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Abstract
Thermal modeling is a critical technology in spacecraft thermal control systems, where the complex spatially and tem-

porally variable parameters used as inputs to the spacecraft usually result in long operation times, which hinders sensitivity

analysis and control strategies. The uniqueness of both the space environment and the working conditions of each

spacecraft, make thermal models differ in different space environments; thus, traditional thermal modeling methods that

rely heavily on physical knowledge need to build more than one corresponding thermal model, and they also cannot

generalize well. Therefore, an intelligent surrogate modeling strategy for spacecraft thermophysical models that uses deep

learning, called SMS-DL, is proposed. An intelligent batch processing system for thermal analysis based on NX TMG

Thermal Analysis was designed to automate the input of the thermal design parameters and the output of the thermal

analysis results through macro-recording and playback using a state-of-the-art biconjugate gradient solver to provide

superior speed, reliability, and accuracy, thus achieving a trade-off between high accuracy and low computational cost.

One deep neural network based on Bayesian optimization was pre-trained using the thermal analysis data of the spacecraft

in the source domain calculated using a batch processing system, which had a computational speed that was 1000? times

faster than that of the traditional thermophysical model and high computational accuracy of 99%?. Then, it was applied to

the target domain with a limited amount of thermal analysis data using model fine-tuning. The theoretical and experimental

results from the thermal analysis modeling of the near-ultraviolet radiation detector on the China Space Station Telescope

developed in China demonstrated that deep transfer learning effectively adapted the pre-trained model from one working

condition to another, improved the prediction accuracy by at least 86.4% over the direct prediction accuracy using the pre-

trained model, and had better predictive performance than learning from scratch with only a limited amount of data.
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1 Introduction

Thermal analysis and simulation are usually performed

throughout the entire process of spacecraft development, as

well as during the launch and in-orbit operation of the

spacecraft [1], and are integral to the development of a

spacecraft thermal control subsystem [2]. Spacecraft ther-

mal analysis and simulation mainly use the thermal net-

work method [3], and many practical software programs

[4–7] have been developed to play an important role in

spacecraft thermal analysis and simulation.

Because of the complexity of the internal structure and

layout of spacecraft, acquiring an excessive number of

network nodes results in long runtimes [8–10]. Further-

more, long runtimes inhibit the use of models in
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applications that involve multiple model runs, such as

uncertainty analysis [11, 12], sensitivity analysis [13], and

optical-mechanical-thermal integrated modeling [14, 15].

Furthermore, spacecraft typically encounter many different

working conditions during in-orbit operation, which leads

to thermophysical models differing in different space

environments. Thus, traditional thermal modeling methods

that rely on physical knowledge need to build more than

one corresponding thermal model and cannot generalize

well [16]. Therefore, it is of great practical importance to

develop cost-effective surrogate modeling methods [17],

which have the potential to accelerate complex models

without any compromise in accuracy or detail.

Many methods for developing surrogate models exist,

such as radial basis functions [18], metamodels [19], sim-

plified models [20], model simulators [21], kriging [22],

proxy models [23], and response surface methods [24].

However, these classical methods for modeling surrogate

models are mainly suitable for approximation problems

with low nonlinearity, whereas it is difficult for them to

solve strongly nonlinear and high-dimensional problems.

Recently, Mohammadi-Amin et al. [25] proposed a Kriging

interpolation and co-Kriging data fusion techniques for

surrogate modeling of spacecraft dynamics models, which

is one of the most favored surrogate modeling methods in

aerospace applications, with applicability to highly non-

linear problems and with more accurate approximations

over a wide range of sample size. However, it is like other

classical surrogate modeling methods in that it can only

accurately fit the original model for a single working

condition. If the orbit, internal and external environment of

the spacecraft changes significantly, the corresponding

dynamical/thermophysical model will change, and the

surrogate model built by this method may not fit well with

the changed dynamical/thermophysical model. In addition,

when the number of parameters associated with the ther-

mophysical model exceeds 50, the effect of the method will

become poor, and the time for model evaluation will

become too long due to too many parameters, which will

defeat the purpose of the surrogate model to improve the

computational efficiency.

The deep neural network (DNN) [26, 27] is a promising

approach in surrogate modeling because of its ability to

handle strong nonlinearities and high dimensionality,

which can overcome the curse of dimensionality in certain

problems with many great results [28–30]. However, the

success of off-the-shelf DNN architectures [31] relies

heavily on a large amount of training data and the inter-

polated nature of the problem, and they fail to work when

data become sparse. Unfortunately, tagging data for space

thermophysical models are often sparse and can be noisy

because they are obtained either from thermal analysis

simulations or experimental observations, both of which

are expensive [32]. Therefore, in such a ‘‘small data’’

regime, the real power and advantages of DNN cannot be

fully exploited by naively using popular off-the-shelf DNN

methods from the computer science community to map

data and build surrogate models.

Under a specific working condition, a surrogate model

based on a DNN can be constructed to approximate the

thermophysical model by obtaining a large amount of

tagging data through thermal analysis calculation, and after

model optimization, good prediction accuracy can usually

be obtained [33]. However, when the model switches to a

different working condition, such as spacecraft orbit

change, the thermal control metrics for some key compo-

nents of its thermal control system will change, and the

infrared radiation emissivity and absorption rates of the

system surface materials will also change. In addition,

many parameters and boundary conditions related to the

thermal analysis modeling will change [34–36], and this

will cause the previous DNN-based surrogate model fails to

adapt to the thermophysical model for the new working

conditions. Obtaining a surrogate model with the same

prediction accuracy as the previous condition requires a

large amount of tagging data to be generated from scratch

for the new condition, which is extremely time-consuming

and unfeasible for spacecraft with an excessive number of

conditions. Thus, transferability is critical in spacecraft

thermophysical surrogate modeling and has not been fully

explored yet. Transfer learning has recently received con-

siderable attention and has been successfully applied in

various fields, such as indoor localization [37], image

processing [38], natural language processing [39], and

biological applications [40]. If a model trained in one

domain (any variable of interest with a large amount of

data) can be adapted to another domain (any variable of

interest with limited data), then training the model from

scratch can be avoided, and some valuable prior knowledge

can be transferred accordingly to improve model learning

performance.

