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Abstract: Polarization remote sensing technology expands the dimensions of the target and
enriches its basic information over traditional remote sensing methods. During the imaging
process, polarization imaging changes the polarization information of the target by the modulation
of the optical system, affecting the detection accuracy. We term the modulation of the polarization
state of light by an optical system as polarization aberration, and we found that a lens group
combined with mirrors is beneficial in suppressing polarization aberrations. This study analyzed
the principles of suppression and the polarization aberration of the optical system before and
after suppression. Simulation results show that the diattenuation’s average value is reduced by
51.1% and the retardance’s average value is reduced by 26.3% after suppression. The corrected
polarization cross-coupled energy is reduced by 73.18% in the central field of view and by
69.80% in the fringe field of view. Adding a lens group also effectively suppresses traditional
aberrations and expands the field of view.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

When polarized light propagates in optical systems; the transmission coefficients of the optical
medium surface to S and P light are different, and this difference changes to a certain extent every
time the incident light passes through the optical medium owing to the difference in the angle of
incidence and the material of the medium. The polarization change caused by the optical system
can be represented by a Jones matrix, and deviations from this identity matrix are referred to as
polarization aberrations [1].

In some high-resolution optical instruments, polarization aberrations limit the image quality:
when using astronomical telescopes to observe faint exoplanets, the polarization aberrations of
the optical system can generate ”ghost” PSF images, the radius of the spatial extent of the 90%
encircled energy of these two ghost PSF image is twice as large as the radius of the Airy diffraction
pattern, which will interfere with exoplanets measurements [2–4]. The evolution of lithography is
one of the key drivers for advancing semiconductor technology nodes. To approximately transfer
the mask pattern to the photoresist, the image quality of the lithographic lens must meet extremely
demanding requirements. The advancement of integrated circuit nodes promotes a continuous
increase in the numerical aperture (NA) of the lithography objective lens. When NA increases
to a certain level, the polarization state of the imaging beam has a non-negligible effect on the
imaging quality, and polarization aberrations must be considered [5–7]. Similarly, polarization
aberrations cause undesirable polarization components (depolarization) that reduce extinction in
the image plane in a high-NA microscope imaging system. The polarization aberrations result

#472316 https://doi.org/10.1364/OE.472316
Journal © 2022 Received 3 Aug 2022; revised 24 Sep 2022; accepted 25 Sep 2022; published 28 Oct 2022

https://orcid.org/0000-0001-6799-2700
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.472316&amp;domain=pdf&amp;date_stamp=2022-10-28


Research Article Vol. 30, No. 23 / 7 Nov 2022 / Optics Express 41848

in four bright quadrants separated by a dark cross, known as the Maltese cross, which is seen
in the exit pupil of a high-numerical-aperture (NA) [8]. This study aimed to design a weak
polarization aberration lens for accurate remote sensing of polarization information. The lens
has the characteristics of high spatial resolution, small size, and large field of view.

Some optical design methods for suppressing polarization aberrations have been proposed.
Banerjee modeled an optical system with six aluminum-coated folding mirrors to suppress
linear diattenuation and retardance [9]. Chipman proposed that the polarization aberrations
of a fold mirror can be compensated by orienting the second fold mirror’s P-polarization with
the S-polarization of the first mirror [10]. However, this method only confirms the theoretical
feasibility and does not provide an actual optical system nor does it analyze the balance between
polarization aberrations and conventional aberrations. Jia designed a reflective coating to reduce
the effects of polarization aberrations [11]. We needed a telescope with a small size and a large
field of view, which is difficult to achieve in a reflecting telescope; therefore, we designed a
catadioptric telescope. The results show that the addition of the lens group can not only correct
traditional aberrations but also suppress polarization aberrations.

In this study, we analyzed the amplitude response curves of different materials to S and P
light at different incident angles and found that the reflectance of the metal coating medium
to S light is always higher than that of P light, whereas the transmittance of the glass medium
to S light is always less than that of P light. Based on this discovery, a design method that
combines reflection and refraction optical groups to reduce polarization aberrations is proposed.
optimizer balances the polarization aberrations, wavefront aberrations, and other constraints to
complete the optical design. A method for calculating the polarization cross-coupled energy
caused by polarization aberrations is proposed by using the orientation Zernike polynomials, and
the polarization cross-coupled energy before and after adding the lens group was analyzed. The
results showed that the cross-coupled energy was reduced 69.80%–73.18% in the full field of
view after suppression, and the MTF of the system was also significantly improved after adding
the lens.

