a better surrogate model and providing a physical basis for
subsequent parameter optimization. The remainder of this paper is organized as follows:
Section 2 details the proposed design methodology of SMPO. Section 3 describes the
application of SMPO to the parameter optimization of the thermal design parameters for a
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space telescope and compares the results with those obtained using the traditional method
of manual parameter optimization. Section 4 presents the conclusions of the study.

2. Methodology of SMPO

The methodology of SMPO involves building a surrogate model using GAALBP and
using a GA to find the best parameters, as shown in Figure 1.
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Part I: GAALBP network training
This paper proposes an improved BP neural network. The improved network uses a

GA to optimize the initial weights and thresholds of the network, the best individuals in the
population are selected in a winner-takes-all manner [22], and the coding information of
the best individuals is used for the initial weights and thresholds of the network. Therefore,
before the training of the network, the GA coding length and fitness value need to be
calculated and data preprocessing conducted. The calculations are as follows:

(1) Calculation of the encoding length. The length S of the GA encoding is derived
from the network topology determined by the feature dimensions of the input and output
and the numbers of layers and nodes of the hidden layer. The calculation is

S = (nin + 1)× n1 +

(
N−1

∑
i=1

((ni + 1)× ni+1)

)
+ (nN + 1)× nout (1)

where nin is the number of neurons in the input layer, N is the number of layers in the
hidden layer, ni is the number of neurons in the hidden layer (i = 1, 2, . . . , N), and nout is
the number of neurons in the output layer.

(2) Calculation of the fitness value. In the training phase of the network, the mean
square deviation of the predicted values fitted to the network from the true values is taken
as the fitness value of the GA. The maximum fitness value is zero when Treal and Tpre are
equal. The calculation is

f itness = −

N
∑

i=1

∣∣Treali − Tprei
∣∣

N
(2)

where Tprei is the predicted temperature, Treali is the true temperature, and N is the number
of test samples.
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(3) Data preprocessing. The input data are normalized to eliminate the effect of
variables of different orders of magnitude on the network training. Here, the optimal
normalization method [23] is used to map the data to the range [−1, 1]. The calculation is

y =
2 × (x − xmin)

xmax − xmin
− 1 (3)

where xmin is the minimum value for the same dimension, and xmax is the maximum value
for the same dimension.

The optimized weights and thresholds are assigned to the BP network, and the input
data are used to train the network. During the training process, the learning rate changes
adaptively with the relative change in the error, bearing the aim of keeping the learning
stable while maintaining the largest possible learning step. If the error increases, a smaller
learning rate is used in continuously searching for the direction of the gradient descent,
and if the error increases by more than a certain percentage, the weights and thresholds of
the previous round are discarded and the learning rate is reduced. This process improves
the learning rate, however, when the learning rate is too high and the error reduction is not
guaranteed, the learning rate is reduced until stable learning is restored. The improved BP
network compensates for drawbacks such as the fixed learning rate of the BP network and
can be trained to obtain a better surrogate model. The rule for correcting the learning rate
with error is determined by manual debugging, and the method of adaptively adjusting
the learning rate is shown in Figure 2. If the error in the current round increases by more
than a factor of 1.04 relative to that in the previous round, the weights and thresholds of
the current round are discarded, and the weights and thresholds in the next round are
calculated using the values of the previous round, and the learning rate is reduced by a
factor of 0.7. If the error in the current round is higher than that in the previous round but
by less than a factor of 1.04, then the current weights, thresholds, and learning rate are
retained. If the error continues to decrease, the learning rate is increased by a factor of 1.05.
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In Figure 2, n.error is the error in round n, (n − 1).error is the error in round (n − 1);
n.w and n.b are, respectively, the weight and threshold in round n; (n + 1).w and (n + 1).b
are, respectively, the weight and threshold in round (n + 1); and ∆w, ∆b is the variation
calculated from the error using the gradient descent method.

Part II: GA parameter optimization
The GA is used to find the output extrema of the established surrogate model and the

optimal solution corresponding to the extrema.
The GA initializes the generated population in the given parameter ranges. By setting

the target output value, in the stage of seeking the extreme value, the difference between the
target value and the actual output value is found and the negative of its absolute value is
used as the fitness value fit of the GA, and the optimal solution is obtained by selecting the
optimal individuals through crossover and mutation operations. Finally, the optimization
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result is substituted into the high-precision finite element model to verify whether the
output satisfies the demand, and if not, the number of population individuals are increased
iteratively until the target is met. The fitness value fit is calculated as

f it = −
∣∣Treal − Tpre

∣∣ (4)

where Tpre is the predicted temperature and Treal the true temperature.

