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Spectral–Spatial Anomaly Detection of
Hyperspectral Data Based on

Improved Isolation Forest
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Abstract— Anomaly detection in hyperspectral image (HSI) is
affected by redundant bands and the limited utilization capacity
of spectral–spatial information. In this article, we propose a
novel improved Isolation Forest (IIF) algorithm based on the
assumption that anomaly pixels are more susceptible to isolation
than background pixels. The proposed IIF is a modified version of
the Isolation Forest (iForest) algorithm, which addresses the poor
performance of iForest in detecting local anomalies and anomaly
detection in high-dimensional data. Furthermore, we propose a
spectral–spatial anomaly detector based on IIF (SSIIFD) to make
full use of global and local information, as well as spectral and
spatial information. To be specific, first, we apply the Gabor
filter to extract spatial features, which are then employed as input
to the relative mass isolation forest (ReMass-iForest) detector
to obtain the spatial anomaly score. Next, original images are
divided into several homogeneous regions via the entropy rate
segmentation (ERS) algorithm, and the preprocessed images
are then employed as input to the proposed IIF detector to
obtain the spectral anomaly score. Finally, we fuse the spatial
and spectral anomaly scores by combining them linearly to
predict anomaly pixels. The experimental results on four real
hyperspectral datasets demonstrate that the proposed detector
outperforms other state-of-the-art methods.

Index Terms— Anomaly detection, hyperspectral image (HSI),
isolation forest (iForest), spectral–spatial information.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) with hundreds of con-
tiguous bands for each pixel can provide abundant

spectral and spatial information simultaneously [1]. HSI has
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been widely applied in many remote sensing applications,
such as anomaly detection [2], [3], classification [4], and
change detection [5]. Among these applications, hyperspectral
anomaly detection has received extensive attention. A wide
variety of methods have been developed, which aims at
distinguishing outliers, whose spectral and spatial signatures
are highly distinct from their surrounding pixels or the global
background in an unsupervised way.

In the literature, most methods have concentrated on exam-
ination of the role of HSI spectral signatures in anomaly
detection, employing exclusively the spectrum of a given pixel
to determine its outlier status. The statistical model-based tech-
nique is the first category in hyperspectral anomaly detection.
One of the most well-known methods is the Reed–Xiaoli (RX)
algorithm, proposed by Reed and Yu [6], which is considered
as the main benchmark method. The RX detector (RXD)
assumes that the background can be modeled by employing
multivariate Gaussian distributions. The RX detector has two
versions, i.e., the global RX and local RX (LRXD), where
LRXD models the background with neighborhood pixels.
However, most real-world HSIs cover different classes of
materials and exhibit complex backgrounds, which mean that
the Gaussian distribution assumption is oversimplified in real-
world HSIs. Therefore, several variants of the RX detec-
tor have been proposed [7]–[12]. For example, the kernel
RX [7] detector is a nonlinear version of the RXD, which
calculates the Mahalanobis distance between the pixels to be
tested and the background in higher dimensional feature space
with the kernel theory. The cluster-based anomaly detector
(CBAD) [8] segments the whole HSI into several clusters and
then detects anomalies in each cluster with the RX detector.
Zhou et al. [12] proposed a novel cluster kernel RX detector
to accelerate the kernel RX detector by partitioning the whole
HSI into several clusters and then employing a fast eigenvalue
decomposition algorithm to obtain detection results.

In addition to statistical model-based methods, there are
many other types of detectors. For example, the orthog-
onal subspace projection (OSP) is a typical geometrical
modeling-based method. Chang et al. [54], [55] developed
OSP-based techniques and obtained good results. Another
example, the low-rank and sparse representation detec-
tor (LRASR) is proposed in [13], which exploits the low-rank
property of background pixels to distinguish sparse pixels.
The background joint sparse representation (BJSR) [14] detec-
tor is a representation-based method that selects the most
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Fig. 1. Graphical example illustrating the principle of iTrees given a Gaussian
distribution of 205 points. (a) Anomaly instance, xa , is isolated through only
four random partitions. (b) Normal instance, xb , requires 11 random partitions
to be isolated.

representative background bases with the joint sparsity model,
and background pixels are then suitably represented with the
selected bases, whereas anomaly pixels cannot be represented.
Similarly, collaborative representation-, sparse representation-,
and tensor representation-based anomaly detectors have also
received substantial attention. For example, in [50], a col-
laborative representation-based detector (CRD) was proposed
to detect anomalies with unknown signatures, and a pixel
is claimed to be an anomaly if it cannot be collaboratively
represented by background atoms in a local window. Another
example, the prior-based tensor approximation (PTA) detec-
tor is a typical tensor representation-based method proposed
in [15], which combines priors (i.e., low rank, sparse, and
piecewise smooth) with the advantages of the tensor repre-
sentation of HSIs. Then, the priors are embedded into the
dimensions of a tensor with different regularizations according
to certain physical meanings to preserve the global struc-
ture while increasing the gap between anomaly and back-
ground pixels. In addition, since the spatial resolution of
HSI is increasing, the complementarity of spectral and spatial
domains can further improve detection performance [38], [47],
and [49]. Moreover, hyperspectral anomaly detectors based
on support vector data description (SVDD) [16], [17], game
theory [56], morphological and attribute filters [18], [19], deep
learning [20]–[23], and so on, have been investigated as well.

Additionally, Li et al. [24], [25] proposed a novel ker-
nel isolation forest-based detector (KIFD) according to the
isolation forest (iForest) algorithm [26], [27] 2 years ago.
This was the first time that iForest was introduced into
remote sensing applications. Subsequently, Wang et al. [28]
established a hyperspectral anomaly detector that combined
multiple features and iForest (MFIFD) last year. Both methods
have been demonstrated to perform well.

Although both the KIFD and MFIFD have been revealed
to perform well in hyperspectral anomaly detection, we have
identified certain weaknesses of iForest in detecting anom-
alies in high-dimensional data and detecting local anomalies.
Specifically, iForest cannot detect local anomalies because
the path length measures the degree of anomaly globally.
In addition, only one data dimension is randomly selected in
every partition, which reduces the reliability of the algorithm,

as we will see later in Section II-A of this article. The basic
motive of our research is to enhance the detection accuracy
by overcoming those two limitations of iForest-based anomaly
detectors in hyperspectral anomaly detection. We propose a
new improved isolation forest (IIF) algorithm. Furthermore,
in this article, a novel spectral–spatial IIF-based detection
framework (SSIIFD) is developed. Specifically, the main con-
tributions of this article are as follows:

1) An SSIIFD is proposed, which can make full use of
the spectral and spatial information, and the global and local
information of HSIs.