2. Principles and methods

2.1. Polarization aberrations description

Lenses and reflective mirrors are weakly polarized elements. According to Fresnel’s law, the
reflective and refractive coefficients of S-polarized light and P-polarized light are characterized
by [12] ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rs = −
sin(θ1−θ2)
sin(θ1+θ2)

= |rs | eiϕrs

rp =
tan(θ1−θ2)
tan(θ1+θ2)

=
|︁|︁rp

|︁|︁ eiϕrp

ts = 2sinθ2cosθ1
sin(θ1+θ2)

= |ts | eiϕts

tp = 2sinθ2cosθ1
sin(θ1+θ2)cos(θ1−θ2)

=
|︁|︁tp|︁|︁ eiϕtp

, (1)

where rs is the reflective coefficient of S-polarized light; rp is the reflective coefficient of
P-polarized light; ts is the refractive coefficient of S-polarized light; tp is the refractive coefficient
of P-polarized light; θ1 is the angle of incidence; and θ2 is the angle of refraction.

The difference in the reflective and transmissive coefficients between S light and P light
changes the polarization state of incident light. Diattenuation is used to measure the difference in
S and P light transmittance [13]

D =

|︁|︁α2
s − α2

p
|︁|︁|︁|︁α2

s + α
2
p
|︁|︁ , (2)

where α represents reflective coefficient in reflective mirror surface and refractive coefficient
in lenses surface. The retardance characterizes the phase difference between two orthogonal
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polarization components
δ =

|︁|︁φs − φp
|︁|︁ . (3)

If the polarized light is received by a telescope, the amplitude and phase of the two orthogonal
polarization components may be different, and the change in the polarization state of the incident
light by the optical system is called polarization aberrations.

A 2×2 Jones matrix at the exit pupil position can be used to describe the polarization aberrations
function of the optical system. The matrix can be obtained by tracing polarized rays. The Jones
pupil can be expressed as

J(H, ρ, λ) =
⎡⎢⎢⎢⎢⎣

Jxx(H, ρ, λ) Jxy(H, ρ, λ)

Jyx(H, ρ, λ) Jyy(H, ρ, λ)

⎤⎥⎥⎥⎥⎦ , (4)

where H is the object coordinate, ρ is the pupil coordinate, and λ is the wavelength. Jones
matrices contain complex components with amplitudes and phases.

In conventional scalar imaging theory, the point spread function (PSF) is calculated by taking
the Fourier transform of the wavefront function of the exit pupil and assuming that the amplitude
and phase response of S and P light are consistent. However, in sensitive polarization systems,
changes in the polarization state of light must be taken into account. The amplitude response
matrix(ARM), obtained by the spatial Fourier transform of the Jones pupil, is proposed to
describe the amplitude distribution on the imaging plane after the polarized beam passes through
the optical system [14],

ARM =
⎡⎢⎢⎢⎢⎣
F [Jxx(H, ρ, λ)] F [Jxy(H, ρ, λ)]

F [Jyx(H, ρ, λ)] F [Jyy(H, ρ, λ)]

⎤⎥⎥⎥⎥⎦ , (5)

where F is the sign of the Fourier transform, and for a beam of polarized light with a fixed
polarization direction, the energy distribution at the focal plane is the superposition of the product
of the ARM and incident light Jones matrix. The ARM for the catadioptric cassegrain telescope
system is shown in Fig. 1.

Fig. 1. The light intensity of the 2×2 ARM at an on-axis field point is shown for the example
telescope of Fig. 5 normalized by the peak of the XX-component

For unpolarized illumination, the incident X- and Y-polarizations are incoherent with respect
to each other. Hence, the output components ARMXX (X in X out) and ARMYX (X in Y out) are
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coherent with each other but incoherent with ARMXY and ARMYY . Therefore, the point spread
function for an unpolarized source with four additive components,

I = IXX + IYX + IXY + IYY = |ARMXX |
2 + |ARMYX |

2 + |ARMXY |
2 + |ARMYY |

2 . (6)

In Fig. 1, the diagonal elements are close to the well-known Airy disk pattern, but the
off-diagonal elements have much lower intensity and are shown in a Maltese cross pattern. We
refer to these off-diagonal PSF images as the ghost PSFs. The ghost PSFs reduces the imaging
resolution, and it is necessary to take effective measures to reduce the influence of polarization
aberrations.

