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ABSTRACT Marine oil spills accidents has caused a large amount of crude oil to leak into the marine
environment and threaten marine ecological environment. Hyperspectral remote sensing images (HRSI)
technology can quickly and accurately identify oil film of different thickness on marine surface. In order
to overcome the traditional spectrum analysis method and space extraction method of long time sampling,
calculation, analysis and other shortcomings. On account of the advantages of the spectral and spatial
information in the field of HRSI classification, a spectral-spatial features extraction (SSFE) method based
convolutional neural networks (CNNs) was proposed to analyse oil spills. In this way, one and two
dimensional models based on convolutional neural networks (1D-CNN,2D-CNN) have been introduced as
the spectral and spatial features extractor.When extracting spatial features, double-two convolution layers are
connected to increasing nonlinearity and reduce the number of parameters. Furthermore, in order to address
overfitting and imbalance samples, L2 regularization, class_weight and drouput is added to classes data
modeling. More importantly, principal component analysis (PCA) is applied to data dimension reduction,
1D-CNN and 2D-CNN is combined into a unified model further extract the joint spatial-spectral features.
To evaluate the effectiveness of the proposed approach, three hyperspectral datasets were utilized, including:
University of Pavia dataset, oil spill area 1, oil spill area 2. Experimental results reveal that the proposed
method have a very satisfactory performance and better distinguish oil spills.

INDEX TERMS Marine oil spills, hyperspectral remote sensing images (HRSI), convolutional neural
networks (CNNs), spectral-spatial features extraction (SSFE).

I. INTRODUCTION
Oil spills accidents are generally characterized as causing
enormous economic losses and unbalance of the marine
ecosystem due to human activities [1]. Pipeline leakage and
marine transportation accidents generally leads to themassive
oil spills incidents around the world. Offshore oil tankers
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release a significant amount of oil. The threat to aquatic
ecosystems is much greater than other sources of pollution
[2], [3]. Thus, it is important to detect floating oil slicks
accurately.

Hyperspectral remote sensing images (HRSI) contain sev-
eral hundreds of spectral data channels of the same view
and have the characteristics of high spectral resolution and
a lot of data and have been used in many domains [4]–[8].
Jinghui et al. [9] have proposed a joint collaborative
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representation by using the locally adaptive dictionary [9].
It cuts down the negative influence of unprofitable pixels and
increases HRSI classification performance. Fang et al. [10]
have used the local covariance matrix to encode the rela-
tionship between different spectral bands. In traditional
classification methods, such as random forests (RF) [11],
decision tree [12], neural network (NN) [13] and support
vector machine (SVM) [14]. These methods only consider
the spectral characteristics of the HRSI information, ignored
the spatial information of hyperspectral image classification
in the important role of loss of hyperspectral image spatial
structure information, resulting in the classification accuracy
is not high.

The number of studies related to oil spills that employed
deep learning models has increased since 2017. These mod-
els were applied to a variety of different tasks, such as oil
spill detection and identification [15], [16], image classifi-
cation based on patch [17]–[19], and image segmentation
and description [20]–[26]. Relying on the neural network
framework, deep learning (dl) models can vary based on their
structure, elements, and assignments, which can make up
convolution layers, pooling layers, fully connected layers,
activation functions, storage locations, gates, decoder, and
others [27]. Commonly used dl models include convolutional
neural networks (CNNs), autoencoder (AE), recurrent neural
network (RNN), deep belief network (DBN) and generative
adversarial network (GAN) [28].

Recently, convolutional neural network (CNN) is one
of the most representative network models on computer
vision fields and tasks [29], [30]. There are three com-
mon hyperspectral classification methods based on CNN,
among which 1D-CNN extracts spectral information [31],
2D-CNN extracts spatial information, and 3D-CNN [32] is
usually composed of a convolution kernel of three dimen-
sions, which can not only take into account the texture
spatial features of two-dimensional plane, but also extract
the characteristics of different spectrum channels. Şakaci
and Urhan [33] used 3D-CNN to construct an end-to-end
deep learning network, and the network achieved higher
precision than 2D-CNN without any pre-processing or
post-processing. Leng et al. [34] extracted space-spectrum
features of local areas by 3D-CNN, which improved the
classification accuracy. Although 3D-CNN performs well
in space-spectrum information fusion [35], compared with
1D-CNN and 2DCNN, network computing cost and parame-
ters quantity increase, which is not conducive to the training
of large-scale models [31].

