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ABSTRACT Multi-stage feature fusion is pretty effective for deep Siamese trackers to promote tracking
performance. Unfortunately, conventional fusion approaches, such as weighted average, are so simple
that they are inappropriate to combine the features with diverse characteristics. In addition, the fusion
module is generally optimized along with Siamese network module, which may result in the performance
degradation of the whole tracker. In this paper, we propose a novel feature fusion network for Siamese tracker
by exploiting the expression capacity of residual fusion learning (SiamRFL). Specifically, the network
employs the deep-layer features as direct input to semantically recognize the object from background, and
refines the object state with local detail patterns by exploring the shallow-layer features through residual
channel. The classification and the regression features can be fused respectively by deploying multiple
fusion units. To avoid the degradation problem, we also present an ensemble training framework for our
tracker, in which different loss functions are introduced to individually optimize the Siamese and the fusion
modules. Compared to the baseline SiamRPN++ tracker, the proposed tracker achieves favorable gains
by 0.696→0.709, 0.285→0.308, 0.603→0.624, 0.496→0.520 and 0.517→0.559 on OTB100, VOT2019,
UAV123, LaSOT and GOT10k datasets, outperforming other approaches by an obvious margin.

INDEX TERMS Visual tracking, Siamese network, feature fusion, residual learning, ensemble training.

I. INTRODUCTION
Visual tracking is one of the most fundamental research
directions in computer vision, which has a capacity to
infer the state of an arbitrary object in a sequence, only
with its initial state in the first frame as reference. The
technique is required by various visual issues, such as visual
surveillance [1], robotics [2], human computer interaction [3]
and augmented reality [4]. Despite great progress has
been realized, most of trackers still struggle with several
challenging factors, such as background clutters, occlusion,
illumination variation, etc.

With the development of Convolutional Neural Networks,
a few more efficient tracking paradigms are gradually
presented to address the above difficult factors, such as
Siamese network. The network aims to match the features
of template and search region patches to predict the object
state, which has a significant advantage in speed and
precision. Following the seminal works of SiamFC [5] and
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SINT [6], massive efforts are performed to furtherly promote
tracking performance. Some [7], [8] expected to improve
the quality of feature representation by introducing effective
backbone networks, like ResNet [9] and GoogleNet [10], etc.
While others devoted themselves to completing more reliable
decisions by designing powerful matching modules, i.e.,
Region Proposal Networks (RPN) [11], [12] and Anchor-free
networks [13], [14]. In addition, a number of training
approaches [15], [16] and online update strategies [17], [18]
were explored to achieve better tracking results.

In one neural network, the modules in different depths
vary in abstract levels and receptive fields, so they are able
to learn features with diverse attributes. The features from
shallow layers consist of abundant local detail patterns which
are valuable for perceiving the location variations of the
object, while deep-layer features with high-level semantic
information are important to discriminate the object from
background. In this circumstance, most of the previous
Siamese trackers [7], [13], [19] try to fusemulti-layer features
to benefit from their complementary attributes. However,
existed fusion approach, i.e., weighted average, is very simple
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and still suffers from several drawbacks. Firstly, the method
is so simple that it cannot aggregate features in an adaptive
way, even though the aggregated weights are trainable. Since
it ignores the attribute difference between multiple-layer
features and treats them equally, these features maybe disturb
each other during fusion that makes trackers fail to adapt
to the drastic appearance variations of object. Moreover,
conventional works usually train the whole network entirely,
in which both Siamese network module and fusion module
are optimized by only one loss function. This manner is
insufficient to ensure the training quality of every module,
and degrades the performance of Siamese trackers.

In this paper, we propose a novel feature fusion framework
for Siamese trackers based on the attributes of different-
stage features, which is comprised of multiple residual
units. When tracking an object, an appropriate tracking
strategy is that the tracker first explores abstract semantic
patterns to discriminate the tracked object from a global
view, and then utilizes spatial detailed patterns to refine
the state of object. Inspired by this idea, the features from
deep layers are adopted as the direct component of our
residual unit to coarsely identify the object from background,
while the shallow-layer features are inputted into residual
channel to eliminate the prediction deviations of direct
channel. There exist two sub-networks in the proposed fusion
module to combine the classification and the regression
features respectively, and each sub-network is constructed by
cascading the fusion units. Through introducing the fusion
architecture, a Siamese tracker is able to predict the object
state in a coarse-to-fine manner.