To resolve these issues and obtain a thermophysical

surrogate model that can be adapted to multiple working

conditions, an intelligent surrogate modeling strategy for

spacecraft thermophysical models using deep learning

called SMS-DL is proposed. To the best knowledge of the

authors, this is the first time that transfer learning-based

surrogate models that can be adapted to multiple working

conditions have been applied to a surrogate thermophysical

model for spacecraft. Additionally, SMS-DL differs from

traditional surrogate modeling methods because it acquires

a large amount of tagging training data for model fitting

using time-consuming thermal analysis simulations and

can only fit thermophysical models for specific working

conditions. It involves the intelligent batch processing

system for thermal analysis proposed by Xiong [41] called
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IBPS that was based on NX TMG Thermal Analysis [42]

and developed by integrating MATLAB and Python. The

IBPS can achieve automatic input of thermal design

parameters and automatic output of thermal analysis results

through macro-recording and playback; and obtain high

accuracy thermal analysis results by using the state-of-the-

art dual conjugate gradient solver [43]. Thus, it can max-

imize the accuracy of thermal analysis while minimizing

the calculation cost. The system is at least five times faster

than traditional manual Monte Carlo estimation [44]. The

surrogate modeling method to predict the temperature field

designed by Chen [45] and Sun [46] et al. is one of the

most important advanced modeling strategies based on

DNN used to approximate nonlinear systems, and can

speed up model convergence and avoid the excessive

demand on the training set. It is used to approximate the

thermophysical model as a pre-trained model [47] in the

source domain and obtain high-accuracy prediction per-

formance using Bayesian optimization [48]. Then, the

parameters from the pre-trained model are adopted to ini-

tialize the parameters of the model defined for the target

domain and a limited amount of data from the target

domain is used to fine-tune the model parameters [49]

using a domain adaptation method [50]. The theoretical

analysis and experimental results demonstrated that deep

transfer learning effectively adapted the pre-trained model

from one case to another and improved the prediction

accuracy by 67.5% compared with using the pre-trained

model directly, while having better prediction performance

than learning from scratch using only a limited amount of

data, thereby verifying its superiority.

The remainder of the paper is organized as follows: In

Sect. 2, the background and motivation of the study are

presented. In Sect. 3, details of the SMS-DL design

methodology are presented. In Sect. 4, the application of

SMS-DL to surrogate modeling for a near-ultraviolet

(NUV) radiation detector is presented and the perfor-

mances of SMS-DL based on transfer learning and the

classical DNN-based surrogate modeling method without

transfer learning are compared for the interconversion of

hot and cold cases. Finally, the results and conclusions of

the study are presented in Sects. 5 and 6, respectively.

2 Background and motivation

2.1 Surrogate model

Because space thermal analysis simulations and experi-

ments in the spacecraft thermal design process are very

time-consuming and expensive, how to efficiently

exchange or fuse data in the spacecraft thermal design

process is one of the most popular topics for further

research [51]. Surrogate modeling has been widely used as

an easy and cost-effective tool to motivate the optimization

process of complex system design in general.

Surrogate models usually consist of two components:

the design of experiments (DoE) and construction of the

surrogate model. Many DoE methods exist, such as uni-

form design [52], central composite design [53], and Latin

hypercube sampling (LHS) [54, 55]. These traditional

methods can ensure the uniformity of parameter distribu-

tion, but they cannot be updated dynamically as the sam-

pling space size increases, thus making the DoE process

inefficient [56]. Progressive LHS (PLHS) proposed by Razi

[57] inherits the advantages of traditional DoE methods

perfectly and updates the parameter space dynamically as

the sampling space size increases, thereby guaranteeing

that the sampling space can always form a complete Latin

hypercube. Therefore, PLHS is used in this study.

Many methods exist for surrogate modeling, and as

described in Sect. 1, and the DNN-based surrogate mod-

elling method is adopted in this study, and a Bayesian

optimization algorithm is used to optimize the weights and

biases in its network, where the mean square error (MSE) is

used as an evaluation metric.

MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

X

m

1

ŷ xið Þ � y xið Þ½ �2
s

, ð1Þ

where m denotes the size of the parameter space, xi denotes

the ith set of input parameters, and yðxiÞ and ŷðxiÞ denote

the actual and predicted outputs when the input parameters

are xi, respectively.

2.2 Transfer learning

Transfer learning is an important tool [58] for solving the

fundamental problem of insufficient training data in

machine learning. It can smartly apply the previous

knowledge learned to solve new problems with faster or

Fig. 1 Learning process of transfer learning

Neural Computing and Applications (2022) 34:16577–16603 16579

123



better solutions than traditional approaches that require

learning from scratch. This provides a promising approach

to many modeling problems that are difficult to improve

using optimization because of insufficient training data

[59]. Some of the notation used in this paper require clear

definitions. First, ‘‘domain,’’ ‘‘task,’’ ‘‘transfer learning,’’

and ‘‘deep transfer learning’’ are defined separately [60].

Definition 1 (Domain). A domain is denoted by

D ¼ X;PðXÞ, which contains two components: a feature

space v and marginal probability distribution P(X), where

X ¼ x1; x2; . . .; xnf g 2 v. In this study, the feature space v
denotes the thermal design parameters of the spacecraft and

the marginal probability distribution P(X) denotes the

marginal probability distribution of the corresponding

output of the feature space. The source domain Ds denotes

the working conditions before transfer learning for the

surrogate model of the spacecraft thermophysical model

and the target domain Dt denotes the new working condi-

tions that need to be optimized using transfer learning for

the surrogate model of the spacecraft thermophysical

model after it switches working conditions.