In view of the above problems, scholars put forward a
variety of solutions. Roy et al. [36] proposed a fusion algo-
rithm of 3D-2D CNN, which arranged multi-band spectral
images into data cubes similar to playing cards in spectral
order. 3D-CNN was first used to extract space-spectrum joint
information in three-dimensional space, and 2D-CNN was
used to further learn more abstract spatial information in each
spectral image. The new 3D-2D CNN based on attention
mechanism proposed by Zhang et al. [37] and the dual-flow

FIGURE 1. University of Pavia dataset. (a) False color image (bands 10, 27,
and 46) (b) Ground-truth map.

CNN designed by Han et al. [38] also further refined the
spatial features. In short, 2D-CNN cannot extract good spec-
tral distinguishing features, 3D-CNN has low computational
efficiency and poor performance in hyperspectral classifica-
tion with similar texture features [36]. However, research on
oil spills classification based on CNNs with hyperspectral
images is still in its insufficient. Most CNNs models focus
only on spectral or spatial features.

The main reason for HRSI have intensity spatial coherence
and high spectral resolution, the fusion of spectral and spatial
information is supposed to promote classification accuracy.
In this study, a fresh spectral-spatial feature extraction (SSFE)
method based CNNs is proposed for the HRSI classification.
In the method, 1D-CNN is used to extract spectral features,
2D-CNN is served as to extract spatial features. Finally,
spectral-spatial features are fused based on the CNNs model.
Experiment results demonstrate that the proposedmethod can
were effectively used to detect marine oil spills. Section II
describes datasets used in this experiment and the proposed
SSFE method for oil spills analysis in detail. Section III is
given to the experimental results and comparative analysis
to fully verify the effectiveness of SSFIN. Discussions and
conclusions are conducted in Section IV and Section V.

II. MATERIALS AND METHODS
A. HYPERSPECTRAL IMAGE DATASETS
University of Pavia dataset was collected by the Reflective
Optics System Imaging Spectrometer (ROSIS) over the city
of Pavia, Italy, with 610 pixels × 340 pixels and 115 bands
in the range of 0.43 µm–0.86 µm. After removing water
absorption and low SNR bands, 103 bands were left for
the analysis. It contains 9 ground truth objects. Shown in
Figure 1 are the RGB false-color image and nine ground truth
classes of Pavia University.

In April 2010, BP’s deep water horizon (dwh) oil rig off
northern Mexico exploded and began leaking oil into the
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FIGURE 2. Oil spill area 1. (a) False color composite (bands12, 20, and 29)
(b) three categories.

FIGURE 3. Oil spill area 2. (a) False color composite (bands12, 20, and 29)
(b) three categories.

Marine environment. Between 66,000 and 120,000 gallons of
oil are spilling every day at the heart of the accident. In this
paper, airborne AVIRIS (Airborne Visible Infrared Imaging
Spectrometer) hyperspectral images of the oil spill were used
as experimental areas [39], [40].

The experimental data obtained from Jet Propulsion Lab-
oratory (JPL) official website. The image of experiment oil
area 1 and the image of experiment oil area 2 was taken on
May 17, 2010, with the flight number f100517t01p00r11. The
spatial resolution of data in two experimental areas is 7.6 m.
The wavelengths range from 365 nm to 2466 nm in a total
of 192 bands, noise bands caused by moisture absorption in
the original data have been removed. The software used in
this study cannot process such a large area of data at one
time, so the sample area is selected for the experiment. The
size of oil spill area 1 is 526 pixels × 685 pixels and the
coverage area is 20.75 km2. The size of oil spill area 2 is
425 pixels ×540 pixels and the coverage area is 13.17 km2.
Figure 2 and 3 are the RGB false-color image and three
categories of oil area 1 and oil area 2.

B. DATA PREPROCESSING
Radiometric calibration and atmospheric correction were
performed on hyperspectral original data. Radiometric cor-
rection is the process of removing these noises, such as:
reflection of objects, reflection of adjacent ground objects,
atmospheric influence, the image contains noise etc. The
purpose of atmospheric correction is to eliminate the influ-
ence of atmospheric and illumination factors on surface
reflectance and obtain real physical model parameters, such
as: surface reflectance, emissivity and surface temperature.
Radiometric correction was carried out by the data provider

and atmospheric correction needs to be done by individuals.
As to obtain surface reflectance values, atmospheric calibra-
tion is necessary. The data is the calibrated radiance (emis-
sivity) data, in units is of µW/(cm2

× nm × sr). Finally, the
atmospheric correction were dealt with using the Fast Line-
of-sight Atmospheric Analysis of Hypercubes (FLAASH)
module using ENVI software. In the FLAASH model, the
atmospheric model is based on the data acquisition time
and the dimension of the study area, so the American
standard atmospheric model is selected. The aerosol model
selects maritime according to the actual situation of the
study area.