Furthermore, an ensemble training approach is presented
for our tracker to avoid the performance degradation in the
testing phase. Concretely, several basic losses are adopted to
optimize the Siamese network module including backbone
and decision networks, and a fusion loss is utilized to only
train the fusion module. By decomposing the optimizations
of diverse blocks, our presented tracker would be trained
with high-quality. Figure 1 shows several representative
visual response maps, illustrating that all decision modules
become more efficient under our optimizing scheme, and the
proposed fusion strategy produces more robust and reliable
tracking responses.

The major contributions presented in the work mainly
consist of the following points.

1. We propose a novel feature fusion scheme by exploit-
ing residual learning, which has an ability to take
full advantage of the attribute information of multi-
layer features, and generate more reliable tracking
results.

2. An ensemble training approach is designed to optimize
our Siamese tracker. By using multiple loss functions
to separately train different network modules, it is very
effective to promote the training quality of the proposed
tracker.

3. Extensive experiments on some challenging bench-
mark datasets manifest that the proposed tracker is

FIGURE 1. Classification resulting maps of SiamRPN++ [7] and our
SiamRFL on some typical videos. The first two rows show the results of
SiamRPN++, while the rest of rows illustrate our responses. The columns
from 1st to 4th express the resulting maps output by three RPN modules
(conv-3, conv-4 and conv-5) and fusion module, respectively.

superior to some state-of-the-art trackers with very
promising performance.

The rest of the paper is organized as follows. We first
review the related works in Section II, and then describe
the Siamese tracker with our presented residual fusion
network as well as its training approach in Section III. The
experiments and results on several latest datasets are analyzed
in Section IV, in which our tracker is compared with most of
state-of-the-art methods. At last, the paper will be concluded
in Section V.

II. RELATED WORKS
In this section, we just briefly review the recent researches
related to our work, including Siamese trackers, feature
fusion approaches and loss functions. More elaborate intro-
duction about visual tracking can be found in some review
literatures [20], [21].

A. SIAMESE TRACKERS
Siamese networks serve as a popular tracking paradigm
which have received intensive attentions in the last few
years. Inspired by the pioneering work of SiamFC [5] that
presented a cross-correlation layer to compare the features
of template and search patches, abundant strategies were
exploited to lift the potential of the networks. Among these,
a very representative direction is to study how to predict the
object state. Concretely, SiamRPN [11] combined Siamese
network with Region Proposal Network [22] to parallelly
perform object-background classification and bounding box
regression, realizing high-speed and impressive tracking. Fol-
lowing the instance, several more complicated and successful
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structures were developed, such as SPM [23] and
C-RPN [12]. Furtherly, anchor-free networks were also
explored to avoid complex hyperparameters in RPNmodules.
SiamBAN [13] presented a box adaptive network without
anchors, which can detect the bounding box of an object
in a per-pixel manner. SiamFC++ [24] described a set of
guidelines for the object state prediction, while Ocean [14]
designed an object-aware anchor-free network for tracking.
Moreover, other decision blocks such as segmentation
network [25] and corner detection network [26] were proved
to be powerful, too. Another important evolution for Siamese
networks is to introduce deeper backbone network for more
abstract feature representation. SiamRPN++ [7] used spatial
aware sampling to overcome the negative influence of
padding operation, and employed ResNet-50 [9] as backbone.
SiamDW [8] straightly proposed a novel residual unit
without padding. In addition to design network model, both
adversarial learning [16] and distractor-aware sampling [15]
were utilized to improve training quality, while some online
update methods [17], [18], [27] were adopted to help trackers
to achieve satisfactory performance.

B. FEATURE FUSION APPROACHES
Feature aggregation is a valuable way for lifting the tracking
performance of neural networks, which has been widely
applied in previous works. A popular solution is to trans-
mit multi-layer convolutional features into Discriminative
Correlation Filters (DCF) [28]–[30], which were able to
combine these features to form a kernel to recognize
the object. In addition, FCNT [31] presented a switch
mechanism to alternately select the features from diverse
stages for tracking. Nevertheless, these methods are all
artificially designed, which could not benefit from large-scale
training datasets, as well as satisfy challenging tracking
requirements. In Siamese networks, it is more meaningful
to aggregate multi-stage features when utilizing deeper
backbone networks such as ResNet, since the abstract
levels and receptive fields varies a lot [7]. As a result,
SiamRPN++ [7], SiamBAN [13] and some of the rest
Siamese trackers [19], [32] attempted to accumulate the
tracking responses computed on diverse-layer features using
fixed weight ratios. However, the linear average strategy
is so simple that trackers were incapacity of taking full
advantage of the features with diverse attributes, even though
the weights are trainable. The drawback would limit the
role of feature fusion to some extent. In contrast to these
traditional approaches, this paper proposes a more powerful
fusion scheme, which can combine the low-level detail and
the high-level semantic information in a more adaptive way
by exploiting residual learning.