2.2. Polarization aberrations suppression

According to the Fresnel formula

|ts ||︁|︁tp|︁|︁ = |cos(θ1 − θ2)| , (7)

where θ1 is the angle of incidence and θ2 is the angle of refraction. If θ1 and θ2 are equal, then
the transmittance of S light is equal to that of P light, and the diattenuation is 0. However, in an
optical system, this is impossible. Therefore, when light is refracted in the lens, the transmittance
of S light is always lower than that of P light. Light reflected and refracted from the surface of
the medium satisfies the law of energy conservation, that is,⎧⎪⎪⎨⎪⎪⎩

RS + TS = 1

RP + TP = 1
. (8)

Therefore, when light is reflected from the surface of the medium, the reflectivity of S light is
always greater than that of P light. We analyzed the relationship between the transmittance, phase
and the angle of incidence, as shown in Fig. 2.

Fig. 2. (a)Reflectance of S light and P light on the metal surface and the transmittance on
the lens and AR coated surface. (b)Phase of S light and P light on the metal surface and AR
coating surface

Figure 2 shows the change in the polarization state of light in three typical materials as
light propagates through an optical system. The reflectance of S light on the metal surface is
always greater than that of P light, while the transmittance of S light on the lens surface and
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anti-reflection coating is always less than that of P light. The metal surface has a great influence
on the retardance, while the anti-reflection coating basically does not change the retardance. We
can adjust the incident angle of the light on the mirror appropriately to reduce the retardance.
When a beam of light passes through the reflection optical group, its reflection coefficient satisfies

|rs ||︁|︁rp
|︁|︁ = k, (9)

k is the scale factor. In the Cartesian coordinate system, when a refractive optical group is added
and the light has no polarization aberration, the Jones matrix satisfies

Jdia(d, θ) =
⎡⎢⎢⎢⎢⎣

cosθ −sinθ

sinθ cosθ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 + d 0

0 1 − d

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

cosθ sinθ

−sinθ cosθ

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1 + dcos2θ dsin2θ

dsin2θ 1 − dcos2θ

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎦ ,

(10)

d represents the relative amplitude difference and θ represents the angle between the incident
plane and the meridian plane, respectively. Then, the polarized light refracting in the lens should
satisfy

|ts ||︁|︁tp|︁|︁ = |cos(θ1 − θ2)| =
1
k

. (11)

The optical path of the light entering the lens is shown in Fig. 3.

Fig. 3. Optical path diagram of light refracted on the lens surface

The positive and negative symbols in the figure satisfy the law of symbols; it can be seen that

cos(−u) =
−→
k ·

−→Z
|k| |Z |

, (12)

from the trigonometric relationship,

sin(−u)
r

=
sin(180◦ − θ1)

r − L
=

sin(θ1)
r − L

, (13)

sin(θ1) =
L − r

r
sin(u), (14)

by Snell’s law
n1 sin(θ1) = n2 sin(θ2), (15)
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sin(θ2) =
n1
n2

L − r
r

sin(u). (16)

For convenience of calculation, we let ⎧⎪⎪⎨⎪⎪⎩
N = n1

n2

M = L−r
r

. (17)

Expanding Eqs. (14) and (16) using the Taylor formula, we obtain

θ1 = Mu +
1
6

M(M2 − 1)u3, (18)

θ2 = NMu +
1
6

NM(N2M2 − 1)u3. (19)

Substituting Eqs. (18) and (19) into Eq. (11), the formula for correcting the polarization aberration
becomes

Mu(1 − N)[1 +
1
6

u2M2(1 + N2 + N) −
1
6

u2] = arccos(
1
k
). (20)

When the relative refractive index N, radius of curvature r of the medium, and distance L
between the medium and reflected mirror satisfy the relationship in Eq. (20), the diattenuation
can be suppressed well. In an actual optical system, the coefficient k is assigned to the surfaces
of multiple lenses and an anti-reflection coating. The optical design software changes the radius
of curvature and the thickness of the lens to satisfy Eq. (20). We also wanted to correct the
retardance through the lens group; however, the retardance was caused by the index of the metal
reflective coating being a complex number, and the index of the lens is a real number that cannot
correct the retardance. However, reducing the incident angle of the light on the metal surface can
reduce the retardance to a certain extent.