C. FRAMEWORK OF PROPOSED METHOD
1) BASIC FRAMEWORK OF CNN
In general, the basic CNN framework is consisted by input
layer, convolution layer, pooling layer, fully connected layer
[41]. Through convolution operation, more complex image
features can be extracted and signal noise can be reduced.
In the pooling layer, redundant information is removed,
reduce the size of the model and accelerate the calculation
speed, which the number of compressed data and parameters
while improve the robustness of extracted features. The full
connection layer maps the ‘‘distributed feature representa-
tion’’ learned to the sample tag space. At the same time, the
nonlinear expression ability of the model is increased.

Convolutional layer is a relatively crucial part of CNN
framework, convolution can be used for image edge detec-
tion, sharpening, blurring, etc. Each channel of the convolu-
tional layer can be formulated as [42]:

ami = h
(∑

am−1j ∗ kmij + b
m
i

)
. (1)

where i ∈ Nj, Nj is a selection set of feature maps, ami
denotes the activation value of output feature graph j in layer
m, kmij is the convolutional kernel, b

m
i is bias. ‘‘∗’’ denotes the

convolutional operator. h(·) is rectified activation function.
Common pooling methods are mean pooling max pooling

overlapping def-pooling local contrast normalization def-
pooling. One of the most commonly used is maximum pool-
ing. The pooling process can be expressed as:

am = h(αmam−1 + bm) (2)

where αm, the weight factor that connects adjacent, am−1 is
the characteristic vector of. bm is the bias vector. In order
to preserve more texture information, this paper choose the
maximum pooling.

After convolution and maxpooling, a series of feature
images are obtained, and the input of the multilayer percep-
tron is a vector. Furthermore, for purpose of strengthen the
nonlinear mapping capability of the network and restrict the
magnitude of the network in the meantime, it is necessary
to take out the pixels in these feature graphs in turn, arrange
them into a vector, and then access to a fully connected
layer. Finally, the last layer of convolutional neural network
usually adopts fully connected layers and softmax layers with
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FIGURE 4. The framework of 1D-CNN with spectral features for HRSI classification.

strong nonlinear classification power as classifier to predict
the labels.

2) SPECTRAL FEATURE EXTRACTION BASED 1D-CNN
FRAMEWORK
In this section, 1D-CNN method is presented here to consid-
ering only spectral information of seawater and oil spills. For
spectral feature extraction, which includes two procedures:
features extraction and classification. Assuming N is the
number of HRSI spectral bands, x = [x1, x2, · · · , xN−1],
xn represent the nth pixel, each pixel vector of hyperspectral
image is adopted as the input data. The output of themethod is
the label of the pixel vector. It consists of three convolutional
three maxpooling layers and an fully connected layer. The
proposed method is shown in Figure 4. To make the best
of the shallow and deep features, two consecutive convo-
lution layers are concatenated in sequence, which results
in more feature channels. The two convolutional layers are
followed by a maxpooling layer with a size of 3 pixels
and a stride of 3 pixels, After several layers of convolution
and maxpooling, the input pixel vector can be stretched
into a one-dimensional feature vector. Finally, we use fully
connected layer and softmax classifier to obtain spectral
feature Rnspe (xn).

3) SPATIAL FEATURE EXTRACTION BASED 2D-CNN
FRAMEWORK
2D-CNN is adopted here to extract the spatial features. It con-
tains several convolutional layers, pooling layers and a fully
connected layer. To remove the redundancy of hyperspectral
data, the traditional principal component analysis (PCA) is
firstly applied over the dimensionality of hyperspectral oil
spill data. Assuming the three-dimensional hyperspectral data
cube can be expressed as S ∈ CM×N×B, where S is the
hyperspectral data input, M and N represent the width and
height of data, and B represents the bands number. Through
PCA treatment, the number of spectral bands from B to L,
that means there are fewer channels. For convenience, after
the PCA reduced data cube are denoted as I ∈ CM×N×L ,
where I is the recomposed input after PCA, L is the number of
spectral bands after PCA. We choose r × r neighborhoods of

a current pixel as the input to the 2D-CNN model. According
to the spatial resolution of the image, a small kernel can be
selected to run convolution and 2× 2 kernel stride of 2 pixels
for pooling. Finally, we use fully connected layer and softmax
classifier to obtain spatial feature Rnspa (xn). The framework is
shown in Figure 5.