Definition 2 (Task). A task is denoted by T ¼ y; f ðxÞf g,
which contains two components: a label space y and target

prediction function f(x). In this study, x denotes the thermal

design parameters of the spacecraft, the label space y

denotes the output data of the thermal analysis obtained

from the traditional thermal analysis simulation corre-

sponding to x as the input parameter, and f ð�Þ denotes the
prediction function between x and y, that is, the surrogate

model. Both learning tasks Ts for the source domain Ds and

Tt for the target domain Dt are to obtain the surrogate

model of the spacecraft thermophysical model under the

corresponding working conditions.

Definition 3 (Transferlearning). Given a source domain

Ds and its corresponding learning task Ts, together with a

target domain Dt and its corresponding learning task Tt,

transfer learning aims to improve the learning performance

of the target prediction function f ð�Þ in Dt by discovering

and transferring knowledge from Ds and Ts, where Ds 6¼ Dt

or TS 6¼ Tt, typically with the space size of the source

domain Ds much larger than that of the target domain Dt.

Definition 4 (Deeptransferlearning). Given a source

domain Ds and its corresponding learning task Ts, together

with a target domain Dt and its corresponding learning task

Tt, deep transfer learning is the process of transforming a

part of the DNN trained in Ds with its network structure

and connection parameters into a part of the DNN used in

Dt, reusing it, and thus improving the learning performance

of the target prediction function f ð�Þ in Dt by discovering

and transferring the knowledge from Ds and Ts through the

DNN.

The learning process of transfer learning is shown in

Fig. 1.

3 Surrogate modeling for spacecraft
thermophysical models using deep
learning

In this section, an intelligent surrogate modeling method is

presented for spacecraft thermophysical models using deep

learning and transfer learning. The process of how to obtain

the training dataset required for surrogate modeling using

the DoE method is described first. After the training dataset

is obtained, a description of how to obtain pre-training

models based on the training dataset in the source domain

is presented After the working conditions are converted,

how to obtain the surrogate model is introduced based on

the pre-training model that can be adapted to the new

working conditions with limited data using transfer learn-

ing. Finally, the practical workflow of SMS-DL is detailed.

3.1 Sample input spaces

As explained in Sect. 2.1, the DoE is a very important and

necessary process before surrogate modeling can be per-

formed. Although many DoE methods exist at present, and

they have many advantages, the disadvantages are also

obvious: they must generate the entire sampling space at

once; require the sample size to be specified before sam-

pling; and when it is necessary to continue to expand the

sampling space, the expanded sampling space and previous

sampling space cannot form a complete Latin hypercube;

hence, the original sampling space must be dropped and

recalculated, and this greatly increases the calculation cost,

which is totally unacceptable for an extremely expensive

and complex spacecraft thermophysical model. Thus, as

explained in the previous section, PLHS is adopted as the

DoE method in this study. It allows the user to observe the

effects of sample-based analysis and stop sampling

Fig. 2 Workflow of the IBPS [52]
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according to actual need, which greatly improves the effi-

ciency of sampling and model evaluation. The mathemat-

ical scheme of PLHS is as follows:

yq;j ¼
1

If there exist any i for which

xi;j lies in the interval q

0 Otherwise

8

<

:

ð2Þ

S(n, p) denotes a sampling matrix with n� p variables

xi;j 2 ½0; 1�, where i ¼ 1; . . .; n, j ¼ 1; . . .; p. Then, a new

auxiliary binary variable yq;j is defined:

Pp
j¼1

Pn
q¼1 yq;j

n � p ¼ 1, ð3Þ

Then, S(n, p) satisfies the features of the Latin hypercube

when the following equation is satisfied:

X

T

t¼1

Pp
j¼1

Pnt
q¼1 y

t
q;j

nt � p
¼ T , ð4Þ

Equation (3) can be regarded as the summation of Eq. (2);

hence, the PLHS generated by the above mathematical

formulation can be regarded as an optimization problem as

follows:

Fig. 3 Schematic diagram of the

DNN-based surrogate model

Fig. 4 Schematic diagram of the

fine-tuning model based on

transfer learning
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Fig. 5 Practical workflow of SMS-DL
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Table 1 Comparison of

contemporary survey space

telescope projects

Project Name CSST Euclid RST

Orbit Low earth orbit Lagrangian point L2 Lagrangian point L2

Aperture (m) 2 1.2 2.4

Mass (kg) 15,500 2160 6330

Launch 2024 2022 2025

Field of view (square degree) 1.1 0.55/0.56 0.28

REE80 ð00Þ 0.15 0.23/0.63 0.24

Number of pixels (100 million) 31 6.1/0.7 3

Survey area (m2) 17,500 15,000 2000

Wavelength (nm) 255–1000 550–900/920–2000 927–2000

Number of imaging bands 7 1/3 4

Number of spectral bands 3 None/1 1

Table 2 Parameters and settings

of the orbital environment
Parameter Hot case Cold case

Orbit Low earth orbit

Minimum altitude 400 km

Satellite position Local time at Ascending Node 18:00:00

Orbit period 5544.9 s

Orbit inclination 98:38�

Albedo 0.306

CMOS power 0.65 W

System heating power � 120W

Temperature Index for frameworks 19–25�C

Stefan–Boltzmann constant 5:67� 10�8 W= m2 � K4ð Þ
Solar constant 1411 W=m2 1323 W=m2

Earth IR 237 W=m2 220 W=m2

Fig. 6 Overall structure of the CSS and CSST. A Overall structure of the CSS. B Overall structure of the CSST. C Structural diagram of the

SCI700 detector [62–64]
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Maximize
X

T

t¼1

Pp
j¼1

Pnt
q¼1 y

t
q;j

nt � p

 !

, ð5Þ

where xi;j is a decision variable and ytq;j is an auxiliary

variable.