To design an optical system, a merit function is typically designed to characterize the wavefront
and image quality, and an optimization program adjusts the constructional parameters of the
system to find acceptable configurations. We designed an optimization evaluation function,

Φ
2 =

w1ϕ
2
effl + w2ϕ

2
lens + w3ϕ

2
trac + w4ϕ

2
spha + w5ϕ

2
coma + w6ϕ

2
diat

w1 + w2 + w3 + w4 + w5 + w6
, (21)

w represents the weight, ϕeffl represents the limit of focal length, ϕlens represents the constraints
on the lens boundary conditions, ϕtrac the vertical axis aberration on the image plane, ϕspha

Fig. 4. Optical system design flow chart
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represents spherical aberration, ϕcoma represents coma aberration and ϕdiat represents the limit on
polarization aberration related to Eq. (20) that we write in macro language. The design process
is illustrated in Fig. 4.

3. Results and analysis

3.1. Optical system design results

In this study, two different design results were obtained by continuously changing the weight
factor w6 which limits the diattenuation to 1 and 2. The system consisted of two reflective
mirrors and four lenses with a focal length of 431mm and an F number of 4.31. The wavelength
we analyzed was 500 nm, the coating of all mirrors was bare metal aluminum with a complex
refractive index of n = 0.916 + 1.84i, and the field of view of this optical system was 1◦×1◦.
Table 1 describes the main optical parameters of the Cassegrain telescope system. Design results
as we show in Code 1 (Ref. [15]).

Table 1. Optical parameters of Cassegrain telescopes with different design structures

surf
Radius(mm) Thickness(mm)

Material Conic k Coating
design 1 design 2 design 3 design 1 design 2 design 3

M1 −248.4 −291.3 −294.9 −87.0 −87.0 −87.0 Mirror −1.119754 Aluminum

M2 −116.9 −196.7 −197.3 102.1 50.0 50.0 Mirror −5 Aluminum

L1R1 87.2 394.3 5.0 3.4 H-K9L MGF2

L1R2 380.7 −70.4 6.8 5.1 MGF2

L2R1 223.9 −72.9 5.0 3.6 H-K51 MGF2

L2R2 44.6 −341.7 10.0 2.4 MGF2

L3R1 115.9 −92.5 4.9 4.8 ZF1 MGF2

L3R2 303.6 −72.5 0.5 6.5 MGF2

L4R1 50.0 53.4 2.0 4.2 H-K51 MGF2

L4R2 39.1 32.9 73.1 77.1 MGF2

The structures of the three design results are shown in Fig. 5.

Fig. 5. Cassegrain telescope system structure

3.2. Suppression of diattenuation

We analyzed the polarization aberrations of the system before and after the suppression. To demon-
strate a physically intuitive interpretation of the Jones matrix, the singular value decomposition
(SVD) theorem is used to decompose the Jones matrix into two parts,

J = UDV†=(UDU†)(UV†), (22)

where † is the sign of the conjugate transpose, UDU† is a Hermitian matrix associated with
diattenuation aberration, UV† is a unitary matrix associated with retardance aberration.

https://doi.org/10.6084/m9.figshare.21213071
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The diattenuation and retardance distribution of the central field of view for the three design
results is shown in Fig. 6, where the length of the line and the color of the line position represent
the value of diattenuation and retardance, the orientation of the line shows the axis of maximum
transmission in diattenuation pupil and the fast axis in retardance pupil. Both before and after
suppression, the diattenuation and retardance gradually increases from the center to the edge
because as the incident angle increases, the difference between the transmission and phase
coefficients of S and P light gradually increases, as shown in Fig. 2. As shown in Fig. 6, with
an increase in the weight factor for suppressing diattenuation, the diattenuation of the optical
system is gradually suppressed. The maximum diattenuation of the system caused by the two
reflective mirrors is 4.44% and the average value of diattenuation is 2.27% in design 1, after use
lenses group suppression in design 3, the maximum diattenuation of the entire system is 2.09%
and the average value of diattenuation is 1.11%. The maximum retardance of the system caused
by the two reflective mirrors is 1.58% and the average value of retardance is 0.8% in design 1,
the maximum retardance of the entire system is 1.16% and the average value is 0.59%. When
unpolarized light, such as starlight, is incident, diattenuation is equal to the degree of polarization
(DoP) of the exiting light. Because of the diattenuation and retardance, light incident in states
different from S and P have some fraction of the energy coupled into the orthogonal polarization,
and reducing the diattenuation can effectively reduce the coupled energy [16,17,18].