2) An IIF algorithm is proposed for the first time which
effectively improves the poor performance of iForest in the
detection of anomalies in high-dimensional data and local
anomaly detection.

3) Experiments on four real datasets demonstrate that the
proposed SSIIFD can obtain the best detection accuracy.

The remainder of this article is organized as follows.
Section II briefly reviews the iForest and its two variations;
the extraction of spatial features with the Gabor filter and
the entropy rate superpixel segmentation (ERS) algorithm
are briefly reviewed in this section. The proposed method
is introduced in detail in Section III. In Section IV, experi-
mental results are presented. Finally, a conclusion is drawn in
Section V.

II. RELATED WORKS

A. Isolation Forest and Its Two Variations

The iForest introduced by Liu et al. [26], [27] is an outlier
detector that does not employ distance or density measures.
It builds an ensemble of isolation trees (iTrees) for a given
dataset. The main advantage of this algorithm is that it does
not rely on a determined profile representing the data to find
samples that do not conform to this profile. Rather, it utilizes
the fact that anomalies are “few and different,” which makes
them more susceptible to isolation in a binary tree structure
than normal points. Hence, anomalies are isolated closer to
the root of the tree, whereas normal points are isolated toward
the deeper end of the tree. In other words, anomalies exhibit
shorter average path lengths than those of normal points over
a collection of iTrees. Here, the principle of iForest is briefly
reviewed. For more details of the iForest algorithm, we refer
readers to [26] and [27].

Specifically, in an iForest, data are subsampled and
processed in a tree structure based on random cuts in the values
of arbitrarily selected features in a given dataset. Each tree is
grown until each instance is isolated into a leaf node. Those
samples that travel deeper into the tree branches are less likely
to be anomalous, whereas shorter branches are indicative of
anomalies. As such, the aggregated lengths of the tree branches
provide a measure of the occurring anomalies or an anomaly
score for every given point. To demonstrate that anomalies
are more susceptible to isolation under random partitioning,
an example of the random partitioning process of a normal
point versus an anomaly is shown in Fig. 1. We observe that a
normal instance, xb, generally requires more separating lines to
be isolated, while an anomaly instance, xa, generally requires
less separating lines to be isolated.
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On the one hand, unsatisfactory results have often been
achieved when employing iForest in the detection of local
anomalies in datasets containing multiple clusters of normal
instances because the local anomalies are masked by those
normal clusters of similar density. Hence, they become less
susceptible to isolation via iTrees. In other words, iForest does
not detect local anomalies because the path length globally
measures the degree of anomaly. It does not consider the
isolation magnitude of an instance from its local neighborhood.
To address this problem, Aryal and Ting [29], according to
the mass estimation theory [30], developed ReMass-iForest by
replacing the global ranking measure based on path length with
a local ranking measure based on relative mass that takes local
data distribution into consideration. ReMass-iForest applies
the same implementation of iTrees as that of iForest. Empirical
evaluations have indicated that ReMass-iForest performs better
than iForest in terms of the task-specific performance.

On the other hand, only one data dimension is randomly
selected in every partition. In other words, the applied branch
cuts are simply parallel to the coordinate axes, which results in
certain regions, not necessarily containing many data points,
ending up with many branch cuts. As such, most dimensions
of the data are not considered when building iTrees, which
reduces the reliability of the algorithm, especially in regard to
high-dimensional problems with a large number of attributes.
Hariri et al. [31] presented an extension to iForest, namely
the extended isolation forest (EIF), by using hyperplanes
with random slopes (non-axis-parallel) to split data in the
creation of iTrees, which resolves the issues associated with
the assignment of anomaly scores to given data points. The
results of EIF are more reliable and robust and in some cases
more accurate in a given dataset.

iForest, in recent years, has been successfully applied in
remote sensing applications. Specifically, iForest was first
introduced into the hyperspectral anomaly detection field by
Li et al. [24], [25]. In addition, Wang et al. [28] proposed a
hyperspectral anomaly detector combining multiple features
and iForest. Although both methods are shown to perform
well, the above two weaknesses of iForest in anomaly detec-
tion in HSIs (aka high-dimensional data) containing hundreds
of spectral bands and multiple clusters of background pixels
are still not addressed. In this article, we develop a novel
improved iForest method, optimized for hyperspectral anomaly
detection, namely IIF-based anomaly detector (IIFD), by com-
bining spatial texture information and spectral characteristics.
Details of how the proposed improved-iForest method over-
comes these two weaknesses of iForest will be explained in
Section III-C of this article.

B. Gabor Filter

The Gabor filter,1 which is a sinusoidal function modu-
lated by a Gaussian envelope, has been widely adopted in
various applications of computer vision and image process-
ing [32], [33]. The Gabor filter captures certain physical
structures of an object in an image, such as specific orientation
information, based on a spatial convolution kernel. In recent

1http://en.wikipedia.org/wiki/Gabor_filter

years, Gabor filters have been successfully applied in hyper-
spectral classification [34], [35]. The most important advantage
of Gabor filters is their invariance to rotation, scale, and
translation. Furthermore, they are robust against photometric
disturbances, such as illumination changes and image noise.
Hence, considering these Gabor features, the spatial texture
information of HSIs can be effectively represented.

In a 2-D (a, b) coordinate system, the Gabor filter, including
real and imaginary components, can be represented as

g(a, b;λ, θ,ψ, σ, γ ) = exp

(
−a�2 + γ 2b�2

2σ 2

)

×exp

(
i

(
2π

a�

λ
+ ψ

))
(1)

where

a� = a cos θ + b sin θ (2)

b� = −a sin θ+b cos θ (3)

where λ is the wavelength of the sinusoidal factor, θ is the
orientation of the normal to the parallel stripes of the Gabor
function, ψ is the phase offset, σ is the standard derivation
of the Gaussian envelope, and γ is the spatial aspect ratio
specifying the ellipticity of the support of the Gabor function.
ψ = 0 and ψ = π/2 return the real and imaginary parts,
respectively, of the Gabor filter. Parameter σ is determined by
λ and spatial frequency bandwidth bw as

σ = λ

π

√
ln2

2
× 2bw + 1

2bw − 1
. (4)