3.2 Intelligent batch processing system
for thermal analysis

The thermal physics model of a spacecraft has many types

of thermal design parameters, and to determine the best

solution for the thermal design of a spacecraft, the tradi-

tional method of spacecraft thermal control requires the

thermal engineer to manually import these parameters into

thermal analysis software and perform a great deal of

repetitive work, from which the thermal engineer needs to

obtain and analyze the effect of different modeling

parameters on the thermal analysis results. Clearly, this

requires a great deal of repetitive work, is extremely time-

consuming, and would be very error-prone if the output

data were imported and collected purely manually.

Therefore, as explained in Sect. 1, in this study, IBPS

developed by Xiong is used. This system can automatically

create a sampling input space, and perform batch thermal

analysis and automatic extraction of the result data without

supervision, which greatly improves the efficiency of

thermal analysis and avoids the high cost and possibility of

errors caused by manual labor.

IBPS has several powerful functional modules, such as

thermal design parameter sampling, parameter loading, and

space thermal analysis result extraction, which are devel-

oped based on MATLAB [61]; see Fig. 2 for details.

3.3 Pre-training model based on deep learning

After the sampling space under a given working condition

(source domain) is obtained using IBPS, the DNN archi-

tecture is first required to approximate the spacecraft

thermophysical model, that is, the DNN-based surrogate

model of the spacecraft thermophysical model, which is

optimized using the Bayesian optimization algorithm to

improve the fitting accuracy. After offline training, this

surrogate model quickly generates corresponding temper-

ature predictions online and in real time given any com-

bination of spacecraft thermal design parameters. Because

the following transfer learning is used to build the surro-

gate model based on this model to adapt to new working

conditions (target domain), this model is referred to as the

pre-training model, that is, the model that prepares for the

next round of transfer learning.

The schematic diagram of the DNN-based surrogate

model is shown in Fig. 3.

Table 3 Average external heat flux of the CSST in hot and cold cases.

(Unit: W=m2)

Surface þX þY þZ �X �Y �Z

June Qsun 285.1 0 35.1 287.1 0 402.8

QE�air 58.9 58.9 181.0 58.9 58.9 0

Qref 33.7 33.5 103.2 33.6 33.5 0

December Qsun 304.1 0 37.5 305.7 0 430.8

QE�air 72.7 72.7 223.0 72.7 72.7 0

Qref 43.5 43.3 133.4 43.5 43.3 0

Table 4 Materials used in the

detector and their physical

properties

Name Material Density Thermal Specific heat

kg=m3 conductivity capacity

W=mK J=kgK

Focal plane box Aluminum alloy (2A12) 2780 121 921

CMOS Photosensitive material 1800 20 500

PCB Composite materials 1800 20 500

Thermal conductor Aluminum alloy (7A09) 2850 134 921

Thermal cable Copper 8750 350 400

Cold cover Aluminum alloy (7A09) 2850 134 921

Insulation pads/rings Polyimide 1420 0.25 1130

Table 5 Surface processes and their thermophysical properties

Name Solar absorptivity Infrared emissivity

Black anodizing 0.80–0.95 0.80–0.95

Gold plating 0.15–0.40 0.02–0.05

S781 white coatings 0.12–0.25 0.80–0.94

F46 0.11–0.45 0.60–0.80

16584 Neural Computing and Applications (2022) 34:16577–16603

123



Table 6 Description and range of the thermal design parameters

Parameter description Base Lower Upper

value limit limit

Inner surface of the cold cover 0.84 0.80 0.95

Outer surface of the cold cover 0.25 0.15 0.40

Solar Radiation panel 0.18 0.12 0.25

absorptivity Inner surface of double layer insulating board 0.84 0.80 0.95

Outer surface of double layer insulating board 0.25 0.15 0.40

Inner surface of focal plane box 0.84 0.80 0.95

F46 0.41 0.11 0.45

Inner surface of the cold cover 0.84 0.80 0.95

Outer surface of the cold cover 0.05 0.02 0.05

Infrared Radiation panel 0.87 0.80 0.94

emissivity Inner surface of double layer insulating board 0.84 0.80 0.95

Outer surface of double layer insulating board 0.05 0.02 0.05

Inner surface of focal plane box 0.84 0.80 0.95

F46 0.68 0.60 0.80

Between thermal cable and thermal conductor 1.11 0.13 2.5

Between thermal cable and cold cover 0.23 0.13 2.5

Between thermal cable and heat pipe 1.23 0.13 2.5

Between heat pipe and thermal cable 0.67 0.13 2.5

Between thermal conductor and CMOS 4.22 1.48 4.44

Between thermal conductor and focal plane box 1.18 0.71 3.53

Between cold cover and insulation pads 3.79 2.28 25

Between cold cover and PCB 201.81 21.4 273.14

Between cold cover and double layer insulating board 68.42 3.98 81.68

Thermal Between cold cover and focal plane box 11.74 1.86 38.01

resistance Between double layer insulating board and framework 68.42 3.98 81.68

Between double layer insulating board and external insulation ring 5.00 0.63 10

Between double layer insulating board and internal insulation ring 5.00 0.47 10

Between external insulation ring and framework 15.00 2.5 25

Between internal insulation ring and cold cover 5.00 2.10 10.47

Between focal plane box and CMOS 6.93 4.16 40

Between focal plane box and insulation pads 3.79 2.28 40

Between focal plane box and press plate 3.89 2.34 40

Between CMOS and press plate 12.15 7.29 66.67

Between CMOS and PCB 4.47 2.68 13.42

Internal insulation ring 2.35 1 5

Thickness External insulation ring 2.91 1 5

Insulation pads 1.24 1 5

Heat

transfer Between multilayer and wrapped area 0.17 0.05 0.6

coefficient

Thermal conductor 154.00 100 250

Thermal Thermal cable 300.00 150 300

conductivity Cold cover 154.00 100 250

Focal plane box 154.00 100 250

Neural Computing and Applications (2022) 34:16577–16603 16585

123



3.4 Fine-tuning model based on transfer
learning

After the DNN-based surrogate model is pre-trained with a

large amount of tagging data from the source domain, the

model parameters in the source domain are used to ini-

tialize the model parameters in the target domain, thereby

maintaining the same structure of the DNN, and all the

parameters of the model in the source domain are kept as

the initialization parameters of the model in the target

domain, except for the output layer weights; that is, after

the model is initialized in the target domain based on the

pre-trained model, the parameters of its encoder and

decoder are not updated, and then the limited tagging data

in the target domain are used to fine-tune and optimize the

output layer weights of the pre-trained model, thus

achieving faster and better adaptation to the target domain

through transfer learning than learning from scratch with

only a limited amount of data in the target domain while

inheriting the advantages of the pre-trained model in the

source domain. The schematic diagram of the fine-tuning

model based on transfer learning is shown in Fig. 4.

