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Abstract

A fast subpixel image registration method is proposed in this paper. The implementation of this method is divided into two steps:
coarse registration and fine registration. In the coarse registration stage, we propose a strategy to combine image pyramid
with phase correlation; in the fine registration stage, we propose a strategy to perform local upsampling in the frequency
domain through matrix multiplication. We compared our algorithm with traditional-feature-based and direct methods, as well
as unsupervised learning algorithms. Our empirical results show that compared with traditional methods, our method achieves
faster speed, while maintaining equivalent or better accuracy and robustness. In addition, compared with unsupervised learning
algorithms, our method can be applied to real-time systems with higher speed requirements, better performance for cases

with less overlapping regions, and better robustness to noise.

Keywords Subpixel registration - Pyramid phase correlation algorithm - Image upsampling - Matrix-multiply

1 Introduction

Image registration is the process of overlaying two or more
images of the same scene captured at different times from
different viewpoints and/or by different sensors [1—4]. This
is a crucial process in many image processing applications
involving the analysis and integration of multiple images;
these applications include scene change detection, image
mosaic analysis, and image fusion. Although pixel-level
registration may be adequate in many applications, some
important problems in remote sensing [5—7], medical imag-
ing [8—12], and biomedical imaging [13—15] have introduced
the requirement of high-precision registration. For panoramic
target detection, fast, accurate, and reliable image registra-
tion is also required.

Direct method and feature-based method are two tradi-
tional methods of image registration [16]. Direct methods,
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such as the Lucas—Kanade algorithm [17], perform image
matching by moving or distorting the image and comparing
pixel intensity values using error metrics. The robustness of
the direct method can be improved by using different per-
formance criteria, such as enhanced correlation coefficient
(ECC) [18], representing the image in the Fourier domain
[19], and combining the feature-based method with the direct
method [20]. The second method is a feature-based method.
These methods first use scale-invariant feature transform
(SIFT) [21] or other local invariant features to extract fea-
ture points in the image. Then, feature matching is used to
establish the relationship between the two sets of key points,
and RANSAC [22] is used to find the best matching point.
These methods have better performance than direct meth-
ods, but if enough key points are not detected, or incorrect
key point correspondence is generated due to viewpoint dif-
ference and illumination between images, this method will
fail [23]. In addition, although the feature-based method is
much faster than the direct method, the calculation speed of
features is still very slow. Although more efficient algorithms
such as fast orientation and short rotation (ORB) [24] are pro-
posed, their performance is poor. In recent years, inspired
by the success of data-driven depth convolution neural net-
work (CNN) in computer vision, a large number of studies
have used CNN methods to estimate optical flow [25-27],
dense matching [27,28], depth estimation [29], and homog-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-022-02158-7&domain=pdf
http://orcid.org/0000-0002-7817-8250

1974

Signal, Image and Video Processing (2022) 16:1973-1979

raphy estimation [30], so as to realize image registration. The
most representative unsupervised method [31] improves the
traditional supervised learning method by minimizing the
pixel-level intensity error measurement that does not need
ground real data [30].

Phase correlation is based on the translation property of
FT; it transforms the displacement of two correlated images
in the spatial domain into a phase difference in the fre-
quency domain. Because only phase information is used, the
dependence on image intensity and content is reduced, which
makes the method invariant to global linear variations in con-
trast and brightness. Therefore, phase correlation is robust to
frequency-dependent noise, large intensity differences, and
time-varying illumination disturbances [32]. Inspired by this,
this paper proposes a subpixel image registration algorithm
based on pyramid phase correlation and local upsampling.
The image pyramid and phase correlation algorithms are
combined to achieve coarse registration, and the calcula-
tion speed is accelerated by reducing the registration image
resolution. For the precise registration stage, this paper pro-
poses amethod for local upsampling in the frequency domain
through matrix multiplication. Compared with the method
of spatial interpolation through zero filling in the frequency
domain, this algorithm considerably improves the computa-
tional efficiency. The algorithm considers the position of the
coarse registration step as a parameter to construct the upsam-
pling matrix and obtains the subpixel translation through the
inverse Fourier transform in the matrix form. The algorithm
is implemented in the frequency domain, and the inverse fast
Fourier transform is applied in the local domain.