Fig. 6. Diattenuation and retardance pupil distribution of the central field of view of the
three design

3.3. Jones pupil

Each ray through the optical system has a associated Jones matrix, which describes the polarization
change. The polarization aberration function is the set of Jones matrices expressed as a function
of pupil coordinates and object coordinates. The set of Jones matrices for a specified object
point is called the Jones pupil, which has the form of a Jones matrix map over the exit pupil.
Jones pupil is represented by a set of 2×2 Jones matrices and contains complex components with
amplitude and phases, which is an image description of Equation(4). The Jones pupil of the three
Cassegrain telescope systems are shown in Fig. 7.

On the whole, a small deviation of the Jones pupil from the identity matrix is due to polarization
aberrations. The values of diagonal elements Axx and Ayy are smaller than 1 because of reflection
and refraction losses. The amplitudes of off-diagonal elements Axy and Ayx are evidently smaller
than those of the diagonal elements, but it causes the appearance of polarization cross-coupled
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Fig. 7. Jones pupil distribution of the central field of view of the three design



Research Article Vol. 30, No. 23 / 7 Nov 2022 / Optics Express 41856

energy. The phase of the diagonal elements ϕxx and ϕyy are continuously changing. In contrast,
the off-diagonal elements ϕxy and ϕyx change discontinuously because the phase of a complex
number changes by π when amplitude passes through zero due to the Fresnel’s law. Axy and Ayx
are highly apodized, showing a Maltese cross pattern. At the same time, we found that after
adding the lens group for optimization, the value of Axy and Ayx are significantly reduced, which
will reduce the polarization coupled-energy and reduce the influence of polarization aberration
on the imaging quality.

3.4. Suppression of polarization cross-coupled energy

It is difficult to directly observe the effect of correction on the polarization cross-coupled
energy with the diattenuation and retardance pupil. To calculate the total cross-coupled energy
the diattenuation and retardance pupil need to be decomposed first. Johannes Ruoff and
Michael Totzeck proposed an Orientation Zernike Polynomial (OZP) method as a base function
representation of retardation and diattenuation, which are most relevant for vector imaging [19].

Using SVD, the Jones matrix J can be defined in terms of physical properties:

J = teiΦJpol(d, θp)Jret(ϕ, θr), (23)

where Jpol represents the diattenuation; Jret represents the retardance; t and Φ represent the mean
transmission and phase, respectively; d and ϕ represent the relative amplitude difference and
relative phase difference, respectively; and θp and θr represent the bright axis direction and fast
axis direction [20], respectively. Jpol and Jret can be expressed as follows:

Jpol(d, θp) =
⎡⎢⎢⎢⎢⎣

1 + dcos(2θp) dsin(2θp)

dsin(2θp) 1 − dcos(2θp)

⎤⎥⎥⎥⎥⎦ , (24)

Jret(ϕ, θr) =
⎡⎢⎢⎢⎢⎣

cosϕ − isinϕcos(2θr) −isinϕsin(2θr)

−isinϕsin(2θr) cosϕ + isinϕcos(2θr)

⎤⎥⎥⎥⎥⎦ . (25)

We used OZP to decompose the diattenuation and retardance further:

Jpol = I +
∞∑︂

j=1
Cj · OZj, (26)

where I is a 2×2 unit matrix, Cj is the OZP coefficient, and OZj is the OZP term.
We obtained the diattenuation and retardance pupil under different fields of view before and

after correction, and then used OZP to decompose it; the coefficients of different OZP terms after
decomposition are listed in Fig. 8.