C. TRAINING LOSS FUNCTIONS
Loss function plays a vital role to guide the optimization of
neural networks, and a variety of losses have been proposed
to train Siamese networks. In several initial studies, i.e.,
SiamFC [5] and CFNet [17], a simple classification loss

was presented to generate the similarity confidence map.
Then, Dong et al. [33] described a triplet loss to find the
relative relationship among exemplars, positive instances
and negative instances. For some state-of-the-art Siamese
networks, such as SiamRPN [11] and SiamRPN++ [7],
both classification and regression losses were required to
discriminate the object and predict its location state. As a
result, they usually accumulated a classification loss and
a regression loss as the final training loss. Although these
losses are mature and effective, they are not suitable for
optimizing our proposed tracker. The core reason is that all
these adopted only one loss to train all network modules,
which cannot endow every network module with different
capability. PG-Net [32] put forward to a multi-stage loss
function, where multiple sub-losses were introduced to train
the corresponding decision modules, while a fusion loss was
adopted for the whole network. The loss is more specific,
but it still can’t separate the training procedure of Siamese
network module and fusion module completely. In this case,
we need to design a novel optimization scheme to train the
proposed tracker more efficiently.

III. SIAMRFL TRACKER
In this section, we describe the proposed SiamRFL tracker in
detail. After giving the overview of the overall architecture,
we introduce the baseline SiamRPN++ tracker [7] and
present our residual fusion network. Next, we analyze the
fatal drawbacks of conventional training way, and illustrate
our ensemble training method for model optimization. Last
of all, the implementation details about offline training and
online testing are explained.

A. OVERVIEW
The architecture of the proposed tracker is depicted in
Figure 2. Concretely, the tracker first extracts the template
and the search region features with a weight-shared backbone
network, and then matches their features in different stages
using three RPN blocks. Subsequently, multi-layer output
response features are aggregated by the residual fusion
network, which consists of multiple residual fusion units
(RF Unit) to fuse the classification and the regression
features, respectively. The fusing results would be adopted to
predict the final state of object. In offline training phase, the
Siamese networkmodule, i.e., the backbone as well as Region
Proposal Networks and the fusion module are optimized with
diverse loss functions, which is very productive to improve
the performance of our tracker.

B. SIAMRPN++ TRACKER
Siamese networks generally infer the state of object through
comparing the candidate samples in search region x with the
initial template z, which can be formulated as

f (z, x) = G(ϕ(z), ϕ(x))+ b (1)

in which, ϕ represents the weight-shared backbone network
for feature extraction, while G indicates the similarity
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FIGURE 2. Illustration of the proposed framework, consisting of the weight-shared backbone, Region Proposal Networks [7] and Residual Fusion
Network. The presented fusion network is comprised by two subnetworks, which can combine the classification and the regression outputs of
multiple RPN modules, respectively.

matching module which is used to find the most similar
candidate sample with template. b is a bias factor and
f denotes the matching results of all candidate samples.

Considering previous works, SiamRPN++ [7] is an
important development in field of Siamese visual tracking,
which exploits deeper backbone module and aggregates
features from multiple stages to find the tracked object. Due
to more powerful feature expression, this work could produce
very promising tracking results. To describe our feature
fusion network and validate its effectiveness, we take the
tracker as the baseline, and their mainmodules, i.e., backbone
network and Region Proposal Network, are introduced as
follows.

1) BACKBONE
SiamRPN++ has declared that Siamese networks can benefit
from more abstracting feature representation, and thus
employs ResNet-50 [9] as the backbone. Besides, it adjusts
the backbone with several extra trails to make it more
appropriate for tracking. Specifically, the sampling strides in
the fourth and the fifth residual blocks, i.e., conv-4 and conv-5
blocks, are first reduced to 1 pixel to improve the dimensions,
while dilated convolution is introduced into these blocks to
maintain the receptive fields. To boost tracking ability using
features with different attributes, this tracker takes advantage
of the last three residual blocks to output features, in which
an additional 1×1 convolutional layer is appended to each of
block end to align the channels to 256. For template samples,
only the features in central 7× 7 regions are used to express
the objects.