We prove that compared with the SIFT algorithm and ECC
algorithm, the pyramid phase correlation algorithm achieves
faster speed, while maintaining equivalent or better perfor-
mance for cases with less overlapping regions and better
robustness to noise. In addition, our algorithm is faster than
unsupervised learning algorithms, so our algorithm can be
applied to real-time systems with higher speed requirements
and has better robustness.

This paper is organized as follows. In the next section, the
theoretical basis of the image registration algorithm is pre-
sented. In Sect. 3, the improved subpixel image registration
algorithm is described. In Sect. 4, the numerical simulation
results are presented. Finally, in Sect. 5, the paper is con-
cluded, and directions for future research are presented.

2 Theoretical basis of image registration
algorithm
2.1 Phase correlation algorithm

In processing terms, the correlation between two image sig-
nals can be achieved by their convolution, which, in turn,
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can be used to compare the similarities between the images.
In addition, when the image is analyzed in the frequency
domain, its Fourier spectrum contains both modulo and phase
information. The first represents the gray-level information
of the image, whereas the second represents its texture and
structure information. For an image [(x, y), its complex
spectrum /¢ (u, v) includes both amplitude and phase infor-
mation; in turn, the latter contains the original image position
I(x,y). Then, by calculating their correlation, the difference
between the images can be obtained, thereby enabling their
registration. Therefore, using the phase spectrum match-
ing method, the proposed phase correlation algorithm can
solve the image registration problem through simple shifting.
The phase correlation algorithm is a popular Fourier domain
method used to register two images. It computes a phase dif-
ference map that (ideally) contains a single peak. The peak
location is proportional to the relative translation [dx, dy]
between the two images [33]. This algorithm is equivalent
to correlation in the spatial domain, but the calculation is
orders-of-magnitude faster in the Fourier domain. The math-
ematical details are as follows:

Consider two identical images i1 and i2, with i2 shifted
by an amount [Ax, Ay] relative to i 1:

i2(x,y) =il(x — Ax,y — Ay). (1)

These images satisfy the following periodic boundary con-
ditions:

il(M+x,N+y) =il(x,y) 2)

where the image size is M x N pixels. Denote the Fourier
transforms of i1 and i2 as /1 and 2, respectively. From the
Fourier shift theorem, /1 and /2 differ only by a linear phase

term j 271(“/@" + vﬁy ). In particular,

: ulAx | vAy
T +5 )

120, v) = I1(u, v)e > (44 3)
where 12(u, v) and /1(u, v) are the corresponding Fourier
transforms of i2(x, y) and i1(x, y). The normalized cross-
power spectrum of the images, C12, is defined as follows:

* 7 . ulAx | vVAy
12%conj(I1) _e_jzﬂ(T_,_ >)

C12(Ax, Ay) = —— 0D v
(A AY) = s coni (T D)]

“)

The operator * is the Schur product (also known as the

Hadamard element-by-element matrix product) and conj is
the complex conjugate operator.

Equation 5 is an inverse Fourier transform of C12. The
result is a two-dimensional Dirac delta function §(x —
Ax,y — Ay) with a peak location corresponding to the dis-
placement [Ax, Ay] between the two images. Finally, the
coordinates corresponding to the function peak point can be



Signal, Image and Video Processing (2022) 16:1973-1979

1975

obtained, which, in turn, can be used to calculate the required
registration position.

_ o (uAx  vAy
.7:_1(6 12(M+N)>=8(x—Ax,y—Ay) 5)

2.2 Image pyramid principle

An image pyramid consists of a sequence of copies of an
original image in which both sample density and resolution
are decreased in regular steps. The reduced resolution levels
are obtained through an efficient iterative algorithm [34,35].
For example, a pixel in an upper layer of an image pyramid
summarizes four pixels in the next layer [36]. If multiple
pyramid scaling operations are performed, image processing
speeds increase exponentially. A five-tap filter was used to
generate the image pyramid shown in Fig. 1. The bottom or
level zero of the pyramid, Gy, is the original image. This is
low-pass-filtered and subsampled by a factor of two to obtain
the next pyramid level, G1. G is then filtered in the same
manner and subsampled to obtain G,. Further repetitions
of the filter/subsample steps generate the remaining levels.
In particular, the pyramid levels are iteratively obtained as
follows. For0 </ < N :

Gili, )= Yy wim,mG_1Qi+m,2j+n) (6

The weighting function w(m, n) is referred to as the ‘gen-
erating kernel’.