3. Example Applications and Results

To verify its performance, SMPO is applied in the optimization of the thermal design
parameters of an atmospheric density measurement space telescope (called the ADST),
which was designed and manufactured in China, and the optimized parameters are substi-
tuted into high-precision finite element software for verification. A comparison is made
with the results of the current conventional method of relying on an engineer’s experience
to optimize the design using the solving of partial differential equations, and the superiority
of the optimization framework is thus verified.

3.1. Background of the ADST

The atmospheric density measurement space telescope (ADST) is tasked with mon-
itoring the density of the stratospheric atmosphere at an orbital height of 280 km and
an orbital inclination of 90◦. The ADST primarily includes a main frame, filter wheel
assembly, mirror barrel, and detector-focal-plane assembly (including a complementary
metal–oxide–semiconductor (CMOS) detector and CMOS board and two circuit boards
with field-programmable gate arrays). The thermophysical finite element model of the
ADST was developed using a nodal network [24] as shown in Figure 3. The internal heat
source mainly reflects the heat generation of the CMOS of the ADST. The CMOS works
intermittently (twice per track) with a power consumption of 1 W and has a preparation
time less than 10 min and working time of less than 5 min. The heat consumption of the
internal heat source is the same for the preparation state and working state. High- and
low-temperature conditions and thermal control indicators are defined in Tables 1 and 2.
The ADST telescope is installed inside the module, and only the light inlet is in contact with
the space environment. The heat generated by the internal consumption of the ADST is not
directly exchanged with the external environment, and the CMOS is extremely sensitive to
temperature fluctuations. In this paper, SMPO is applied to optimize the thermal design
parameters of the ADST telescope and thus control the temperature of the ADST.

Table 1. Definitions of high- and low-temperature cases for the ADST.

Cases Definition of Cases

High Case
ADST initial temperature 28 ◦C; due to the variable interval, the high case

is analyzed according to 2 times continuous working, i.e., 30 min
continuous working.

Low Case
ADST initial temperature 10 ◦C; internal heat source does not work;

platform temperature control circuit works for a long time, other thermal
control works 2 times per track, single work for 15 min, interval 30 min.

Table 2. Thermal control index of the ADST.

Index
Low Case High Case

CMOS >10 ◦C ≤40 ◦C (Fluctuations < 10 ◦C)
Main frame >10 ◦C ≤35 ◦C
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Figure 3. Finite element model of the ADST.

The CMOS works intermittently inside the cabin, and the heat generated by internal
consumption is not exchanged directly with the external environment. After the preliminary
thermal design, it was proposed to install the ADST adiabatically with its surrounding
components. The surface of the ADST is blackened to reduce the effect of the cabin
environment and other components on the temperature of the ADST. The heat generated
by the CMOS is then transferred to the main frame through heat conduction and other
means to achieve its temperature control. The heat transfer path of the CMOS is shown
in Figure 4. The present paper takes the temperature of the ADST as the optimization
target and selects 11 main thermal design parameters of the heat dissipation path as the
parameters to be optimized, as shown in Table 3. The proposed SMPO is then used to
control the temperature of the ADST.

Table 3. Parameters to be optimized.

Parameter Detail Unit Minimum Value Maximum Value

Thermal resistance R1 CMOS- Heat conductive block ◦C/W 1 8

R2 Heat conductive block
-Copper1

◦C/W 0 0.8

R3 Copper1-Copper2 ◦C/W 0.2 4
R4 Copper2- Main frame ◦C/W 0.4 5
R5 CMOS- Installation plate ◦C/W 10 160

Thickness T6 Heat conductive block mm 3 12
T7 Copper mm 1 6
T8 Main frame mm 3 20
T9 Installation plate mm 0.6 8

Thermal
conductivity K10 Heat conductive block W/(m·K) 100 300

K11 Copper W/(m·K) 200 400
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Figure 4. CMOS heat transfer path.

3.2. Application of SMPO

Before being imported into the surrogate model for training, the data need to be
normalized to eliminate the effects of variables of different orders of magnitude on the
training results. The present paper adopts most-valued normalization to map the original
data to the range of [−1, 1] according to Equation (2). The data distributions before and after
the normalization are shown in Figure 5. It is observed that the normalized data distribution
is more concentrated and contains a smaller difference between the variables, which are
conducive to accelerating the convergence of the update of the network training weights.
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Figure 5. Comparison of the distribution of data before and after normalization ((a). Data before
normalization; (b). Data after normalization).