2) REGION PROPOSAL NETWORK
Region Proposal Network is a typical anchor-based decision
block. It is proposed for object detection [22], but has
gradually become popular in visual tracking domain due to
the advantage of prediction precision. There are two different
task branches in the block, i.e., a classification branch for
identifying the object from background as well as a regression
branch for finding the bounding box of object. After adjusting
input features, a depth-wise cross-correlation layer is first
used in each branch to match a pair of input features. Then,
a decision head is constructed to finish object classification or
bounding-box regression. In SiamRPN++, three RPN blocks
are employed corresponded to the output layers of backbone,
whose function can be formulated as

Ci = H cls
i

(
aclsi (ϕi(z)) ∗ βclsi (ϕi(x))

)
Li = H loc

i

(
aloci (ϕi(z)) ∗ β loci (ϕi(x))

)
(2)

where, ϕi(z) and ϕi(x) are the template and the search region
features, respectively. a or β denotes a 1 × 1 convolutional
layer to adjust the features. i ∈ [3, 4, 5] depicts diverse output
stages. ∗ denotes the cross-correlation operation, while H
represents a classification or regression head. Ci and Li are
the classification and the regression results of different layers,
respectively.

C. RESIDUAL FUSION NETWORK
Since the above RPN blocks can finish object state predic-
tion using the features with different characteristics, more
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FIGURE 3. Instance of the depth displacement between multiple decision
branches. The decision depths of diverse stages are inconsistent once the
fusion modules are mistaken as the decision layers, degrading the
tracking performance severely.

precise and reliable tracking results will be produced if
we combine the response outputs of these blocks in a
proper way. The feature expression gradually becomes more
abstract with the increasement of the network depths. As a
result, the deep-layer features that encode more high-level
semantic patterns are suitable for discriminating the object
from background globally, while the features provided by
shallow layers should be used to refine the tracking results
of deep-layer blocks with massive local detail patterns.
We observe that the residual learning framework presented
in ResNet [9] is very suitable for combining these features,
which constructs two independent branches to learning
feature representation. Inspired by the issue, we propose a
residual fusion network to utilize multi-layer features, named
as RFNet.

The network is composed of some residual fusion units,
each of which consists of two cascading 1× 1 convolutional
layers. Specifically, the first one compresses the channels
of features in half, and the second just adjusts the features
without reducing the quantity of channels. A Rectified Linear
Unit (RELU) layer is inserted between two convolutional
layers to enhance nonlinearity. The features from two diverse
stages are required simultaneously by the unit to learn
how to aggregate them. In consequence, these features
are first concatenated and then inputted into the unit for
forward propagation. We accumulate the results with the
original deep-layer features to remove the tracking errors of
deep-layer modules based on residual learning, which can be
formulated as

yr = yj + R
(
yi, yj

)
(3)

where, yi and yj indicate the features from the shallow and the
deep layers, respectively. R depicts the residual fusion unit,
while yr is the fusion result.
In our framework, there are two subnetworks to aggregate

the classification and the regression features, respectively.
Every subnetwork is comprised of two residual units, which is
able to combine the features from three stages. The features

from the first two stages are transmitted into the first unit,
whose outputs are adopted as the shallow-layer inputs of the
last unit. In one subnetwork, the last unit produces the final
results of feature fusion:

Cf = Ci+2 + Rclss
(
Ci+1 + Rclsd (Ci,Ci+1) ,Ci+2

)
Lf = Li+2 + Rlocs

(
Li+1 + Rlocd (Li,Li+1) ,Li+2

)
(4)

in which, Rd and Rs represent the first and the second residual
units in a subnetwork, while i = 3 denotes the first output
stage. Cf and Lf denote the fusion results of classification
and regression features, respectively.