C. Entropy Rate Superpixel Segmentation

A superpixel segmentation algorithm, as a preprocessing
step, should exhibit a low computational complexity and
adhere well to the object boundaries. Liu et al. [36] proposed
the ERS algorithm with the graph topology that maximizes
the objective function under the matroid constraint. Specifi-
cally, the objective function comprises two components: the
entropy rate of a random walk on a graph and a balancing
term. The former, entropy rate, encourages the formation of
compact and homogeneous clusters, while the latter, balancing
function, favors clusters with similar sizes. The matroid is a
combinatorial structure that generalizes the concept of linear
independence in vector space. Furthermore, in [36], regarding
an undirected graph G = (V , E) where V is the vertex set and
E is the edge set, the graph is partitioned into a connected
subgraph by choosing a subset of edges A ⊆ E such that
the resulting graph G = (V , A) consists of smaller connected
components or subgraphs. The objective function of the ERS
algorithm is optimized with both the entropy rate H (A) and
balancing term B(A)

A∗ = argmax
A

tr(H (A)+ μB(A)), s.t. A ⊆ E (5)

where μ ≥ 0 is the weight of the balancing term and
tr(·) denotes the trace of a square matrix. The entropy rate
H (A) favors the formation of compact and homogeneous
clusters, whereas the balancing term B(A) encourages clusters
of similar sizes. A greedy optimization scheme for the problem
expressed in (5) is given in [37].
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Fig. 2. Architecture for our proposal for hyperspectral anomaly detection
with a spectral–spatial joint optimization scheme.

III. PROPOSED METHOD

Given an HSI, in practical applications, the detection result
will be improved when considering both spatial and spectral
information [38], which is beneficial for noise suppression
and discrimination enhancement between anomalies and the
background in HSIs. The proposed SSIIFD framework is
designed to detect anomaly pixels by measuring spectral and
spatial anomaly scores for every pixel. A schematic of the
proposed framework is shown in Fig. 2, which consists of the
following three parts:

1) The Gabor filter is applied to extract spatial informa-
tion from the principal component analysis (PCA)-projected
subspace. Gabor features are then employed as the input to
the ReMass-iForest detection algorithm to obtain the spatial
anomaly score (Part I).

2) The original HSI is divided into several homogeneous
regions via the ERS algorithm [36], which are denoted by
matrices whose rows are spectral vectors of pixels. The pro-
posed IIFD is then applied to these high-dimensional matrices
to obtain the spectral anomaly score (Part II).

3) Finally, we fuse the detection results by linearly combin-
ing the obtained spatial and spectral anomaly scores to predict
the anomaly pixels given the input HSI (Part III).

A. Gabor Feature Extraction

Let X ∈ R
N×D denote the input HSI data, where N is

the number of pixels, and D is the number of spectral bands.
To extract the Gabor feature [34] of each pixel, we first obtain
the projection matrix P ∈ R

D×C by solving the following PCA
model:

min
P T P=I

tr
(

PT X
T

X P
)

(6)

where I ∈ R
C×C denotes the identity matrix and tr(·) denotes

the trace of a square matrix. The top C principal components
of the HSI are defined as

XC
PCA ∈ R

N×C = (X − E(X))P (7)

where E(·) denotes the mean function. XC
PCA are then con-

volved with a Gabor filter [39] with different orientations and

Fig. 3. Example illustrating the structure of an iTree.

scales. Finally, filtering coefficients are extracted as the Gabor
feature of each pixel. The Gabor feature matrix is represented
as XGabor ∈ R

N×DGab , where DGab is obtained based on the
number of principal components C and the orientations and
scales of the Gabor filter. In this article, we employ 40 Gabor
filters in 5 scales and 8 orientations and then apply these filters
to the top principal component X1

PCA of the input HSI. Hence,
DGab = 5 × 8 × 1 = 40.

B. Constructing ReMass-iForest for Anomaly Detection in
the Spatial Domain of HSIs

Given the input HSI data X ∈ R
N×D , as mentioned earlier,

ReMass-iForest applies exactly the same implementation of
iTrees as that of iForest [29]. Each iTree is constructed from
a small random subsample Xsub ∈ R

W×D, (W < N), where
W denotes pixels randomly selected from the input X . Let
Xd denote all the dth band pixels of Xsub, and let e denote a
randomly selected value between the minimum and maximum
of Xd . We recursively divide Xsub into two nonempty child
nodes by randomly selecting a band d and a split value e,
where d is a number between one and D. Specifically, if Xw

d
is smaller than e, the wth selected pixel is divided into the left
node, and vice versa (0 < w < W ). A branch stops splitting
when the height of the iTree reaches the height limit (log2 W )
or the number of pixels in each node equals 1. The iTree
construction process is repeated t times, which indicates that
the iForest comprises t iTrees.

Here, we give a graphical interpretation for the structure of
an iTree as in Fig. 3 inspired by [24]. Each node represents
a single pixel or a number of pixels with similar spectral
values. Furthermore, we provide details of the construction
of ReMass-iForest in Algorithms 1 and 2.

C. Constructing IIF for Anomaly Detection in the Spectral
Domain of HSIs

As we have reviewed in Section II, the ReMass-iForest
method addresses the problem whereby iForest does not detect
local anomalies by using a local ranking measure based on
relative mass. The EIF method resolves the poor iForest per-
formance given high-dimensional data by using hyperplanes
with random slopes to split data in iTree construction. Because
HSI data possess the characteristics of high dimensions and
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Algorithm 1 ReMass− iForest(X, t, w)
Input: X - input data, t - number of trees, w - sub-sampling
size
Output: a set of t i Trees
1: Initialize Forest
2: set height limit hl = ceiling (log2 w)
3: for i = 1 to t do
4: Xsub ← sample(X, w)
5: Forest ← Forest ∪ i T ree(Xsub, 0, hl )
6: end for
7: return Forest

Algorithm 2 iTree(X, ch, hl)
Input: X - input data, ch - current tree height, hl - height
limit
Output: an i T ree
1: if ch ≥ hl or |X | ≤ 1 then
2: return ex Node{Si ze← |X |}
3: else
4: let D be a list of bands of X
5: randomly select a band d ∈ D
6: randomly select a split value e from max and min

values of the dth band of X
7: let Xi

d be the value of the i th row and dth column
of X

8: Xl ← f i lter(X, Xi
d < e)

9: Xr ← f i lter(X, Xi
d ≥ e)

10: return inNode{Le f t ← i Tree(Xl, ch + 1, hl) ,
Right ← i Tree(Xr , ch + 1, hl),
Spli t Band ← d ,
Spli tV alue← e}

11: end if

a complex background, iForest-based hyperspectral anomaly
detectors face two key challenges: 1) the detection of local
anomaly pixels in a complex background; and 2) the selection
of more separable bands during iTree construction. Aiming at
the first challenge, the proposed IIF algorithm overcomes it by
sharing the consideration of relative mass to formulate anom-
aly scores with ReMass-iForest. Note that the ReMass-iForest
and improved-iForest are different in terms of how they
construct their iTrees.