The normalized data are imported into the GAALBP network, with 90% of the data
used for training and 10% for testing. Eleven parameters are optimized as inputs and
the predicted temperature of the CMOS is taken as the output. Hyperparameters of the
network are set as presented in Table 4. Hyperparameters are mainly divided into GAALBP
network hyperparameters and hyperparameters of the GA that optimize the initialization
weights and thresholds of the network. The training process and results are shown in
Figures 6 and 7, where it is seen that, the network training regression rate reaches 0.9999
and the maximum prediction error (the difference between the predicted value and true
value) of the network is less than 4 × 10−3. The adaptive learning rate during training is
shown in Figure 8. At the beginning of training, the learning rate continually increases,
indicating that the error is gradually decreasing. In the later stages of training, the learning
rate fluctuates around a value of 0.2, indicating that the training error has increased.
However, the learning rate displays an overall decreasing trend, indicating that the training
error decreases. The training effects of the adaptive learning rate and the improved BP
network are compared for constant learning rates of 0.01, 0.1, 0.2, and 0.3, as shown in
Figure 9. The test error for the adaptive learning rate is two orders of magnitude smaller
than the test errors for the constant learning rates when the hyperparameters are the same,
demonstrating the superiority of the adaptive learning rate.
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Table 4. Network hyperparameter settings.

Hyperparameter Detail Value

1 nin Number of neurons in the input layer of the network 11
2 nout Number of neurons in the output layer of the network 1
3 lrBase Network initial learning rate 0.01
4 lrInc Learning Rate Growth Rate 1.04
5 lrDec Learning rate decline rate 0.7
6 epochs Maximum rounds 1000
7 popSize GA population size 50
8 maxTerm Maximum iterations of GA 100
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Figure 9. Training error for different learning rates.

The quality of the surrogate model directly determines how well the parameters are
optimized in the subsequent step. Comparisons are made with the traditional BP network,
GA-optimized BP (GABP) network, and radial basis function neural network [25] to verify the
superiority of GAALBP. The training results are presented in Table 5 and Figure 10. The GABP
network is a BP network with a GA-optimized constant learning rate; i.e., the only difference
between the GABP and GAALBP is the difference in the learning rate variation. It is seen that
the training error of GAALBP is 1% of that of the traditional BP network and 40% that of the
GABP network whereas the mean square error of GAALBP is smaller than the mean square
errors of the other networks. The results thus demonstrate the superiority of GAALBP.

Table 5. Comparison of prediction errors of different networks.

BP RBF GABP GAALBP

Regression rate 0.89955 0.9693 0.9824 0.9999
MSE Error 0.065456 1.224 × 10−4 2.5496 × 10−6 1.9451 × 10−6

Maximum Error 0.4 0.25 0.01 4 × 10−3
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After establishing the surrogate model, the GA is used to optimize the input of the
surrogate model to meet the thermal control index of the CMOS. The negative of the
absolute value of the difference between the target temperature and predicted temperature
is taken as the fitness value of GA training:

f it = −
∣∣∣Tgoal − Tpre

∣∣∣ (5)

where Tgoal is the target temperature and Tpre is the predicted temperature. A larger fitness
value means that the predicted temperature is closer to the target temperature, meaning
that the parameter optimization is better.

The GA hyperparameters are set as given in Table 6. The coding length of genetic
individuals is equal to the number of parameters to be optimized (i.e., 11), and each
individual coding contains all the information of the parameters to be optimized. The
size of the initialized population is 100. The individuals are input to the surrogate model
to calculate the fitness value, and the poorly adapted individuals are eliminated in the
manner of survival of the fittest. Meanwhile, the highly adapted individuals are crossed
and mutated to produce new individuals. New rounds of iterations are performed until
the best adapted individuals in the population are selected.

Table 6. GA hyperparameter settings.

Hyperparameters Detail Value

1 PopSize Population size 100
2 MaxTerm Maximum iterations 100
3 Method of Mutation mutation boundaryMutation
4 Method of Select Select normGeomSelect
5 Method of Crossover Crossover heuristicXover

One-hundred iterations are performed. The iterative process is presented in Table 7.
The algorithm selects the best individual as having a fitness value of −0.0002, indicating
that the difference between the temperature of the optimized CMOS and the CMOS index
is not greater than 0.0002.
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Table 7. GA iterative process.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 Fitness

1 7.2 0.620 3.175 1.72 40.39 5.910 5.61 19.3 5.08 223.8 341 −9.284
2 2.5 0.143 2.805 1.63 42.44 3.997 2.63 5.59 6.69 133.0 235 −4.404
3 1.5 0.087 1.971 3.13 156.4 6.376 5.02 5.59 6.59 265.2 371 −7.119
4 4.3 0.724 1.189 2.58 98.98 5.969 3.69 5.64 6.53 231.1 381 −11.055
5 6.8 0.701 2.363 2.09 55.66 6.078 3.31 4.52 5.84 209.2 392 −2.1866

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
99 2.5 0.214 1.178 1.47 40.68 6.065 3.01 11.99 1.81 129.2 304 −0.0002