In reality, multi-layer feature fusion is a kind of ensemble
learning technique, for which one of the most important
issues is to design an ensemble module to combine several
weak sub-learners into a stronger learner. The technique has
been widely discussed and proved to be effective in some
previous trackers [34], [35]. For a Siamese network, every
decision block can be regarded as a sub-learner, while the
fusion approach plays the role of ensemble module. In this
view, it is easy to observe that previous fusion methods [19],
[32] are too simple to adaptively integrate sub-learners and
maximize the advantage of ensemble learning. In contrast, the
proposed fusion network is presented based on analyzing the
characteristics of each sub-learner, and has an ability to bene-
fit from the training on large-scale image datasets. Therefore,
it can accomplish more efficient feature aggregation.

D. ENSEMBLE TRAINING WITH MULTIPLE LOSSES
At present, Siamese networks are generally optimized under a
standard training framework, in which only one loss function
is used to train the whole network model. However, the
tracking performance of our proposed tracker will degrade
severely if we follow the traditional training route. The core
reason is that one loss function is insufficient to guide all
network modules to master the corresponding capabilities.
For instance, the decision and the fusion modules are
directly cascaded in our Siamese tracker. If there is only
one loss for training them, the optimizer may regard them
as one functional block, and deliver them with the uniform
capability. A possible extreme situation is that the fusion
module is mistaken as a part of decision layers, which learns
how to predict the object state rather than how to fuse the
multi-layer features. Moreover, the depths of diverse decision
blocks are unbalanced in this condition, as displayed in
Figure 3, whichmay result in the further reduction of tracking
quality.

Analyzing this problem with ensemble learning, we dis-
cover that all sub-learners, i.e., RPN blocks, and the
ensemble module, i.e., fusion module are synchronously
optimized using only one loss function in conventional
training paradigm. This manner is inappropriate since it
cannot ensure the basic performance of sub-learners and
the validity of ensemble learning. To yield the problem,
we present an ensemble training framework for our Siamese
tracker, as shown in Figure 4. In the framework, every RPN
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block and its corresponding feature extraction layers are
individually optimized by one basic loss function, and a
fusion loss function is adopted to only optimize the proposed
residual fusion module.

1) BASIC LOSS
The role of basic loss functions is to guide the sub-learners
to learn how to track an object, so there are multiple basic
losses corresponding to diverse sub-learners. In practice,
we introduce the training loss presented in SiamRPN++ [7]
as the basic loss function, which consists of a classification
loss for identifying the object and a regression loss for
estimating the bounding box of object. One RPN block and
its feature extraction layers are optimized with the loss

Li = Lcls (Ci, `cls)+ λ · Lreg
(
Li, `reg

)
(5)

in which, Ci and Li denote the classification and the
regression results in diverse stages of i ∈ [3, 4, 5],
respectively. Lcls is the Cross Entropy Loss for classification,
and Lreg is the standard smooth L1 Loss for regression. `cls
represents the binary label of classification, while `reg depicts
the ground-truth bounding box of object. λ denotes a weight
factor for balancing two kinds of losses. Then, the basic losses
of all stages are aggregated

Lm =
5∑
i=3

Li (6)

where Lm denotes the aggregated result of multiple basic
losses. We could complete the optimization of backbone
network and all Region Proposal Networks through backward
propagating the gradient of the loss.

2) FUSION LOSS
In addition to train sub-learners with the basic losses,
an extra loss function is required to guide the fusion
module to combine the decision results of sub-learners.
Keeping consistent with the training process of sub-learners,
we optimize the residual fusion network with the same loss

Lf = Lcls
(
Cf , `cls

)
+ λ · Lreg

(
Lf , `reg

)
(7)

where Cf and Lf represent the classification and the regres-
sion fusing results output from fusion network, respectively.

During offline training, all network modules are optimized
jointly. Specifically, two different optimizers are constructed
to train Siamese network module and fusion module,
respectively. In every batch, we extract several sample pairs
of templates and search regions, and then forward propagate
them to compute the aggregated basic loss and the fusion loss.
Next, we backward propagate the gradients of basic loss and
use the first optimizer to train backbone and RPN blocks.
The gradients of the fusion loss are backward propagated
by the other optimizer to train the residual fusion network.
By combining two kinds of losses, the whole network is
trained in an end-to-end manner.

FIGURE 4. Framework of the proposed ensemble training method.
Multiple basic losses are adopted to train the RPN blocks and the
corresponding backbone layers, while the residual fusion network is
optimized using an independent fusion loss.