The horizontal axis in Fig. 8 represents different OZP terms; the vertical axis represents the
coefficient of the OZP term; the vertical bars of different colors in each term represent different
fields of view. The first nine terms are listed in Fig. 8, the higher order terms are very close to
zero, it can be seen that the diattenuation and retardance pupil is mainly decomposed into three
parts:OZ1, OZ3 and OZ5,

Jpol = I + C1OZ1 + C3OZ3 + C5OZ5

= I + C1

⎡⎢⎢⎢⎢⎣
1 0

0 −1

⎤⎥⎥⎥⎥⎦ + C3

⎡⎢⎢⎢⎢⎣
ρsinθ −ρcosθ

−ρcosθ −ρsinθ

⎤⎥⎥⎥⎥⎦ + C5

⎡⎢⎢⎢⎢⎣
ρ2cos2θ ρ2sin2θ

ρ2sin2θ −ρ2cos2θ

⎤⎥⎥⎥⎥⎦ .
(27)
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Fig. 8. OZP coefficients before and after suppression

It has been proposed to use Pauli spin matrices σi as a more intuitive basis for calculating the
coupled energy [21]. Defining

σ0 =

⎡⎢⎢⎢⎢⎣
1 0

0 1

⎤⎥⎥⎥⎥⎦ ,σ1 =

⎡⎢⎢⎢⎢⎣
1 0

0 −1

⎤⎥⎥⎥⎥⎦ ,σ2 =

⎡⎢⎢⎢⎢⎣
0 1

1 0

⎤⎥⎥⎥⎥⎦ ,σ3 =

⎡⎢⎢⎢⎢⎣
0 −i

i 0

⎤⎥⎥⎥⎥⎦ , (28)

any Jones matrix can be written as:

J =
3∑︂

i=0
aiσi, (29)

with complex coefficients, ai. Examining the eigenvalues and eigenvectors of the Pauli matrices
shown that σ1 possesses linearly x/y-polarized eigenvectors, σ2 possesses linearly 45 deg/135
deg polarized eigenvectors, whereas σ3 corresponds to right/left circularly polarized states. The
identity matrix σ0 approximately represents the nonpolarizing part of the Jones matrix. The



Research Article Vol. 30, No. 23 / 7 Nov 2022 / Optics Express 41858

three terms of the diattenuation pupil decomposed by OZP theory can be expressed by the Pauli
matrix as

OZ1 = σ1,
OZ3 = ρsinθσ1 − ρcosθσ2,

OZ5 = ρ
2cos(2θ)σ1 + ρ

2sin(2θ)σ2,
(30)

OZ1 is the diattenuation piston, OZ3 the diattenuation tilt, and OZ5 the diattenuation defocus.
Figure 8 shows that the coefficients of these terms are related to the field of view. The coefficients
of OZ1 and OZ3 are proportional to the square of the field of view, the field of view, respectively,
while the coefficients of OZ5 is almost independent of the field of view. These observations are
consistent with the theory proposed by Chipman in 1987 [13]. The diattenuation and retardance
pupil can be decomposed using the Pauli matrix into⎧⎪⎪⎨⎪⎪⎩

Jdia = σ0 + (d1 + d3ρ sin θ + d5ρ
2 cos(2θ))σ1 + (d5ρ

2 sin(2θ) − d3ρ cos θ)σ2

Jret = σ0 − i((∆1 + ∆3ρ sin θ + ∆5ρ
2 cos(2θ))σ1 + (∆5ρ

2 sin(2θ) − ∆3ρ cos θ)σ2)
, (31)

d represents the coefficient of OZP decomposition for diattenuation, and ∆ represents the
coefficient of retardance for OZP decomposition. The fraction of incident X or Y polarization
coupled into the orthogonal polarization state is determined by integrating the off-diagonal
elements (the σ2 term) magnitude squared |JYX |

2 or |JXY |
2 over the pupil, and normalized by π,

the area of the pupil,

FXY =

∫ 2π
0

∫ 1
0 |JXY |

2 ρ dρ dθ∫ 2π
0

∫ 1
0 ρ dρ dθ

=
d2

3 + ∆
2
3

4
+

d2
5 + ∆

2
5

6
, (32)

FXY is the fraction of incident Y-polarized flux contained in the IXY image integrated over the
image. FXY is quadratic in the tilt and defocus terms; therefore, an order of magnitude reduction in
these polarization aberrations reduces the ghost brightness by two orders of magnitude. As shown
in Fig. 8, the coefficient of diattenuation defocus in different fields of view after suppression has
decreased overall, while the coefficient of diattenuation tilt increases, and we calculate the FXY
results under different fields of view, as shown in Fig. 9.