Regarding the second challenge, the proposed IIF algorithm
selects a subset of bands that contains more discriminative
and informative features between the anomaly and background
at each branching step in the process of building an iTree.
Specifically, let Xd denote all the dth band pixels of HSI
data X , and Xa

d and Xb
d denote the anomaly pixels and

background pixels, respectively, of Xd , while a threshold td
is required to separate all pixels into Xa

d and Xb
d . We propose

a separability criterion inspired by [40], which is defined as

sep(Xd) = σ(Xd)− avg
(
σ
(
Xa

d

)
, σ

(
Xb

d

))
σ(Xd)

(8)

where Xa
d ∪ Xb

d = Xd ; σ(·) is the standard deviation function;
and avg(x, y) simply returns (x + y)/2. This criterion is

Algorithm 3 Improved− iForest(X, t, w, k)
Input: X - input data, t - number of trees, w - sub-sampling
size, k - high-value band subset size
Output: a set of t i Trees
1: Initialize Forest
2: set height limit hl = ceiling (log2w)
3: for i = 1 to t do
4: Xsub ← sample(X, w)
5: Forest ← Forest ∪ I i T ree(Xsub, 0, hl, k)
6: end for
7: return Forest

Algorithm 4 IiTree(X, ch, hl, k)
Input: X - input data, ch - current tree height, hl - height
limit, k - high-value band subset size
Output: an I i T ree
1: if ch ≥ hl or |X | ≤ 1 then
2: return ex Node{Si ze← |X |}
3: else
4: randomly select a normal vector 
n ∈ R

D×1 by
drawing each coordinate of 
n from a standard
Gaussian distribution

5: randomly select an intercept vector 
e ∈ R
1×D in

the range of X
6: calculate sep(X) according to (8)
7: obtain redundant band subset Crb according to k
8: set the coordinates of 
n, corresponding to Crb, to zero
9: Xl ← f ilter(X, (
x − 
e) · 
n ≤ 0)
10: Xr ← f i lter(X, (
x − 
e) · 
n > 0)
11: return inNode{Le f t ← I i Tree(Xl, ch + 1, hl, k) ,

Right ← I i Tree(Xr , ch + 1, hl, k),
Normal ← 
n,
Intercept ← 
e}

12: end if

normalized using σ(Xd), and in terms of the standard deviation
calculation, a reliable one-pass solution with low computa-
tional cost can be found in [41]. Obviously, the value of sep(·)
is affected by threshold td . However, a proper value of thresh-
old td is difficult to determine when the prior knowledge of
anomalies is unknown. To address this problem, the following
three steps are employed: 1) generating a series of thresholds
in sequence from min(X d) to max(X d); 2) calculating the
corresponding values of separability index sep(·) with (8); and
3) selecting the maximum sep(·). As a result, we obtain a
separability index for each band to determine its separability
in the identification of background and anomaly pixels. Let
sep(Xi ) denote the separability index of the i th band, and tdi

denote the best corresponding threshold, where 1 < i < D.
Once every band separability index in the given HSI data has
been calculated with (8), these separability indexes can be
ranked in descending order of their sep(·) value. The bands
among the top k of the list are chosen as the high-value band
subset, denoted as Cvb, whereas the other bands are regarded
as the redundant band subset, denoted as Crb. Therefore, for a
given D-band HSI, inspired by [31], the branching criterion in
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Fig. 4. San Diego-I dataset. (a) Pseudocolor image. (b) Ground-truth map and detection maps of (c) RXD, (d) CRD, (e) PTA, (f) KIFD, (g) MFIFD, and
(h) SSIIFD.

Fig. 5. San Diego-II dataset. (a) Pseudocolor image. (b) Ground-truth map and detection maps of (c) RXD, (d) CRD, (e) PTA, (f) KIFD, (g) MFIFD, and
(h) SSIIFD.

terms of data splitting for a given pixel x = {x1, x2, . . . , xD}
is as follows:

(x − e) · n ≤ 0 (9)

where e denotes a randomly selected value between the
minimum and maximum of x, and n is a D-dimensional
normal vector, which is obtained by drawing a random number

for each coordinate of n from the standard normal distribution
N(0, 1). Then, the coordinates of n, corresponding to Crb, are
set to zero, e.g., if the 5th, 9th, and 17th bands are regarded as
redundant bands with (8), the 5th, 9th, and 17th component
of vector n are set to zero. Furthermore, if the condition is
satisfied, pixel x is divided into the left node. Otherwise, it is
moved down to the right node. These processes are described
in more detail in Algorithms 3 and 4.
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Fig. 6. Texas Coast dataset. (a) Pseudocolor image. (b) Ground-truth map and detection maps of (c) RXD, (d) CRD, (e) PTA, (f) KIFD, (g) MFIFD, and
(h) SSIIFD.

Fig. 7. Gulfport dataset. (a) Pseudocolor image. (b) Ground-truth map and detection maps of (c) RXD, (d) CRD, (e) PTA, (f) KIFD, (g) MFIFD, and
(h) SSIIFD.

The proposed IIF method can work directly on the original
HSI data. Here, to fully utilize the local information, the orig-
inal HSI data are segmented into several subregions via the
ERS approach before feeding them to the IIF. This preprocess-
ing step exerts a positive influence on fine anomaly detection,
which is demonstrated with subsequent experimental results.
Specifically, the original data [X]N×D are transformed into
η submatrices: [1 X]N1×D , [2 X]N2×D, . . . , [ηX]Nη×D , where
N1 + N2 + · · · + Nη = N , i.e., 1 X∪2 X∪ · · · ∪ ηX = X .