E. IMPLEMENTATION DETAILS
1) TRAINING
The proposed Siamese network is optimized on the
training datasets of ImageNet VID [36], YouTube-
BoundingBoxes [37], COCO [38], ImageNet DET [36],
LaSOT [39] and GOT10k [40]. We extract a pair of template
and search region samples from different frames of a video
sequence or a still image with diverse data augmentations,
where the sizes of object template and search region patches
are set to 127 and 255, respectively. The anchor boxes in RPN
blocks are deployed according to the way described in [11].
An anchor would be labelled as positive sample if its IOU
ratio with ground-truth is larger than 0.6, while it would be
viewed as negative sample if the IOU ratio is lower than 0.3.
In one training image pair, we only extract 16 positive and
32 negative samples for network optimization.

After initializing the backbone module with the parameters
pretrained on ImageNet dataset [36], we optimize our
network using Stochastic Gradient Descent (SGD) method
with a weight decay of 0.0005 and a momentum of 0.9.
The network is trained 20 epochs with a minibatch of 32,
and one million sample pairs are utilized in each epoch.
We use a warm-up learning rate for network optimization.
Concretely, the learning rate increases from 0.001 to 0.005 in
the first 5 epochs, and decays from 0.005 to 0.00005 in the
last 15 epochs. Moreover, the first two residual blocks of
backbone network are frozen throughout the training, and
only the rest of residual blocks are optimized in the last
10 epochs. The learning rate of backbone is smaller 10 times
than other network modules. The hyperparameters λ of losses
in Eq.5 and Eq.7 are set to 1.2. Our work is performed
using PyTorch on a computer with two NVIDIA Titan Xp
GPUs. Because we need two optimizers to train the network
iteratively, more time is required to make the model converge.
The whole training phase takes about 6 days.

2) INFERENCE
Following some previous works [7], we extract the template
features using backbone network only in the initial frame, and
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don’t perform update during the tracking process for stability.
In each subsequent frame, we extract the search region
sample based on the object state in the previous frame, and
compare its features with template features. After aggregating
the response maps of multiple RPN blocks with the proposed
residual fusion network, cosine window penalty and scale
change penalty are adopted to re-rank the classification scores
of all anchors [11]. The anchor with the highest classification
score is selected to regress the bounding box of object. The
target size is changed by linear interpolation to maintain the
shape changing smoothly. The hyperparameters in the above
penalty and linear interpolation operations are automatically
computed using the tracking toolkit [13]. The classification
and regression results are displayed in Figure 5, where we
find that the proposed tracker can provide very accurate and
robust tracking results through adaptively fusing multi-layer
features.

IV. EXPERIMENTS AND DISCUSSION
To evaluate the performance of the proposed Siamese
tracker, we conduct extensively experiments on several public
popular benchmark datasets, including OTB-2015 [41],
VOT-2019 [42], UAV123 [43], LaSOT [39] and
GOT-10k [40]. Our tracker is first compared with some
state-of-the-art trackers to highlight its superiority, where
the comparison results with other Siamese trackers manifest
the advantage of our fusion scheme. Besides, we perform
the ablation experiments on LaSOT dataset to show the role
of each contribution in our method. In all experiments, the
evaluation protocols presented by the above benchmarks are
followed rigorously. In the experiments, our tracker runs at
a speed of over 40 Frames-Per-Second (FPS), which is very
close with the speed of SiamRPN++.

A. COMPARISON WITH THE STATE-OF-THE-ART
TRACKERS
1) OTB-100
Online Tracking Benchmark is classic benchmark for visual
tracking, and the latest version, i.e., OTB-100 [41] consists
of 100 fully-annotated video sequences. These sequences
cover 11 kinds of challenging attributes, like background
clutter, motion blur, occlusion, etc. Both center location error
and overlap ratio are used to evaluate the performance of
trackers in the standard protocol. Concretely, center location
error indicates the relative distance between the predicted
location and ground-truth center, and Precision metric could
be furtherly computed by counting the percentage of frames
where center location errors are within a given threshold.
Overlap ratio measures the Intersection over Union (IoU)
ratios of the predicted and ground-truth bounding boxes,
where Success metric is used to represent the percentage of
images where overlap ratios are larger than a given threshold.
We conduct the evaluation in the One-Pass Evaluation (OPE)
formulation.

We compare our tracker with twelve state-of-the-art
trackers: TransT [44], SiamBAN [13], SiamR-CNN [45],
SiamCAR [19], SiamRPN++ [7], SiamRPN [11], UDT [46],

FIGURE 5. Tracking results of our proposed SiamRFL tracker on several
typical sequences. Each object is annotated by the response heatmap
produced by classification branch and the bounding box output from
regression branch.