Compared with modeling in the target domain from

scratch using DNN, the fine-tuning model based on transfer

learning is faster and better adapted to the target domain

with limited tagging data, which greatly reduces the cost

for surrogate modeling and improves efficiency

simultaneously.

3.5 Practical workflow of SMS-DL

The proposed SMS-DL has four stages and 10 steps. Two

programming languages and space thermal analysis soft-

ware are used (Fig. 5).

Stage 1: The thermophysical model of the spacecraft in the

source domain is established using the thermal network

Table 7 Comparison analysis of the effect of different sampling space

sizes for DNN accuracy

Sampling size MSE

Hot case Cold case

500 2.1632 1.9842

5000 1.6044 0.9433

10,000 0.7829 0.1675

15,000 0.0709 0.0675

20,000 3.35e–3 5.41e–3

25,000 7.63e–4 6.59e–4

30,000 6.51e–4 5.89e–4

35,000 5.16e–4 6.09e–4

40,000 5.12e–4 6.01e–4

45,000 5.09e–4 5.97e–4

50,000 5.11e–4 6.08e–4

55,000 7.35e–4 8.87e–4

60,000 8.58e–4 9.02e–4

65,000 1.37e–3 1.81e–3

70,000 3.06e–3 4.74e–3

Fig. 7 Thermal analysis cloud map of support plate of the CSST main mirror
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method. Then, sampling is performed within the range of

the thermal modeling parameters to create a sample input

space based on the PLHS method to use as training data for

the source domain, and the thermophysical model of the

spacecraft is imported using IBPS for space thermal anal-

ysis in batch mode, thereby maintaining the accuracy of the

model output without supervision.

Stage 2: A DNN is first used to approximate the spacecraft

thermophysical model computed using IBPS as a pre-

training model, while the DNN-based surrogate model

greatly accelerates post-processing. Then, the hyperpa-

rameters of the DNN are optimized using the Bayesian

optimization algorithm to improve performance. Finally,

convergence analysis is performed to evaluate the fitting

performance of the DNN and determine whether the sam-

pling space should be extended further or the hyperpa-

rameters should be optimized further.

Stage 3: The thermophysical model of the spacecraft in the

target domain is first built using the thermal network

method. Then, sampling is performed within the thermal

modeling parameters to establish a sample input space

using the PLHS-based method as training data in the target

domain, and the thermophysical model of the spacecraft is

imported using IBPS for batch space thermal analysis to

maintain the accuracy of the model output in an unsuper-

vised manner.

Stage 4: First, the surrogate model based on DNN for

spacecraft’s thermophysical model is initialized in the

target domain using the structure and hyperparameters of

the pre-training model and all the network parameters are

fixed, except for the output layer, that is, the regression

prediction layer weights. Then, the pre-trained model is

trained using the limited training data in the target domain.

Finally, convergence analysis is performed to evaluate the

fitting performance of the DNN in the target domain after

Fig. 8 Distribution of the DoE samples in the source domain
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transfer learning and to determine whether further hyper-

parameter optimization is required.

4 Example applications

To validate its performance, SMS-DL was applied to sur-

rogate modeling for the multi-condition thermophysical

model of the NUV detector of the China Space Station

Telescope (CSST) designed and manufactured by the

Chinese Academy of Sciences (CAS) and China Academy

of Space Technology (CAST), and the results were ana-

lyzed in a multidimensional manner.

In this section, the application of SMS-DL to the CSST

is presented in detail. First, the background of the CSST is

presented. Then, the thermophysical model of the CSST is

described. Furthermore, the proposed SMS-DL is used to

adapt the surrogate model of the CSST thermophysical

model in hot and cold working conditions under different

working conditions using transfer learning. Finally, the

performance of SMS-DL is analyzed in multiple

dimensions before and after working conditions are swit-

ched to verify its excellent performance in the surrogate

modeling of thermophysical models under multiple work-

ing conditions.

4.1 Background of the CSST

To conduct wide-field multiband imaging and seamless

spectroscopic surveys, and in-depth studies of selected

objects or regions of space, such as dark forces, dark

matter, gravity theory, and the Hubble constant, using

multiple observation tools, CAS and CAST have jointly

designed a new 2 m aperture space telescope, which shares

the same orbit as the Chinese manned space station and

will facilitate the maintenance of equipment by docking

with the station when necessary. The overall structure of

the CSST is shown in Fig. 6A. It is equipped with a survey

camera, terahertz receiver, multichannel imager, integral

field spectrograph, and cool-planet imaging coronagraph.

As shown in Table 1, several survey space telescope pro-

jects exist, and clearly, the CSST is not only substantially

Fig. 9 Regression of the

established DNN in the source

domain without optimization
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better than previous projects in many aspects, including the

metrics of large-scale multicolor imaging and seamless

spectral surveys, but also has the best image quality among

contemporaneous projects, especially in the NUV band,

which is unique, with excellent overall performance and

very competitive. SCI700 is a core NUV detector in the

CSST and is essential for observing and studying the

dynamics of NUV from stars in the 700 nm band.