D. Anomaly Detection Using the Proposed Framework

This section focuses on anomaly detection in both the spatial
and spectral domains. As shown in Fig. 1, Gabor features
and an HSI marked via ERS are fed to the constructed
ReMass-iForest and IIFD, respectively, to detect anomalies.
As mentioned earlier, the proposed IIF and ReMass-iForest
algorithms share the same measure to detect anomaly pixels,
namely both algorithms rely on the relative mass to formulate
anomaly scores. In each iTree Ti , the anomaly score of a
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Fig. 8. Influence of parameters η and ω on the detection performance of the
proposed SSIIFD on each HSI dataset. (a) Number of superpixels, η. (b) Value
of the balance parameter, ω.

pixel x with respect to its local neighborhood, si (x), can be
estimated as the ratio of the data mass as follows:

si(x) = m
(
T̆i (x)

)
m(Ti(x))×w (10)

where Ti(x) denotes the leaf node in Ti in which x falls, T̆i (x)
denotes the immediate parent of Ti(x), and m(·) denotes the
data mass of a tree node. Moreover, w is a normalization term,
which is the subsample size used to construct Ti . Obviously,
si (·) occurs in (0, 1). The higher the score, the higher the
likelihood of x being an anomaly pixel. In contrast to the
path length in iForest, si(x) measures the degree of anomaly
locally. Then, the anomaly score S(x) of a test pixel x can be
calculated as the average of the local anomaly scores over t
iTrees as follows:

S(x) = 1

t

t∑
i=1

si (x). (11)

By carrying out the operations mentioned above for each
pixel in the Gabor features and HSI data segmented by ERS,
the spatial anomaly score Sspa and the spectral anomaly score
Sspe can be obtained. In order to take full advantage of the
spatial and spectral detection results, Sspa and Sspe are linearly
combined to precisely distinguish anomaly pixels from the
background as follows:

S0 = ωSspe + (1− ω)Sspa (12)

where ω is a balance parameter. As known, the spectral domain
in HSI data contains more precise information than the spatial
domain. Notably, when the value of ω is greater than 0.5, this
suggests that the spectral features play a more important role
in the final detection result than the spatial features.

IV. EXPERIMENTS

In this section, we carry out several experiments to evaluate
the detection performance of the proposed SSIIFD method,
and comparison results against five state-of-the-art detectors
are presented. All experimental algorithms are implemented on
a PC with Windows 10, Intel Core i7-9700 CPU@3.00 GHz
and 16 GB RAM, and MATLAB 2017b.

A. Hyperspectral Datasets

Here, four real hyperspectral datasets captured at different
scenes are employed to evaluate the effectiveness of the
proposed SSIIFD method, which are listed as follows:

1) San Diego-I Dataset: The first dataset was captured by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
over the airport area of San Diego, CA, USA. The spatial
resolution is approximately 3.5 m/pixel, and the spectral
resolution is 10 nm. It contains 224 spectral channels in
wavelengths ranging from 370 to 2510 nm. After the removal
of water absorption and noisy bands (1–6, 33–35, 97, 107–113,
153–166, and 221–224), 189 bands are retained in the
experiments. The whole image scene covers an area
of 400 × 400 pixels. A region with a size of 100 × 100 pix-
els is selected from the top left of the image, denoted as
San Diego-I. Three airplanes, denoted by 58 pixels, are the
anomalies to be detected in this scene. The sample image and
ground truth map are shown in Fig. 4(a) and (b), respectively.

2) San Diego-II Dataset: The second dataset has been
widely used in related publications [25], [28], [38],
and [45]–[49]. Compared to the San Diego-I dataset, this
region exhibits a size of 100 × 100 pixels located at the
center of the whole image, which is selected for anomaly
detection and denoted as San Diego-II. This dataset is an
airport scene in which the main background types are hangars,
parking aprons, and exposed soil. Three airplanes, denoted
by 134 pixels, accounting for 1.34% of the image, are the
objects to be detected in this scene. The largest airplane of
this dataset obtains 56 pixels and accounts for 0.56% of the
image. The sample image and ground-truth map are shown
in Fig. 5(a) and (b), respectively.

3) Texas Coast Dataset: The third dataset was captured by
the AVIRIS sensor over an urban area of Texas Coast, TX,
USA. This urban scene consists of 100 × 100 pixels, with
207 spectral channels in wavelengths ranging from 450 to
1350 nm. The spatial resolution is 17.2 m/pixel. The scene
mainly consists of a stretch of meadow and three highways.
Houses are regarded as the anomalies in this scene. This HSI is
corrupted by serious strip noise, which resulted in challenges
in the detection of the above anomaly pixels. The sample
image and ground-truth map are shown in Fig. 6(a) and (b),
respectively.

4) Gulfport Dataset: The fourth dataset was captured by
the AVIRIS over the airport area of Gulfport, MS, USA. This
airport scene consists of 100 × 100 pixels, with 191 spec-
tral channels in wavelengths ranging from 550 to 1850 nm.
The spatial resolution is 3.4 m/pixel. This scene mainly
comprises an airport runway, highway, and some vegetation.
Three airplanes of different sizes are the anomalies to be
detected. The sample image and ground truth map are shown
in Fig. 7(a) and (b), respectively.

B. Comparison Methods and Evaluation Indexes

In our experiments, the anomaly detection performance
of the proposed SSIIFD is evaluated and compared to
that of five state-of-the-art detectors: RXD [6], CRD [50],
PTA [15], KIFD [24], and MFIFD [28]. Specifically, RXD is a
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representative statistical modeling-based technique. CRD is a
typical collaborative representation-based technique. PTA is a
typical tensor representation method. The KIFD and MFIFD
methods are representative iForest-based techniques. Further-
more, for the CRD, the window sizes and the optimal regular-
ization parameter are set optimally according to the original
literature [50], i.e., the inner window size win (ranging from
3 to 21) and the outer window size wout (ranging from
27 to 41) are selected optimally. The regularization parameter
λCRD is set to 10−6. The PTA parameters are set according
to the suggestions in [15], i.e., the truncated low rank r is
set to 1 and hyperparameters α, β, μ, and τ are set to 1,
0.01, 0.001, and 1, respectively. In terms of the KIFD method,
the subsample size is set to 3% of all pixels in the image,
the number of trees q = 1000, and the number of principal
components ξ = 300, which are consistent with the original
work [24]. The parameters of MFIFD method are set the same
as those given in [28], i.e., the subsample size ψ = 256, and
the number of trees is set to 25. In summary, the parameters of
the five baselines are defined in accordance with the original
works [6], [50], [15], [24], [28].