4) SPECTRAL–SPATIAL FEATURES EXTRACTION
FRAMEWORK
1D-CNN and 2D-CNN are concatenated in sequence, then
fed together into the fully connected layer and linked to the
softmax layer. To obtain the joint spectral-spatial feature,
Rnspe (xn) and R

n
spa (xn) are merged and fed together into the

fully connected layer. Hm (xn) is given by:

Hm+1(xn) = g
(
Km+1

·

(
Rnspe (xn)⊕ R

n
spa (xn)

)
+ bm+1

)
(3)

where Km+1 and bm+1 represent the weight factors and bias
of the fully connected layer, ‘‘⊕’’ denotes the concatenating
operator, and g(·) is the ReLU activation function. Hm+1 (xn)
to predict the prediction of probability distribution of each
class. The framework is shown in Figure 6.

To enhance the robustness of the model, adding L2 reg-
ularization term with the value of 1×10−4 to the objective
function and limit the number of weight parameters, The
dropout method prevents complex co-adaptations [43]. Batch
Normalization normalizes each convolutional layer of the
neural network, which results in a more even distribution of
data. As a result, all data does not lead to neuron activation,
or all data does not lead to neuron activation. Meanwhile,
The variable learning rate technique was used to improve the
performance of the model, that is keep changing the learning
rate, observing the convergence curve of the value of the
objective function and the accuracy of the training set until
reducing the learning rate does not affect the decline of the
objective function or the accuracy of the verification set.

The Adam optimizer [44] is further employed to update
the parameters during the process of gradient descent. The
Adam optimizer has the advantages of straightforward imple-
mentation, high computational efficiency, and low memory
requirements. It usesmomentum and an adaptive learning rate
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FIGURE 5. The framework of 2D-CNN with spectral features for HRSI classification.

FIGURE 6. The framework of the proposed spectral-spatial features extraction.

to accelerate the convergence rate, thereby quickly getting
the predicted results. A more detailed parameter description
of the designed SSFE-based HRSI is shown in Table 1.
Table 1 shows the structures of the proposed SSFE for the
three datasets, ’’Pavia University’’, oil spill area 1, oil spill
area 2. C, P, F represent the convolution layers, maxpooling
layers, fully connected layers, the number after the letter
represents the frame number. L2 regularization with a weight
decay penalty of 1 × 10−4 has been applied to each convo-
lutional layer. In this paper, to prevent network overfitting
and underfitting, class_weight assign a weight to each class
in the training or test samples, if the number of class in this
categories is large, its weight is low; otherwise, its weight
is high. In order to accelerate model convergence speed and
train good results, adding the Glorot Uniform and the bias
to every convolution operation. Beyond that, the ReLU acti-
vation function is added in model and reduced parameter
interdependence.

III. EXPERIMENTS AND ANALYSIS
A. DATA PARTITION AND ENVIRONMENT
CONFIGURATION
In the experiments, three HRSIs were applied to the experi-
ments, namely Pavia University, oil spill area 1, and oil spill
area 2. In all datasets, 10% and 90% of the labeled data
are randomly divided to testing and training samples. The
function of the training set is in the training process of training
error gradient descent, learning, trainable weight parameters.
The function of test set is to measure the performance and
evaluate the generalization capability of the final model.
Tables 2–4 list the sample numbers in the above training and
testing groups. All experiments are conducted in Python, and
were constructed using Keras and TensorFlow. An Lenovo
15ITL 2021 with NVIDIA GeForce MX450 graphical pro-
cessing unit (GPU) and 16 GB RAM were used. Under
constant trial and error, We find the best optimal learning
rate of 0.0005. In view of the size of training set and the
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TABLE 1. Architectures of the proposed network structure on three datasets.

TABLE 2. Land cover types,training and testing numbers on the university of pavia dataset.

TABLE 3. Three categories, training and testing numbers on the oil spill area 1.