The parameters and settings of the orbital environment

are presented in Table 2, which indicate that the CSST

works in a low earth orbit at 400 km altitude, exposed to a

complex thermal environment, including the heat flux from

direct sunlight (Qsun), infrared radiation from the earth

(QE�air), and sunlight reflected from the earth (Qref), details

shown in Table 3). Based on the effects of these heat fluxes

and the internal heat sources of the spacecraft, etc., a heat

balance equation for the spacecraft can be obtained as

follows:

qCP

oT

ot
¼ Qsun þ Qref þ QE�air þ Qn � Qrad þ Qconv þ Qcondð Þ

ð6Þ

where

Qsun ¼ as � S0 � u1 ð7Þ

Qref ¼ as � u2 � R � S0 ð8Þ

QE�air ¼ e1 �
1� R

4
S0 � /3 ð9Þ

where q, Cp are the density and specific heat capacity of the

spacecraft material, respectively; as is the solar radiation

absorption rate at the spacecraft surface; S0 is the solar

constant; u1 is the view factor of the spacecraft surface to

direct solar radiation; u2 is the view factor of the spacecraft

surface to the Earth’s albedo radiation; R is the ground

average reflectance; e1 is the infrared emissivity of the

material on the external surface of the spacecraft; u3 is the

view factor of Earth infrared radiation; Qn is the power of

the internal heat source of the spacecraft system; Qrad is the

Fig. 10 Regression of the pre-

training model in the source

domain after optimization
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radiation heat exchange between the spacecraft and the

surrounding environment; Qconv is the convective heat

exchange between the spacecraft and the surrounding

environment; Qcond is the conduction heat exchange

between the spacecraft and its surrounding environment.

Additionally, the heat flux between the sunlit and

shadowed surfaces varies greatly, which may lead to a non-

uniform temperature distribution between the primary

mirror and the detector, thus compromising the imaging

quality of the CSST. Because of the length limitation, only

the SCI700 NUV detector is studied in this paper, and its

structure and thermal transfer path are shown in Fig. 6B

and C. Simultaneously, the predicted outputs of the SMS-

DL-based surrogate model are the node temperatures of

four critical components: the CMOS, cold cover (CC),

PCB, and focal plane substrate (FPS). Table 4 shows the

materials used in the detector and their physical properties,

which are influenced by manufacturing and processing (see

Table 5). Table 6 shows the description and range of values

for the 42 thermal design parameters of the LHS, which are

feature parameters shared by both hot and cold cases.

Because of the complexity and variability of the space

environment, the CSST requires high thermal control

accuracy during both storage and runtime; hence, Xiong

et al. proposed a novel intelligent thermal control

scheme based on deep reinforcement learning [65], and it

works very well. In this study, the thermophysical model of

the CSST is built based on this scheme using the thermal

network method.

4.2 Thermophysical model of the CSST

As mentioned in Sect. 4.1, traditional spacecraft thermal

control methods usually use the finite element method to

construct a thermophysical model and calculate the tem-

perature field of the spacecraft. The increase in the number

of finite element meshes directly affects the accuracy of the

thermal analysis and increases the computational time

significantly. When the number of finite elements meshes

exceeds a certain threshold, it will lead to the bottleneck

problem that the computational time increases sharply

without increasing the computational accuracy. Therefore,

it is necessary to plan the mesh size and number of each

component on the spacecraft reasonably to trade-off the

computational accuracy and efficiency.

Based on the three-dimensional model of the CSST and

the thermal control scheme, the original thermophysical

model of the CSST was built using NX TMG Thermal

Analysis software, which had 19,370 cells, 20,607 nodes,

and 223 thermal couplings, as shown in Fig. 7 for the

support plate of the CSST main mirror.

As traditional spacecraft thermal analysis typically uses

the Monte Carlo ray tracing method to evaluate thermal

radiation [66], which is very expensive and requires many

computational resources, the thermal model reduction is

Fig. 11 Evaluation of the optimized pre-training model in the source domain
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widely used to improve the efficiency of thermal analysis.

In this study, the thermal model reduction strategy pro-

posed by Michael [67] was used to obtain a reduced ther-

mal mathematical model (RTMM) by applying reduction

correlation using the detailed thermal mathematical model

(DTMM) of the CSST. The simulation time of RTMM with

6310 cells and 6885 nodes was reduced by 80.8% com-

pared with that of DTMM, and the temperature difference

between RTMM and DTMM for the steady-state thermal

analysis results was less than 2K, which was acceptable in

the initial thermal design of the CSST; hence, RTMM was

used for thermal analysis in the next batch thermal analy-

sis, which is fully acceptable for aerospace engineering

requirements.

4.3 Application of SMS-DL

4.3.1 Surrogate model based on the DNN in the source
domain

In this study, to improve the verification of the generaliz-

ability of SMS-DL, two cases were considered, Case 1 and

Case 2, which are explained below.

Case 1: The hot case was considered as the source domain

and the cold case as the target domain. Then, a DNN-based

surrogate model in the source domain was built as a pre-

training model and its hyperparameters were optimized

using a Bayesian optimization algorithm, which was

developed by Ray.tune [68], and is an excellent toolbox for

hyperparameter optimization based on Python.

Fig. 12 Distribution of the DoE samples in the target domain
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Before surrogate modeling, it was necessary to create a

sampling space. Generally, the larger the sampling space,

the better; however, building a sampling space is very

time-consuming and laborious; hence, it was necessary to

first make a trade-off in terms of computational efficiency

and accuracy to obtain the optimal sampling space. For this

purpose, a DNN was established and trained on different

sizes of sampling space. Table 7 clearly shows that the

MSE of the neural network decreased sharply and the

average error decreased as the sampling space size

increased from 500 to 20,000, which indicates that the

increase in the amount of training data helped to further

optimize the model. However, from 20,000 to 45,000, the

MSE of the neural network did not change significantly,

and although the average error decreased, it was not

obvious; hence, the further increase of the training data at

this stage no longer played a critical role in improving the

accuracy of the model. More critically, from 45,000 to

50,000, the MSE and average error of the neural network

tended to increase, which indicates that the increase of the

training data led to the overfitting of the model after a

certain degree. Therefore, after a comprehensive evalua-

tion, 50,000 groups within the value range of the 42 ther-

mal design parameters were sampled, as shown in Table 6,

using PLHS as the sampling input space. The distribution

of some parameters is shown in Fig. 8. The probability

distribution laws of the parameters not shown in Fig. 8

were consistent with those of the parameters in Fig. 8.