In the experiments, both qualitative and quantitative eval-
uation approaches are employed to evaluate the detection
performance. Specifically, we report the qualitative analy-
sis of the detection performance with the detection map,
whereas quantitative evaluation is conducted by using the
3-D receiver operating characteristic (ROC) curve, area under
the curve (AUC) values, and separability range. 3-D ROC
analysis has recently developed as an effective evaluation
approach for target/anomaly detection [52] and classifica-
tion [53]. The 3-D ROC curve of (PD , PF , τ ) extends the
traditional 2-D ROC curve of detection probability (PD) and
false alarm probability (PF ) by including the threshold τ to
specify a third dimension. The PD and PF are defined as
follows:

PD = ND

NO
PF = NF

N
(13)

where ND denotes the number of detected object pixels, NO

denotes the total number of real object pixels, NF denotes the
number of false alarm pixels, and N denotes the total number
of pixels in the ROC curve can be employed to generate
three 2-D ROC curves, 2-D ROC curve of (PD , PF ), 2-D ROC
curve of (PD , τ ), and 2-D ROC curve of (PF , τ ). The AUC
values denoted by AUC (PD , PF ), AUC (PD , τ ), and AUC
(PF , τ ) are calculated from 2-D ROC curve of (PD , PF ),
2-D ROC curve of (PD , τ ), and 2-D ROC curve of (PF , τ ),
respectively. These AUC values can be further used to design
two new metrics: AUCOD and AUCSNPR [54]. The AUCOD is
used to measure the overall detection performance, which is
defined by

AUCOD = AUC(PD, PF )+AUC(PD, τ )−AUC(PF , τ ). (14)

The AUCSNPR is called signal-to-noise probability ratio,
which originates from a similar idea that is widely used
in communications/signal processing, the signal-to-noise ratio
(SNR). AUCSNPR is the most effective detection measure,

Fig. 9. Detection map of the proposed IIFD on the Gulfport dataset
(a) without pre-segmentation and (b) with ERS algorithm as a preprocessing.

Fig. 10. Gulfport dataset. (a) Spectral anomaly detection map. (b) Spatial
anomaly detection map. (c) Final anomaly detection map.

which is defined by

AUCSNPR = AUC(PD, τ )/AUC(PF , τ ). (15)

Specifically, a higher value of AUC(PD , PF ) and
AUC(PD , τ ) indicates a better detection performance, while
a lower value of AUC(PF , τ ) indicates a better background
suppression and thus a better detection performance. Naturally,
by definition, a better and more effective anomaly detector
usually achieves a higher value of AUCOD and AUCSNPR. More
details on these metrics have been reported in [52]. Moreover,
the separability range clearly describes the ability of a detector
to distinguish anomaly pixels from the background [44].
Specifically, a good detector typically features a distinct gap
between the anomaly pixels and the background; meanwhile,
the anomaly scores of the background are suppressed within
a small range.

C. Parameter Tuning

Here, we investigate the influences of the parameters η
and ω on the detection performance of the proposed SSIIFD
method. Parameter η controls the number of subregions in
the preprocessing step. It should be noted that the ERS
algorithm addresses the problem that the size of subregions
varies greatly under complex background. This occurs mainly
because the entropy rate encourages formation of compact
and homogeneous clusters, while the balancing function favors
clusters with similar sizes. Parameter ω controls the proportion
of the spectral anomaly scores in the final detection results.
Fig. 8 shows the effect of parameters η and ω on the AUC
(PD , PF ) value of the proposed detector given each dataset.
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Fig. 11. Three-dimensional ROC curves obtained by the compared methods on (a) San Diego-I, (b) San Diego-II, (c) Texas Coast, and (d) Gulfport datasets.

Fig. 12. Normalized 2-D ROC curves of (PD , PF ) obtained by the compared methods on (a) San Diego-I, (b) San Diego-II, (c) Texas Coast, and (d) Gulfport
datasets.

TABLE I

AUC VALUES OF THE METHODS FOR THE EXPERIMENTAL DATASETS

Based on the parameter tuning results, we can draw three
conclusions, which are listed as follows:

1) The detection performances, represented by AUC
(PD , PF ) values, tend to increase and then decrease with

an increasing number of superpixels. This is mainly because
excess superpixels will lead to oversegmented regions and
cannot fully utilize all samples that belong to the homogeneous
area, whereas a small number of superpixels will lead to
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Fig. 13. Background-anomaly separability maps of the algorithms for (a) San Diego-I dataset, (b) San Diego-II dataset, (c) Texas Coast dataset, and
(d) Gulfport dataset.

TABLE II

RUNNING TIME (SECONDS) OF THE METHODS FOR THE EXPERIMENTAL DATASETS

undersegmentation and introduce some samples from different
homogeneous areas and cannot make full use of local infor-
mation. Moreover, an excessively large number of superpixels
results in each region containing a limited number of pixels,
which does not guarantee the reliability and stability of the
detection results, e.g., all the pixels in a given region may be
anomaly pixels, which introduces a high missed detection rate.

2) The detection performance, considering a proper value
of η, is always better than that when the η value is set to 1
(which indicates that the proposed method is directly carried
out on the original HSI data without preprocessing). Hence,
the proposed method, which takes the local homogeneity of
HSIs into account, is more effective than the method without
segmentation preprocessing.

3) As shown in Fig. 8(b), when parameter ω ranges from
0.01 to 1, the AUC (PD , PF ) values initially increase, then
slightly decrease, and finally reach their peaks at approxi-
mately 0.6 for the San Diego-II and Texas Coast datasets.
In regard to the San Diego-I and Gulfport datasets, we can
observe that maximum AUC (PD , PF ) values occur at
0.8 and 0.2, respectively.

In summary, based on the experiments and analysis men-
tioned above, we obtained the optimal fundamental superpixel
number η for the Texas Coast, San Diego-II, and the other
two datasets at 3, 5, and 4, respectively. Additionally, in this
article, we, inspired by [42], set ω to 0.618 for each dataset
under the guidance of the golden section method.

D. Analysis of the Detection Performance With and Without
Employing the ERS Algorithm

In this section, the influence of the pre-segmentation step
on detection performance of the proposed detector IIFD was
investigated. Here, the IIFD with segmentation preprocessing
by the ERS algorithm is denoted as Local_IIFD, while the

IIFD without pre-segmentation is denoted as Global_IIFD.
Note that the proposed Local_IIFD is identically equivalent to
the proposed Global_IIFD when the superpixel number η is set
to 1. As shown in Fig. 7(a), the Gulfport dataset mainly com-
prises an airport runway, highway, and some vegetation. Three
airplanes of different sizes are the anomalies to be detected.
However, although the highway is a relatively homogeneous
cluster, pixels of the highway, especially the lane line, are
easily mistaken for anomalies with global detectors. As shown
in Fig. 9(a), the Global_IIFD separates both the airplanes and
highway from the background. Conversely, the Local_IIFD
segments the Gulfport dataset into four subregions with the
ERS algorithm and further detects anomalies on each sub-
region in turn, which considers both the spectral signature
and the spatial information at neighboring locations. As a
consequence, some false alarms (e.g., highway pixels) are
effectively removed and three airplanes are detected more
effectively. The detection map of the Local_IIFD is shown
in Fig. 9(b). The AUC (PD , PF ) score of the detection result
is 0.9907.