TABLE 4. Three categories, training and testing numbers on the oil spill area 2.

GPU platform we used, the batch size is set as 100 for Pavia
University dataset and oil spill datasets, respectively. The
maximum number of iterations is set to be 100 epochs. All
experiments were operated at least 20 times.

B. CLASSIFICATION RESULTS AND ANALYSIS
In order to achieve better classification effect, we used 10%
of the testing samples to come up with the optimum param-
eters of feature extraction (FE) methods. Tables 5–7 show
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TABLE 5. Compare the classification results of different methods on the Pavia University dataset.

that the CNN-based FE methods always provide the best
performances of overall accuracy (OA) and Kappa coeffi-
cient (Kappa) for all three data sets [45]. Here, OA repre-
sents the percentage of the total number of test sets that are
predicted correctly; and in practical problems, the number of
various samples is not balanced, and the model classification
tends to favor the large category and abandon the small
category. In this paper, it is necessary to conduct a induced
test on the number of Kappa lines, whose range is −1∼1,
and usually falls between 0∼1. The closer the value is to 1,
the higher the consistency is. Confuse matrix and receiver
operating characteristic (ROC) curve are used to judge the
quality of classification and test results. The classification
precision values are concluded in the form of mean ± stan-
dard deviation from a statistical point of view, which is used
to judge the stability of network and the volatility of data.
Concerning both of the two abovementioned indicators, the
F1-score, also known as balanced F Score, is defined as the
harmonic average of accuracy and recall rate [46]. It is of
particular importance for unbalanced classes.

In this set of experiments, the proposed SSFE was com-
pared with RF, SVM, KNN, Adaboost [47], LeNet-5 [48],
1DCNN [49], and 2DCNN [50]. Table 5 shows the accura-
cies related to the OA and Kappa for different methods for
the Pavia University data set while maintaining the mini-
mum standard deviation. Compared with 1D-CNN methods,
2D-CNN methods take full advantage of strong spatial corre-
lation and generate better classification effect. The proposed
CNNspe+spa avoided the oversmoothing phenomenon and the
edge information of different kinds of ground objects has
been fully extracted. classification precision of two classes
reach 100% among the classes of different ground objects.

Figure 7 show the visualization of classification results of
models of Pavia University data set under different methods,
It can be seen from the figure that if only spectral features
are used, the ‘‘Bare soil’’ category may be more affected by

noise and therefore exhibit small patches. On the contrary,
the addition of spatial features can obviously improve the
unsmooth phenomenon in the classification map. In conclu-
sion, the proposed method effectively avoids the shortcom-
ings of using only spectral and spatial features, and achieves
better visualization results.

Figure 8 and Figure 9 shows the visualization of oil spill
detection results from the proposed model on two oil spill
datasets. As shown in these figures, the method proposed here
presents classification results of high purity from the perspec-
tive of visual effect. As expected, the oil spill detection results
obtained by using spectral features alone, SVMor Lenet-5 for
instance, are more susceptible to noise such as solar flares,
leading to misclassification. For example, several speckled
areas of thin oil are misclassified as a discontinuous oil in
the upper left corner of oil spill area 1. After adding spatial
information, the situation affected by noise can be greatly
reduced. However, the small patches phenomenonmay occur,
for instance detection area above emulsified oil film area
by 2D-CNN, as presented in Figure 9f. The proposed SSFE
algorithm, integrating both spectral information and spatial
information, not only relieved the occurrence of misclassifi-
cation phenomenon caused by noise, but also improves the
anti-noise ability and edge detection ability.

Figure 10 show that the confusion matrixes and ROC
curves of the proposed method under 10% testing data of the
Pavia University dataset. In this paper, we use the AUC value
to mark the quality of the classifier, which is the size of the
area under the ROC curve. The higher the AUC value is, the
better the classification accuracy is. The area or AUC values
in the figure are rounded.

Tables 6 and 7 report the accuracies of all classes with the
OAs, Kappa coefficients for hyperspectral oil spill detection
classification. As shown in Tables 6 and 7, the proposed
method achieves the best classification results on both oil
spill datasets compared with other classification methods.
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FIGURE 7. Hyperspectral image classification results of the Pavia University Dataset. (a) False-color image. (b) Ground truth. (c) Adaboost. (d) RF. (e) KNN.
(f) SVM. (g) LeNet-5. (h) 1D-CNN. (i) 2D-CNN. (j) CNNspe+spa.
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FIGURE 8. Hyperspectral image classification results of the oil spill area 1. (a) False-color image. (b) Ground truth. (c) Adaboost. (d) RF. (e) KNN. (f) SVM.
(g) LeNet-5. (h) 1D-CNN. (i) 2D-CNN. (j) CNNspe+spa.