3 Improved subpixel image registration
algorithm

The subpixel image registration algorithm flow based on
pyramid phase correlation and upsampling is shown in Fig. 2.
The main steps of the algorithm are as follows:

Fig.1 Gaussian pyramid. Original image, Gy, is repeatedly filtered and
subsampled to generate the sequence of reduced resolution images G,
G, and so on. These reduced resolution images are a set of low-pass-
filtered copies of the original image in which the bandwidth decreases
in one-octave steps

x_shift =2x,_shift + x,_shift
y_shift =2y, _shift+y,_shift
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Yo_shift
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i Level 0 i
< x,_shift ¥, _shift
DECIMATION i DECIMATION
< —— <
1 [
et phase corrlaionft———
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(a) rough positioning

K-times upsampling in the 1.5x1.5 pixel neighborhood of
the coarse positioning point (x_shift, y_shift), phase
correlation based on matrix-multiply DFT

l

Search correlation maximum

x_upshift l y_upshift

x =x_shift+ x_upshift / n
y=y_shift+y_upshift / n

(b) fine positioning

Fig.2 Flowchart of the subpixel image registration algorithm based on
pyramid phase correlation and upsampling

(1) Rough positioning, using the pyramid phase correlation
to obtain the translation amount (x_shift, y_shift).
Firstly, the reference and sensed images with half the
resolution are obtained at level 1 by downsampling these
images at level 0, and using the phase correlation to obtain
the translation (xi_shift, yj_shift). Secondly, phase
correlation is used to match the sub-images in the two red
boxesinlevel O to obtain the offset (xo_shift, yo_shift).
In general, the vertices in the top left corner of the
red box in the reference image are the vertices offset
(2x1_shift,2yi_shift), which matches the vertices in
the top left corner of the red box in the sensed image.
The selection criteria of the red boxes first determine
the red boxes position in the sensed image and then
determine the red box position of the reference image
based on the red box position in the sensed image
and the (xj_shift, yi_shift). The position of the red
boxes in the sensed image can be selected in advance
for areas with more textures and obvious gray changes.
The selection of the red box is to accelerate the reg-
istration speed, and the red frame length is half of the
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reference image or sensed image; this selection method
can reduce the calculation amount to 1/4. Finally, the
pixel-level shift (x_shift, y_shift) = (2xj_shift +
xo_shift,2y;_shift + yo_shift) is obtained.

(2) Fine positioning. A 2D FFT is the most efficient approach
when computation of all points of the upsampled cross-
correlation is required. Unfortunately, the FFT is restricted
to computing the entire unsampled array, of dimensions
(kM, kN) where upsampling factor k, M, and N are
the image dimensions, resulting in an enormous waste
of resources if we are interested only in computing an
upsampled version of C12 in a very small neighborhood
about the initial estimate of the peak location. The advan-
tage of a matrix-multiply DFT results from the fact that
an upsampled version of C12 can be computed within

just such a neighborhood without the need to zero-pad
12*conj(I1)
[12¥conj(I1)|"

The matrix-multiply DFT uses the properties of the matrix
to implement the Fourier transform of the partial point
sequence. Given a one-dimensional discrete signal f(X),
X = (xq, X1, ...,xy—1)T, Fourier transform of the signal
in matrix form is defined as

FU)=E- f(X) @)

where U = (ug, uy, ..., uNB_l)T and

e—j2ﬂx0u0 e—j2nxkuo e—jZJTXN_lu()
E = e—j2nx0uk e—./ZJTXkuk e—j2an,1 Ug (8)
o IITXOUNE—1 ||| o2 UNE—1 |||y I 2N UNE-

Equation 7 is the Fourier transform (FT) in matrix form
deduced from the representation by Riemann sum of con-
tinuous FT; however, if Np is equal to N, Eq. 7 is the DFT
of the signal.

By extending the one-dimensional matrix-multiply DFT
expression directly to the two-dimensional matrix-multiply
DFT, the two-dimensional matrix-multiply DFT sequence
f(X,Y) can be expressed as a matrix product

FU,V)=E - f(X.,Y)-E» 9
In the expression: E; = e_ﬂ”UXT, E, = e‘-izﬂYVT;
U = (uo,ur, ..., ung—1)T, V. = (0,01, ..., on5-1)1;
X = (X0, X15 -+ XN, -1 Y = (Y0, Y1y - s YN T3

According to the matrix Fourier transform in Eq. 9,
the inverse Fourier transform of the upsampling matrix is
derived, given an input m = 1.5 (usually 1 < m < 2), the
size of upsampled region, and «, the precision coefficient in
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spatial domain, and (x_shift, y_shift), the rough position-
ing point. The discrete frequency spectrum corresponds to
a continuous periodic signal in spatial domain; therefore, in
order to obtain a higher-resolution spatial domain signal, we
can increase the sampling rate of the signal. It is assumed
that the sampling step is 1/« < 1 pixel. (¢ > 0 is the preci-
sion coefficient which can be specified by users.) The initial
localization point is in the phase correlation spectrum, and
the phase correlation peak may be anywhere in the rectangle
with the initial localization point as the center and m as the
side length.