Based on this experiment, the ERS preprocessing exerts a
positive influence on fine anomaly detection.

E. Analysis of the Detection Performance With and Without
Employing Spatial Information

In this section, we investigate the influence of spatial
information on the detection performance of the proposed
method. As shown in Fig. 10(a), the proposed IIFD detects
most anomaly pixels in the original Gulfport dataset, and
the AUC (PD , PF ) score of the detection result is 0.9907,
from which we can draw two conclusions: 1) the IIFD
effectively detects most anomalies without relying on spatial
information; and 2) a high false alarm rate (FAR) is the
main problem. Therefore, the Gabor filter is applied to extract
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spatial information in the PCA-projected subspace, and the
extracted Gabor features are then employed as input to the
ReMass-iForest detector to obtain the spatial anomaly score.
The detection map is shown in Fig. 10(b). In addition, the
original Gulfport dataset is segmented into four subregions
with the ERS approach, and each subregion is fed to the IIFD
to obtain the spectral anomaly score in turn. Finally, we fuse
the detection results by linearly combining the obtained spatial
and spectral anomaly scores to predict the anomaly pixels
given the input Gulfport dataset. As such, some false alarms
are effectively removed. Fig. 10(c) shows the final detection
map and the AUC (PD , PF ) score of the final detection map
is 0.9993.

Based on this experiment, we observe that both spectral and
spatial information play an important role in the detection of
anomaly pixels.

F. Detection Performance

In this section, we first qualitatively investigate the detection
performance via detection maps. For example, in Figs. 4 and 5,
the proposed SSIIFD, PTA, KIFD, and MFIFD detect the loca-
tions and shapes of the three airplanes accurately. However,
PTA, KIFD, and MFIFD also falsely detect many anomalies,
whereas there are few false alarms in the detection result
obtained with SSIIFD. CRD detects the locations of the three
airplanes, but the shapes of these three airplanes are not
determined. Additionally, the proposed SSIIFD achieves a
robust detection performance in images corrupted by serious
strip noise. As shown in Fig. 6, the proposed SSIIFD, KIFD,
and MFIFD effectively detect most anomalies, while only
SSIIFD effectively removes the interference of strip noise
and suppresses most of the background into low-detection
outputs. Regarding anomaly targets with relatively irregular
and different shapes and sizes, as shown in Fig. 7, CRD fails
to detect two small airplanes. MFIFD also fails to detect two
small airplanes clearly due to the blurring effect produced in
the filtering operation. The PTA and KIFD methods detect all
three airplanes, while some background pixels are mistakenly
detected as anomalies.

Moreover, the detection performances of the compared
methods were quantitatively evaluated based on the AUC
scores as summarized in Table I, and the best results are
highlighted for each dataset. It is obvious that SSIIFD achieved
the best results on all datasets. Although the MFIFD and KIFD
methods yielded a relatively stable detection performance, they
failed to achieve the highest AUCOD or AUCSNPR scores in any
experiment. Additionally, the 3-D ROC curves and 2-D ROC
curves of (PD , PF ) of the different methods are shown
in Figs. 11 and 12, respectively. It can be observed that the
SSIIFD method is superior to the MFIFD, KIFD, PTA, CRD,
and RXD methods under most conditions.

Furthermore, another quantitative evaluation aspect of the
proposed SSIIFD, separability map, is exploited to investi-
gate its ability in anomaly background separation, as shown
in Fig. 13. There are two boxes for each detector. The green
and red boxes indicate the distributions of the background
and anomalies, respectively. The position of the boxes reflects

the separability between the background and anomaly pixels.
In other words, the greater the distance between these two
boxes, the better the detector is. As shown in Fig. 13, it is
obvious that the proposed SSIIFD offers the best perfor-
mance in terms of the separability between the anomalies
and background, whereas the other methods exhibit more
or less overlap between the anomaly and background boxes.
For example, as shown in Fig. 13(b), the proposed SSIIFD,
RXD, and CRD effectively suppress the background within
a small range. However, for both RXD and CRD, overlap
occurs between the anomaly and background boxes, which
suggests that they do not efficiently distinguish anomaly pixels
from background pixels. On the contrary, the background
boxes of PTA and MFIFD reflect that these two methods
do not suppress most of the background into low-detection
outputs. Based on the experiment results, we conclude that
the proposed SSIIFD detects anomaly pixels more clearly and
accurately at lower FARs over the five comparison methods.

ReMass-iForest and iForest exhibit the same time complex-
ity, i.e., O(t (N+W ) log W ). The time complexity to construct
IIF consists of three major components: 1) computation of
the band separability according to (8); 2) sorting of the
band separability values; and 3) calculation of the branching
criterion according to (8). The time complexity associated
with IIF construction of t trees is O(tW (DW + log W + D)),
where W is the subsample size and D is the number of
bands in the input HSI. The time complexity of anomaly
score evaluation is O(tW N), where N is the number of
pixels in the input HSI. Hence, the time complexity of the
proposed IIF is O(tW (DW + log W + D+ N)). Additionally,
the compared methods are implemented in MATLAB, and the
running times given the four datasets are listed in Table II.
It should be noted that RXD is the fastest method, whereas
CRD is the slowest. KIFD is also time-consuming, which
principally occurs because KIFD employs kernel-PCA during
preprocessing, and numerous iTrees are constructed to obtain
stable anomaly scores. The running time of the proposed
SSIIFD method is similar to that of the MFIFD method,
which is much more efficient than the CRD, PTA, and KIFD
methods.

G. Sensitivity to the Parameters and Discussion

In this section, we carry out experiments to reveal the
effect of the parameters of the proposed SSIIFD method on
the detection performance. There are three parameters in the
proposed SSIIFD method, i.e., the number of used bands k,
the number of iTrees t , and the size of the subsample W . Para-
meter k controls the number of spectral bands to be employed
in the construction of the proposed IIF. Fig. 14 shows the
influence of different numbers of iTrees t on the detection
performance and the running time on each dataset. As shown
in Fig. 14(a), the AUC (PD , PF ) value for the Gulfport dataset
remains nearly stable, whereas the AUC (PD , PF ) value for
the San Diego-II dataset slightly fluctuates within a small
range. Regarding the other two datasets, the AUC (PD , PF )
values initially increase and then fluctuate within a small
range. Moreover, as shown in Fig. 14(b), the running time of
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Fig. 14. Effect of the number of iTrees on each dataset. (a) AUC value.
(b) Running time.