Fig. 9. Polarization cross-coupled energy before and after correction in different fields of
view

It can be seen that the polarization cross-coupled energy of the system is reduced to varying
degrees under the full field of view. The polarization cross-coupled energy of the center field of
view is reduced by 73.18% and the polarization cross-coupled energy of the edge field of view is
reduced by 69.80%.
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3.5. Effect on modulation transfer function

The modulation transfer function (MTF) of the optical system should include the effect of
polarization aberration. The distribution of flux and polarization in the image of an incoherent
point source, can be described with a 4×4 Muller matrix Point Spread Matrix (PSM), this PSM
is calculated by the transformation of the ARM’s Jones matrices into Mueller matrix functions
[22]. We calculated the PSM of the optical system using the Design 1 and Design 3 results as an
example, as shown in Fig. 10.

Fig. 10. The 4×4 point spread matrix for the Cassegrain telescope’s on-axis image

The red box on the left (M11, M21, M31, M41) is the resultant Stokes parameter image
for a collimated beam of unpolarized incident light, such as an unpolarized star. M11 is the
total energy of the unpolarized light enter the optical system, for incident light with different
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polarization states, multiply it with PSM to get the outgoing Stokes vector. By comparing the
PSM of Design 1 and Design 3, we found that except for the diagonal term, the energy of other
terms has been significantly reduced, which means that adding a lens group can reduce the
influence of polarization aberration.

The design optimization of an optical system is a process of seeking the optimal solution
under multiple constraints, and it is possible that in order to suppress polarization aberration,
conventional aberration correction becomes bad. We obtained different design results by changing
the weight of polarization aberration correction in the optical design software and analyzed the
modulation transfer function(MTF) of the optical system. The results are shown in Fig. 11.

Fig. 11. The MTF of the Cassegrain telescope system of three designs

The MTF shown in Fig. 11 includes the effects of polarization aberrations when unpolarized
light is incident. The energy distribution of the point spread function contains the polarization
cross-coupled energy, and the calculated MTF is the absolute value of the Fourier transform of
the PSF. In Design 1, the system consists of only two mirrors, and its field of view is limited to
0.3◦; if the field of view is increased to 1◦, its image quality will be very poor. At the same time,
we can see from Fig. 11 that even if we reduce the field of view in Design 1, its MTF is still not as
good as the result after adding the lens group, this is due to the lens group provide more variables
for the system’s aberration correction. In Designs 2 and 3, we gradually increased the weight of
suppressing polarization aberration and found that under the two designs, the MTF curve has a
slight fluctuation, and the overall image quality is similar, and was close to the diffraction limit.
This means that we can suppress both polarization aberration and conventional aberration. The
design results require the designer to achieve a balance between the polarization aberrations and
other constraints.

4. Conclusions

In addition to wavefront aberrations, polarization aberrations are inevitable in any optical system.
It has become an important project through reasonable design to reduce the effect of polarization
aberration. The basic idea is to find materials with opposite characteristics to compensate for
each other, and this study found that the diattenuation characteristic of the metal reflective coating
and the glass material show the opposite characteristic. Combining the reflection and refraction
optical group to design can effectively reduce the polarization aberration.

This study derived the principle of diattenuation suppression and analyzed the polarization
aberration of the system before and after the addition of the refraction optical group. The
simulation results show that after adding the refraction optical group, the average value of the
diattenuation of the system reduces by 51.1%, and the average value of retardance is reduced
by 26.3%. Diattenuation and retardance result in polarization cross-coupled energy, which
was calculated before and after correction for the full field of view. The results show that the
polarization cross-coupled energy reduces by 73.18% in the central field of view and 69.80%
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in the edge of the field of view. Adding a lens group also reduces the traditional aberration,
which enables expansion of the field of view of the system. The simulation results show that
the combination of reflection and refraction optical groups can reduce diattenuation, thereby
reducing the polarization cross-coupled energy and improving the MTF curve.
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