Then, thermal analysis batch processing was performed in

the source domain using IBPS; thus, the dataset for sur-

rogate modeling in this source domain (42 inputs to 4

outputs) was obtained and stored in text format in an Excel

file on the specified path. This process took 56 days.

Next, 80% of the dataset was used as a training set for

surrogate modeling, 10% for validating the generality of

the network, and the remaining 10% for testing. In this

study, the torch.nn.Module in PyTorch [69] was used to

build the DNN, which allowed the construction and man-

agement of complex neural network structures. Based on

the surrogate modeling method proposed by Xiong et al.

Fig. 13 Regression of the

established DNN in the target

domain without optimization
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[56] for fitting thermophysical models with RBF neural

networks, the DNN with a structure of 42–512–218–64–4

and an initial learning rate of 0.0001 was trained for 20,000

iterations, and its MSE was 5.11e–4, which was less than

the preset training target of 1e–3 and satisfied the conver-

gence requirement. The regression analysis in Fig. 9 shows

that the DNN-based surrogate model fit the traditional

thermophysical model better than 90%, but there were

many outliers, which resulted in very poor individual

predictions; hence, the DNN-based surrogate model had to

be optimized.

As described in Sect. 3.5, th Bayesian optimization

algorithm was used to optimize the weights and bias of the

DNN-based surrogate model for the spacecraft thermo-

physical model in this study and the optimized model was

called the pre-training model for the next stage of transfer

learning. In this study, an objective function, also called the

score function, was set as follows for the Bayesian opti-

mization algorithm to determine the optimal model:

score ¼ 1

lossmean

� �

� 0:8þ 1

lossmax

� �

� 0:2; ð10Þ

where lossmean denotes the mean error of the trained model

and lossmax denotes the maximum error. With successive

Bayesian optimizations, the scores increased exponentially,

whereas the average and maximum errors of the model

kept decreasing. After 264 iterations of training and opti-

mization, the MSE of the obtained pre-training model

reduced to 3.898e–5. Its regression analysis is shown in

Fig. 10. Additionally, the computational speed of the pre-

training model was 1000? times faster than that of the

traditional thermal physics model, and the computational

accuracy was up to 99%?. Moreover, a very small number

of outliers were identified; however, they were all within

reasonable limits, as shown in Fig. 11.

Case 2: The cold case was considered as the source domain

and the hot case as the target domain. Next, as in Case 1,

the dataset of the source domain was obtained using PLHS

and IBPS (see Fig. 12), a DNN-based surrogate model in

Fig. 14 Regression of the pre-

training model in the target

domain after optimization
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the source domain was built, and its hyperparameters were

optimized using the Bayesian optimization algorithm from

Ray.tune. The regression analysis of the DNN-based sur-

rogate model before optimization is shown in Fig. 13.

Clearly, the surrogate model also needed to be optimized.

Similar to Case 1, the regression analysis of the DNN-

based surrogate model in the source domain after Bayesian

optimization is shown in Fig. 14. Clearly, the results after

optimization were excellent, as shown in Fig. 15. Similar to

Case 1, a very small number of outliers existed, but were

within reasonable limits.

4.3.2 Transfer learning of the pre-training model
in the target domain

Once the pre-training model in the source domain was

obtained, the final, and crucial, step began: the pre-training

model was further trained and optimized using transfer

learning to adapt to the target domain.

Case 1: First, the surrogate model based on DNN for the

spacecraft’s thermophysical model was initialized in the

target domain using the structure and hyperparameters of

the pre-training model, and all the network parameters

were not updated, except for the output layer, that is, the

regression prediction layer weights. Then, the pre-trained

model was trained using the limited training data in the

target domain, where the limited training data in the target

domain contained 5000 groups of samples in the range of

values of the 42 thermal design parameters, as shown in

Table 6, which were obtained using space thermal analysis

with the support of PLHS and IBPS. The distribution of

some parameters is shown in Fig. 16. The probability

distribution laws of the parameters not shown in Fig. 16

were consistent with those of the parameters in Fig. 16.

Next, convergence analysis was performed to evaluate the

fitting performance of the DNN in the target domain after

transfer learning, as shown in Fig. 17, and the accuracy

reached 98%?; hence, there was no need for further

optimization training. Finally, the pre-trained model after

transfer learning was tested in the target domain, as shown

in Fig. 18. The average error reached 0.03329K and the

maximum error was 1.19047K, which was completely

acceptable for the initial thermal design of the spacecraft.

Case 2: Similar to Case 1, the pre-training model in the

source domain was selected as the initialized neural net-

work structure for the surrogate model in the target

domain, all hyperparameters, except the output layer, were

fixed, and then, the pre-training model was trained using

the limited training data in the target domain (5000 groups

obtained in the same manner used in Case 1; the distribu-

tion of some parameters is shown in Fig. 19). After training

was complete, convergence analysis was performed, as

shown in Fig. 20, and the accuracy reached 98%?; hence,

it was not necessary to train in optimization either. Finally,

the pre-training model after transfer learning was tested in

the target domain, as shown in Fig. 21. The average error

reached 0.02089K and the maximum error reached

Fig. 15 Evaluation of the optimized pre-training model in the target domain
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1.04138K, which was perfectly acceptable for the initial

thermal design of the spacecraft.