The upsampling matrix inverse Fourier transform on L is
defined on the basis of the matrix FT:

. 177T . /T
eI2XUS L F(U, V)elP VYT X' eLandX' €L

I v
JXLY) = 0 else
(10)
Where
e om , . m
L=l x_shift 7> <x <x_shift+ > (an

Cy_shift =% <y <y_shift+%

where X’ and Y’ are spatial distributions of the upsampling,
X and Y are spatial distributions of C'12.

The discrete spectrum corresponds to the periodic signal in
the spatial domain. In order to obtain a higher-resolution spa-
tial domain signal, we are here to increase the sampling rate
of the signal. The matrix multiplication DFT is used to obtain
the k -time upsampled region in the 1.5 x 1.5 neighborhood of
the rough positioning point (x_shift, y_shift). This oper-
ation is implemented by the product of three matrices with
dimensions (1.5«, N), (N, M),and (M, 1.5«). Subpixel reg-
istration is achieved by searching for the peak in the output
(1.5k, 1.5k) array (in units of upsampling pixels). The pixel-
level translation is obtained by calculating the phase corre-
lation of the upsampling region (x_upshift, y_upshift).
Considering the upsampling multiple «, the translation
(x_upshift/k, y_upshift/k) of the subpixel is obtained.
Therefore, the translation A = (x, y) based on phase corre-
lation and upsampled image registration is

{x:x_shift + x_upshift/n (12)
y=y_shift + y_upshift/n

In this study, the pyramid phase correlation is used to
obtain the rough-positioning point in the original image
and the fine-positioning point after « -time area upsampling.
Because the pyramid phase correlation rough positioning
has pixel-level precision, the fine-positioning region is set
to be 1.5 x 1.5 centered on the rough-positioning point, to
ensure that the precise subpixel-level positioning point is
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in this region. To obtain higher positioning precision with-
out increasing the calculations, the upsampling multiple « is
taken as 100, and then the inverse Fourier transform is per-
formed in the 150 x 150 region to obtain the fine-positioning
peak, that is, when the positioning precision reaches 0.01
pixels.

4 Numerical simulations

For practical real-time applications, the speed required for
an image registration algorithm is often higher for offline
processing. In addition, it needs to be strongly robust for
cases in which the target is less overlapping regions. In
order to verify the performance of our algorithms, it is
compared with the traditional-feature-based SIFT algorithm
and direct method ECC algorithm, and the newly proposed
unsupervised homography estimation algorithm based on
deep learning. The ECC direct method and our method are
standard Python OpenCV implementation, while the feature-
based approaches are Python OpenCV implementations of
SIFT RANSAC and the deep learning approaches are imple-
mented in TensorFlow.

The intended use of our algorithm is in panoramic target
detection system, which needs high-precision image reg-
istration in real time for subsequent target detection and
recognition. This requires fast and accurate image registra-
tion. We used MS-COCO data to generate test data sets in
the same way as in paper [31].

We select 5000 pairs of images from the test data set, of
which the image resolution is 320 x 240, and get the average
time-consuming of each registration. The registration time
comparison of various algorithms is shown in Fig. 3. Unsu-
pervised CPU and unsupervised GPU are the versions of
unsupervised homography estimation algorithm CPU and
GPU, respectively. As can be seen from Fig. 3, the time
consumption of ECC and SIFT algorithms is much higher
than our algorithms and unsupervised learning algorithms.
Although the time consumption of unsupervised GPU when
using GPU is lower than that of unsupervised CPU, it is still
slightly higher than our algorithm. It must be noted that our
algorithm only uses the form of two-layer pyramid in the
coarse registration stage. For the case of larger image resolu-
tion, we can use more layers of pyramid form. Therefore, our
algorithm is the most advantageous for real-time registration.