TABLE 6. Classification results of different methods for oil spill area 1.

As shown in Table 6, SVM yielded poor accuracies in the
‘‘Thin oil’’, ‘‘Thick oil’’ classes, which are 70.68%, 84.91%,
respectively. This is caused by ‘‘foreign bodies with spec-
trum’’, means that their similarity of spectral curves, which
makes it difficult for models to distinguish them.

As shown in Table 7, CNNspe+spa achieved the best OA,
was 7.12%, 3.81%, 1.72%, 10.85%, 11.74%, 4.60% higher
than that of Adaboost, RF, KNN, SVM, LeNet-5, 1D-CNN.
It serves to show that the proposed SSFE has a relatively
stable and equilibrium classification accuracies for each cat-
egory under strong spatial domain relationships and obtained
themaximumOAvalue (99.85%) andKappa value (99.70%).

It can be noticed that the proposed SSFE method can capture
subtle information and is indispensable and advantageous for
the proposedmethod. Furthermore, according to the table, the
proposed SSFE achieves the expected result of classification
accuracy on two oil spill datasets. There are some shortcom-
ings among models, on account of the actual spectra of thin
oil and seawater are not easily distinguishable, this results
in misclassification. The classification results show that the
proposedmethod is useful for oil spill classification. The false
alarm rate have been reduced.

Figure 11 and Figure 12 are the confusion matrixes and
ROC curves of the proposed model under 10% testing data
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FIGURE 9. Hyperspectral image classification results of the oil spill area 2. (a) False-color image. (b) Ground truth. (c) Adaboost. (d) RF. (e) KNN. (f) SVM.
(g) LeNet-5. (h) 1D-CNN. (i) 2D-CNN. (j) CNNspe+spa.

FIGURE 10. Confusion matrix and ROC curve under Pavia University 10% testing data: (a) Confusion matrix (b) ROC curve.

of the oil spill area 1 and the oil spill area 2. In the confusion
matrix, each column value represents the predicted value, and
each row value shows the actual category and the diagonal

value denotes the number of corrected classifications. The
area or AUC values in the figure are rounded. It can be seen
that the classification results of each category is ideal.
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FIGURE 11. Confusion matrix and ROC curve under oil spill area 1 10% testing data: (a) Confusion matrix (b) ROC curve.

FIGURE 12. Confusion matrix and ROC curve under oil spill area 2 10% testing data: (a) Confusion matrix (b) ROC curve.

TABLE 7. Classification results of different methods for oil spill area 2.

Table 5 lists classification index diagram under multiclass
conditions, Table 6 and 7 lists the precision, recall rate, and

F1-score of each category, as well as the macro-averaged
and weighted-averaged quantities for the proposed method
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TABLE 8. Classification index diagram under multiclass conditions.

TABLE 9. The precision, recall, and F1-score for the Pavia University dataset.

upon the three datasets. In the macro-averaged, the index
value is first calculated for each class, and then the arithmetic
average is calculated for all classes. Their formulas are given
as follows. As can be seen from the table, there are three
indicators of the thin oil film on the low side, implying high
probability of misclassification, which eventually indicates
that the detection ability of the algorithm for the thin oil film
needs to be further improved. Nevertheless, the superior pre-
cision, recall rate, and F1-score still indicate that the classifier
is effective for hyperspectral oil spill detection.

Accuracymacro_avg

=

N∑
i=1

1
N
×

TPi + TN i

TPi + TN i + FPi + FN i
(4)

Accuracyweight_avg

=

N∑
i=1

TPi + TN i∑N
j=1 TPi + FN i

×
Accuracymacro_avg∑N

i=1
1
N

(5)

where TP represents positive classes are predicted to be pos-
itive, true is 0, and prediction is 0, TN represents negative
classes are predicted to be negative, true is 1, and prediction
is 1, FN represents positive samples that are predicted to be
negative by the model, and FP denote negative samples that
are predicted to be positive by the model. i represents the ith
category and N represents the total number of categories.