5 Results

To improve the verification of the effect of transfer learn-

ing on surrogate modeling under multiple working condi-

tions, the surrogate model in the target domain based on

deep transfer learning (SMS-DL) was compared with the

pre-trained model in the source domain (PMSD) and the

surrogate model obtained from training in the target

domain with limited training data (SMTD) for several

metrics, such as prediction accuracy, maximum prediction

error, and training dataset size.

Case 1: The comparative analysis of the prediction

accuracy is shown in Fig. 22, and the other comparative

analyses are shown in Table 8, where the mean error of

different methods denotes the average value of the absolute

error of the prediction output of the corresponding

respective surrogate model, which we define as the pre-

diction accuracy for the corresponding method in all fol-

lowing subsections. Clearly, the prediction accuracies of

PMSD and SMTD were 0.24705K and 0.24523K, respec-

tively, which were unacceptable, even in the initial thermal

design stage of spacecraft with the lowest accuracy

requirement, whereas the accuracy of SMS-DL reached

0.03329K, which was an improvement of 86.5% and 86.4%

compared with those of PMSD and SMTD, respectively.

The maximum prediction error of SMS-DL also reduced by

81.6% and 79.3% compared with those of PMSD and

SMTD, respectively.

Case 2: The comparative analysis of the prediction

accuracy is shown in Fig. 23, and the other comparative

analyses are shown in Table 8. Clearly, the prediction

accuracies of PMSD and SMTD were 0.24169K and

Fig. 16 Distribution of the DoE samples for transfer learning in Case 1
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0.24149K, respectively, which were unacceptable, even in

the initial thermal design stage of spacecraft with the

lowest accuracy requirement, whereas the accuracy of

SMS-DL reached 0.02089K, which was 91.4% and 91.3%

higher than those of PMSD and SMTD, respectively.

Simultaneously, the maximum error of SMS-DL also

reduced by 84.0% and 84.1% relative to PMSD and

SMTD, respectively.

6 Conclusions

An intelligent surrogate modeling strategy for spacecraft

thermophysical models using deep learning was proposed

in this study. This strategy used DNN as a surrogate model

to reduce the computational cost of model evaluation.

Additionally, using IBPS, which was specially designed for

this study, an unsupervised real-time data interaction

between text command data and analysis result data in

various software such as MATLAB and NX TMG was

achieved, which greatly improved the computational

efficiency and avoided the risk of errors caused by manual

operation.

During the specific application process, DNN was first

combined with the Bayesian optimization algorithm to

build a surrogate model for the thermophysical model of

the spacecraft and then the surrogate model was trained in

the target domain with limited tagging data after the feature

space of the surrogate model in the source domain was

preserved through transfer learning to adapt to the target

domain. Then, regression analysis was performed to verify

the fitting accuracy. If the accuracy was insufficient, the

tagging data were increased appropriately or the opti-

mization algorithm, such as the Bayesian optimization

algorithm, was used to optimize the hyperparameters of the

model to optimize the model.

Both the theoretical and experimental results demon-

strated that deep transfer learning effectively adapted the

pre-training model from one working condition to another,

which improved the prediction accuracy by at least 86.4%

over the direct prediction using the pre-training model from

Fig. 17 Regression of the pre-

training model in Case 1 after

transfer learning
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the source domain, and had better prediction performance

than learning from scratch with limited data.

Furthermore, the proposed SMS-DL is not only appli-

cable to surrogate modeling for thermophysical models of

spacecraft but also a reference for other fields that also

include finite element analysis-based modeling, such as

force analysis.

The efficiency of the proposed SMS-DL was limited by

the computational resources used (Intel Core i9-9900X

CPU, 64 GB RAM, GeForce RTX 2080 Ti), which directly

affected the time required for model computation. As

computational resources are further improved, the com-

putation time for surrogate modeling and model evaluation

will be shortened, further easing the application of SMS-

DL in space telescope thermal design optimization tasks.

Additionally, the proposed SMS-DL is currently only

applicable for model transfer across working conditions of

homogeneous DNN, and further research is required on

transfer learning for heterogeneous DNN across working

conditions.

Fig. 18 Evaluation of the pre-training model in Case 1 after transfer learning
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Fig. 19 Distribution of the DoE samples for transfer learning in Case 2
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Fig. 20 Regression of the pre-

training model in Case 2 after

transfer learning
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Fig. 21 Evaluation of the pre-training model in Case 2 after transfer learning

Fig. 22 Comparative analysis of different surrogate modeling methods in Case 1

16600 Neural Computing and Applications (2022) 34:16577–16603

123



Fig. 23 Comparative analysis of different surrogate modeling methods in Case 2

Table 8 Comparison of the three methods

Parameter SMS-DL PMSD SMTD

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Neural network architecture 42–512–218–64–4 42–512–218–64–4 42–512–218–64–4

Learning Rate 0.0001 0.0001 0.0005

Loss function HuberLoss HuberLoss MSELoss

Optimization algorithms Adam ? Bayesian Adam ? Bayesian SGD ? Bayesian

Mean error (CMOS/CC/PCB/FPS, �C) 0.00642 0.00642 0.06941 0.06639 0.06724 0.06652

0.08057 0.04504 0.55469 0.54781 0.55529 0.54459

0.01451 0.01141 0.12924 0.12423 0.12532 0.12812

0.03165 0.02068 0.23486 0.22831 0.23307 0.22672

Max. absolute error (CMOS/CC/PCB/FPS, �C) 0.25439 0.14724 0.59958 0.96746 0.55354 0.86224

1.19047 1.04138 6.46205 6.51857 5.76079 6.54647

0.48361 0.24676 2.29191 1.52405 2.24433 1.51077

0.81486 1.00112 3.26941 3.55497 2.90697 3.64094

Convergence speed (epochs) 1000 1000 0 0 20000 20000

Number of outliers ([1�C) 6 2 866 823 811 803

Total training time (s) 724.5 716.3 0 0 89245.5 8957.8
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