In order to study the effect of overlap rate on matching, we
take the 5000 sets of images used earlier as test data and crop
each image in two parts. In the subsequent test experiments
with different overlap rates, the image on the left is used
as a reference image; according to the pixel value ratio of
85% overlap rate, calculate the position of the positioning
pixel value and crop out the sensed image of the same size as
the reference image in the original image. Similarly, images

Time-consuming comparison of different methods
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100

50

04 ||
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U\Jnsupe"“"E'ed‘GP\J

N - rs
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Fig.3 Time taken by various algorithms to achieve image registration

with 75% and 65% overlap rate can be cropped. The obtained
three groups of sensed images are, respectively, tested with
the corresponding reference images.

We use the root-mean-square distance (RMSD) between
the real result and the calculated result as the error measure.
The results of each method are broken down by overlap and
performance percentile in Figs. 4, 5, and 6. The unsupervised
homography estimation algorithm, SIFT algorithm, and ECC
algorithm are used for image registration by estimating
homography matrix. Referring to the analysis methods in
the paper [31], we break down the results by performance
percentiles to illustrate various performance summaries for
each method. Specifically, SIFT performs well in 60% of
cases, butin the worst 40% of cases, it performs poorly, some-
times completely failing to detect enough features to estimate
homography. On the other hand, the unsupervised homogra-
phy estimation algorithm has more stable performance, but

85% Overlap

10

-@- ECC

SIFT

—A— Unsupervised
8T =< ours
6 A///:%/i
4

2 ./

RMSD

/

T T
Top 30-60% Top 60-100%
Performance Percentile

0 U
Top 0-30%

Fig. 4 RMSD values of different performance percentiles for various
algorithms at an overlap rate of 85%
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Fig. 5 RMSD values of different performance percentiles for various
algorithms at an overlap rate of 75%

65% Overlap
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—4— SIFT /*
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40
" /%

- % X

0 ¥ T T

Top 0-30% Top 30-60% Top 60-100%
Performance Percentile

Fig. 6 RMSD values of different performance percentiles for various
algorithms at an overlap rate of 65%

the RMSD is still larger. Both the unsupervised homography
estimation algorithm and the feature-based method outper-
form direct methods (ECC), and our method achieves better
performance at all performance percentiles. By comparing
the RMSD values of the calculation results of each algorithm
under different overlap rates, it can be seen that the lower
the overlap rate, the worse the performance of various algo-
rithms, but our algorithm can maintain good performance at
different overlap rates.

In order to verify the robustness of the algorithm to noise,
we add different degrees of Gaussian white noise to the test
data. Three groups of data, 5000 pairs of images in each
group, were used in the experiment. Their signal-to-noise
ratios (SNRs) were 5dB, 20dB, and infinity without noise.
The offset of the image is set to subpixel-level offset. The
experimental results are shown in Fig. 7. When there is no
noise in the image, all algorithms can achieve subpixel reg-
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Fig.7 RMSD values of registration results of various algorithms under
different SNRs

istration accuracy. Our algorithm and ECC algorithm have
good registration effect even when the SNR is very poor;
unsupervised learning algorithm makes the registration result
worse with the decrease in SNR; SIFT algorithm is basically
unaffected at high SNR, but serious errors will occur at low
SNR, because the algorithm mistakenly regards the noise
points as feature points. The results show that our algorithm
has the best registration performance in the presence of noise.

5 Conclusions

In this work, a subpixel image registration algorithm is pro-
posed. It uses a pyramid phase correlation algorithm for
rough positioning and matrix-multiply upsampling and phase
correlation for fine positioning. We compared our algorithm
with traditional-feature-based and direct methods, as well as
an unsupervised learning algorithms. Our empirical results
show that compared with traditional methods, our method
achieves faster speed, while maintaining equivalent or bet-
ter accuracy and robustness. In addition, compared with
unsupervised learning algorithms, our method has better per-
formance for cases with less overlapping regions and better
robustness to noise. The main advantage of this algorithm is
its high speed, which is more suitable for scenes with high
speed requirements, such as real-time registration and display
of images. Our method is only suitable for image registration
situations with only translation at present. For more registra-
tion situations, it will be gradually completed in future work.
Later, it can be used for remote sensing image registration
considering scaling, rotation, projection transformation, and
other situations. In the future, it can also be considered to
expand to the field of 3D image registration for medical image
registration.
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