IV. DISCUSSIONS
In this paper, a fusion model of spectral and spatial features
for HRSI classification based on CNNs is constructed. The
network is then trained by training samples. The optimal
classification results are obtained as training samples. Firstly,

the University of Pavia experimental results of hyperspectral
data show that the proposed model can improve the classifi-
cation accuracy of hyperspectral remote sensing images. The
classification accuracy of ‘‘Bare Soil’’ class in variousmodels
is very unstable, this is because the classification accuracy of
this class on 2D-CNN is high, it has rich spatial information,
spectral information feature is weaker than spatial informa-
tion feature, and the proposedmodel uses more spectral infor-
mation than other models, and finally the classification of this
class is accurate degree is reduced. Because different compo-
nents absorb different spectra, spectral information can fully
reflect the physical structure and chemical information inside
the sample, and has advantages in the accurate identification
and fine classification of different vegetation and minerals.
However, for ‘‘Gravel’’ and other objects with prominent tex-
ture characteristics, the classification effect of high spectral
information is not so good. ‘‘Bitumen’’, ‘‘Gravel’’ and other
vegetation have rich one-dimensional spectral information,
so the classification accuracy is opposite to that of ‘‘Bare
Soil’’, and the classification accuracy on 2D-CNN is lower
than that on 1D-CNN. The classification accuracy has been
greatly improved.

This can be seen from the comparison results of different
methods, SVM and Lenet-5 does not recognize well spectral
characteristics similar to thin and thick oil film, seawater.
For 2D-CNN, due to the small number of samples selected
for thick oil film, there is less spatial information that can
be used for training analysis on oil spill area 1, so the
classification accuracy is lower than 1D-CNN. Although the
AVIRIS images of the experimental areas is affected by solar
flare and seawater composition, the seawater environment
in the sea polluted by oil film is uneven. However, through
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TABLE 10. The precision, recall, and F1-score for oil spill area 1 and oil spill area 2.

training of divided oil film and sea water sample, oil film
under uneven sea water environment can still be identified
and the ‘‘false target’’ of oil film caused by uneven sea water
condition can be eliminated. Although the proposed SSFE
method costs huge time to train the network, it can also
be showed that the classification accuracy is still very high.
Due to the large number of test samples, the computational
complexity and time are also larger. For training numbers
of the Pavia University dataset, it costs 143.66s, its image
size is 610×340×103. For oil spill area 1 dataset, it costs
196.05s, its image size is 526×685×192. The oil spill area
2 dataset has the largest time cost 216.29s, its image size
is 425×540×192. The difference between the test and the
training sample makes the time differences.

A suitable method can reduce the number of free parame-
ters of the network and make the generalization ability of the
trained model stronger, which is very important for further
feature extraction and classification. Due to the impact of
‘‘same thing different spectrum’’, ‘‘same spectrum foreign
body’’, and the uncertainty of the marine surface environ-
ment, the spectral curve contours of oil film of different
thickness is slightly differences, and it’s not easy to tell the
exact difference. Using only Spectral characteristics alone is
often insufficient to accurately extract target object. Instead,
the texture information of the oil spill and seawater exerts a
significant difference and the boundary line between them is
evident, judging from the oil spill RGB image.

V. CONCLUSION
In this paper, we have proposed SSFE method to extract the
spectral-spatial based deep features. The major contributions
of this paper are summarized as follows.

1) Compared with traditional spectral-spatial classification
framework which are separated from each other. We use
a spectral 1D-CNN and spatial 2D-CNN model with high
spectral resolution and band continuity in the spectral region
and a small neighborhood size in the spatial region to extract
the unified features of HRSI.

2) In order to deal with data imbalance or classification
effect is not ideal. We add a class_weight to each category in
the training set during oil data sets model training. The OA
can be improved for oil datasets with the proposed method.

Although we utilize the proposed SSFE method as the
spectral and spatial feature extractors, other deep learning
networks or machine learning model can also be imported
in our model. It was worth to be investigated in the future
work. Between the spectral loss and the spatial loss will also
be discussed in our future work. Due to the different spectral
and spatial features in the selected scenes and samples, the
selection and learning of appropriate weighting factors are
also worthy of study for hyperspectral classification. CNN is
topical issues in computer realm. In recent years, a number
of different models have emerged, and they can be also used
for the proposed CNN model. The proposed method can
be combined with post-processing of data classification to
strengthen mirroring capability.
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