Fig. 15. Effect of the subsample size on each dataset. (a) AUC value.
(b) Running time.

the proposed SSIIFD method achieves a nearly linear growth
with increasing number of iTrees. In addition, Fig. 15 shows
the influence of different subsample sizes W on the detection
performance and running time on each dataset. As shown
in Fig. 15(a), the AUC (PD , PF ) value for the Texas Coast
dataset remains nearly stable, whereas the AUC (PD , PF )
values for the other three datasets slightly fluctuate within
a small range, i.e., from 0.96 to1. Furthermore, as shown
in Fig. 15(b), the running time of the proposed SSIIFD method
achieves a nearly linear growth with increasing subsample
size W . Hence, considering both the performance and effi-
ciency of the proposed SSIIFD method, we set t = 32 and
W = ceiling(2.5%× N) (where N is the number of pixels in
the input HSI) for each dataset as default parameter values.

Moreover, Fig. 16 shows the effect of parameter k on
the detection performance given each dataset. Regarding the
San Diego-I and San Diego-II datasets, the AUC (PD , PF )
values gradually increase and tend to remain stable when
the parameter k ranges from 1 to 100. On the contrary, the
AUC (PD , PF ) values obtained for the Gulfport and Texas
Coast datasets exhibit a larger fluctuation with increasing k.
This mainly occurs because pretreatment of water absorption
and noisy bands is applied to the two San Diego datasets,
and almost all 189 bands exhibit a high SNR, whereas
the Gulfport and Texas Coast datasets, without pretreatment,
exhibit low SNR and poor quality bands, especially the Texas
Coast dataset. As a result, in terms of the two San Diego

Fig. 16. Influence of the number of used spectral bands k on the detection
performance of the proposed SSIIFD on each HSI dataset.

Fig. 17. HYDICE dataset. (a) Pseudocolor image. (b) Ground-truth map and
detection maps of (c) RXD, (d) CRD, (e) PTA, (f) KIFD, (g) Global_IIFD,
and (h) Local_IIFD.

datasets, by calculating the sep value for each band with (8),
we obtain the separability index as expected, which accurately
measures how separable each band is in the identification of
background and anomaly pixels. For the other two datasets
with no pretreatment, too large or too small value of k leads to
the usage of those noisy and water absorption-affected bands
with a high probability. In other words, in low SNR and
noisy bands, the sep value does not accurately measure how
separable the band is in distinguishing anomaly pixels from the
background. Therefore, parameter k is set as k = ceiling(D/3)
for each dataset in this article.

H. Application of the Proposed Method on Subpixel Target
Detection in HSIs

The proposed SSIIFD, a spectral–spatial IIF-based detection
framework, is designed to detect anomaly pixels by combining
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TABLE III

AUC VALUES OF THE METHODS FOR THE HYDICE DATASET

spectral and spatial information. To verify the performance
of all aspects of the proposed method, previous experiments
used four datasets in which spatial information could provide
useful information for anomaly detection. Those four datasets
are representative of anomalies at full-size pixels. In practice,
a small-sized ground target may occupy part of the pixel area
and form a mixed pixel with the background of a ground
object. In such cases, the corresponding target/anomaly detec-
tion problem becomes a subpixel target detection problem.

This section uses the HYperspectral Digital Imagery Col-
lection Experiment (HYDICE) urban dataset to further analyze
the detection performance of the proposed detectors on sub-
pixel target detection. The HYDICE urban dataset, available
on the website,2 is representative of anomalies at subpixel
level [49]. It was recorded by the HYDICE in October 1995,
whose location is an urban area at Copperas Cove, TX, USA.
Each pixel, corresponding to a 2 m × 2 m area, is observed at
162 wavelengths ranging from 440 to 2370 nm after removing
the noisy and water vapor absorption bands [51]. A region
with a size of 80 × 100 pixels located at the top right of
the scene is selected as the test data. Among them, 21 pixels
are identified as anomalies, which are mainly cars, because
they have spectra that differ from the background. The sample
image and ground-truth map are shown in Fig. 17(a) and (b),
respectively.

In subpixel target detection, the size of the target is smaller
than that of a pixel, making the spatial information of the target
almost useless so that a detector must rely on the spectral infor-
mation of the image. Hence, rather than the proposed SSIIFD,
the proposed Local_IIFD and Global_IIFD are employed to
detect the 21 pixels. It should be noted that the proposed
SSIIFD is identically equivalent to the proposed Local_IIFD
when the parameter ω in (12) is equal to 1. For Local_IIFD,
the superpixel number η is set to 3. Other parameter settings
are consistent with Sections IV-B and IV-E.

For the HYDICE dataset, the detection maps of the proposed
detectors, Local_IIFD, Global_IIFD, and four comparison
detectors, are shown in Fig. 17. Their AUC values are listed
in Table III. From Fig. 17, it is obvious that both Local_IIFD
and Global_IIFD work effectively. Table III tabulates the AUC
values of their corresponding 2-D ROC curves, AUCOD, and
AUCSNPR, where the best results are boldfaced. Among the
best cases is AUCSNPR = 36.1733 produced by Local_IIFD.
The KIFD produces a very high AUC (PD , PF ) value at
the expense of high AUC (PF , τ ), which means that KIFD

2http://www.tec.army.mil/Hypercube

performs poorly in background suppression, while the pro-
posed Local_IIFD and Global_IIFD show competitive per-
formances for anomaly detection in terms of both detection
accuracy and background suppression.

V. CONCLUSION

In this article, we propose a novel IIF algorithm to address
the poor performance of iForest in regard to high-dimensional
data and detecting local anomalies. Then, a novel spectral–
spatial anomaly detection framework based on IIF (SSIIFD)
is proposed. Gabor features and segmented HSI data are
employed to construct ReMass-iForest and IIF, respectively.
The advantages of the proposed SSIIFD method are threefold:
1) the method fully utilizes spectral and spatial information
in HSIs; 2) this method fully employs global and local
information in HSIs; and 3) this method detects anomaly
pixels more clearly and accurately at a lower FAR. The
experiments on four real hyperspectral datasets reveal that
SSIIFD is stable and superior to other state-of-the-art methods
in terms of both objective and subjective evaluations. In the
future, the application of SSIIFD in other remote sensing
applications will be investigated (e.g., change detection and
shadow detection). In addition, how to classify and recognize
the detected anomaly pixels will be the focus of our future
research.
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