100 2.5 0.214 1.178 1.47 40.68 6.065 3.01 11.99 1.81 129.2 304 −0.0002

To verify the optimized results, the parameters optimized by the GA are substituted
into software for Monte Carlo simulation using the finite element method for thermal
design, and the optimized results are verified for the high- and low-temperature cases of
the telescope. The verification results are presented in Figures 11–13. Figure 11a shows the
temperature cloud of the CMOS heat dissipation component in the low-temperature case
whereas Figure 11b shows the temperature cloud of the CMOS itself in the low-temperature
case. Figure 12a shows the temperature cloud of the CMOS heat dissipation component
in the high-temperature case whereas Figure 12b shows the temperature cloud of the
CMOS itself in the high-temperature case. Figure 13 shows the temperature fluctuation
of the CMOS itself in the high- and low-temperature cases. The figures reveal that in the
low-temperature case, as the internal heat source essentially fails to work and the CMOS
package in the cabin is less affected by external heat flow, the overall minimum temperature
of the CMOS components exceeds 10 ◦C, the maximum temperature is less than 13.9 ◦C,
the temperature of the CMOS itself is stable at 12.82 ◦C, and the temperature uniformity is
within 0.01 ◦C. In the high-temperature case, the internal heat source works intermittently,
the overall temperature uniformity of the CMOS components is within 0.93 ◦C, the mini-
mum temperature of the CMOS itself is 31.10 ◦C, the maximum temperature is 32.69 ◦C,
and the maximum temperature fluctuation is less than 1.6 ◦C, which meets the demands of
the CMOS thermal control index.
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3.3. Results

The optimization results of SMPO are compared with the results of the manual opti-
mization of CMOS thermal parameters by engineers as presently performed in industry
to verify the performance of SMPO. Additionally, the optimized results are substituted
into finite element software to verify the performance of the parameters in the high- and
low-temperature cases. The results are shown in Figure 14. In the low-temperature case,
CMOS components essentially fail to work, there is no internal heat source, the CMOS tem-
perature basically does not fluctuate, and the results obtained through SMPO optimization
and those obtained through manual optimization both meet the requirements of the CMOS
thermal control index, however, the overall temperature in the results obtained through
SMPO is 0.5 ◦C higher than that in the results obtained through manual optimization,
leaving a greater temperature margin in the low-temperature case. In the high-temperature
case, the internal heat source works intermittently. Compared with the results obtained
through manual optimization, the temperature derived through SMPO is 5.33 ◦C lower
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at the highest temperature of the CMOS and 0.39 ◦C lower at the lowest temperature
of the CMOS. Additionally, the temperature fluctuation is reduced by a factor of 4, and
the calculation time is reduced from several days to a few hours. The effectiveness and
superiority of SMPO are thus demonstrated.
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4. Conclusions

This paper proposes a surrogate model-based method for optimizing the thermal
parameters of space telescopes, called SMPO. The method employs a BP neural network
surrogate model based on the adaptive learning rate (called GAALBP) so as to bear a
lower computational cost than the traditional thermal design approach of solving partial
differential equations. Additionally, the proposed method uses a genetic algorithm (GA) to
optimize the weights and thresholds of the BP network and thus improves the accuracy of
the surrogate model. After the surrogate model is established, the genetic algorithm is used
again to optimize the input of the network so that the output of the network approximates
the target value.

In this paper, we established a thermophysical model of a space telescope (called
the ADST), selected 11 parameters of the heat dissipation path of the CMOS detector as
indicators to be optimized, applied the GAALBP network surrogate model to approximate
the thermophysical model of the ADST, established the mapping relationship between the
11 indicators to be optimized and the temperature of the CMOS, and used a GA to optimize
indicators ensuring the output meets CMOS temperature requirements. The theoretical
and simulation results reveal that SMPO proposed in the paper outperforms traditional
engineer-dependent optimization, in terms of the model evaluation accuracy and higher
computational efficiency.

Space telescopes are developing toward the direction of modularization, rapid launch,
and short design cycles. Optimization design methods such as those similar to SMPO that
can quickly realize multi-parameter intelligence and automation is of particular importance.
Moreover, SMPO is an optimization framework and an optimization idea. The rapid
optimization process can be transplanted into other models to achieve rapid thermal design
and batch implementation. SMPO is applicable to not only the optimization of the thermal
design parameters of space telescopes but also post-processing and design optimization in
other fields. However, the convergence of SMPO is not particularly stable, and the SMPO
optimization framework does not automate the post-processing of data, with manual data
conversion still a requirement. Therefore, it remains necessary to further improve the
convergence and stability of the SMPO, and to achieve full automation of SMPO.
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