FIGURE 6. Precision and success plots of OPE for all trackers on OTB-100.
These trackers are ranked according to the performance score. The
performance score of precession plot is at error threshold of 20 pixels,
while the performance score of success plot is the value of area under
curve (AUC).

DIMP [47], ATOM [48], ECO [30], CREST [49] and
MDNet [50]. To be specific, the first six trackers belong to
Siamese tracking frameworks, while others are discriminated
trackers. The overall comparison results of success and
precision plots are displayed in Figure 6. It is worth noticing
that the proposed tracker achieves the best performance
on both Success and Precision metrics. Compared to the
baseline SiamRPN++ tracker, our SiamRFL framework
gains a 1.3% improvement on Success with an AUC score of
0.709. For the second-ranked SiamR-CNN tracker in terms
of Success score, our method outperforms it by 2.8% on
Precision. Among these comparison algorithms, SiamBAN
and SiamCAR also take the ResNet-50 as backbone and
output convolutional features from the last three residual
blocks. It can be seen that our SiamRFL is superior to them
because of the feature fusion ability.

To analyze the performance of all trackers more carefully,
we also give success and precision plots in multiple
challenging attributes, as displayed in Figure 7 and Figure 8.
The results manifest that our tracker realizes very satisfactory
performance in these attributes. Especially in the attributes
of Illumination Variation (IV), Deformation (DEF) and
Out-of-Plane Rotation (OPR), the proposed method ranks
first on both Success and Precision. For the Success
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FIGURE 7. Success plots of OPE for different attributes on OTB-100. The number in the parenthesis denotes the number of sequences within the
attribute. These trackers are ranked according to the performance scores of success.

score, our approach exceeds the second-ranked by 1.8%
in DEF attribute and 1.4% in OPR attribute. Compared
with the SiamRPN++, SiamRFL obtains more than 1.0%
gains in several diverse attributes, including Fast Motion
(FM), Motion Blur (MB), Low Resolution (LR), Scale
Variation (SV) and so on. These results demonstrate that
SiamRFL tracker has an ability to adapt to all kinds of
complex appearance variations. This is because the proposed
fusion network can aggregate the multi-layer features with
diverse attributes more effectively, which helps the tracker
to complete robust object classification and accurate object
location.

2) VOT-2019
Visual Object Tracking challenge 2019 Dataset
(VOT-2019) [42] is a popular benchmark to test online
model-free single object trackers, containing 60 video
sequences. We conduct the comparison experiments on the
dataset with 10 top participants including MemDTC [51],
SA-Siam [52], Siam-CRF [42], SPM [23], SiamRPN++ [7],
SiamMask [25], ARTCS [42], SiamDW [8], ATOM [48] and
CLNet [53]. Following the official evaluation protocol, the
trackers would be reset with ground-truths when tracking
failures occur. The tracking performance is measured by
three metrics: Accuracy (average overlap on successful
tracking periods), Robust (failure times) and EAO (Expected
Average Overlap). The tracking results are reported in
Figure 9 and Table 1, which testify that the proposed tracker
performs better than most of compared trackers in term

TABLE 1. Comparison results on the VOT-2019 Dataset. The best three
results are highlighted in red, blue and green fonts.

of EAO. Among these, only CLNet slightly outperforms
our SiamRFL, which explored a compact latent network to
capture the sequence-specific features for fast adjustment.
Comparedwith the SiamRPN++, our tracker yields a relative
gain of 2.3%. In addition, our tracker achieves the top-ranked
performance on Accuracy.

3) UAV123
UAV123 [43] dataset consists of 123 aerial videos captured
from the low-attitude UAV platform, whose average length
is about 915 frames. It is pretty challenging to track the
object in the dataset due to frequent distractors, such as
fast motion, scale change, illumination variation, occlusion,
etc. We compare our SiamRFL tracker with several recently
proposed methods and present the success and precision
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FIGURE 8. Precision plots of OPE for different attributes on OTB-100. The number in the parenthesis denotes the number of the sequences within the
attribute. These trackers are ranked according to the performance scores of precision.

FIGURE 9. Expected averaged overlap (EAO) scores of all methods on
VOT-2019.

plots in Figure 10. The proposed tracker exhibits satisfactory
results and surpasses most of recent remarkable approaches
on both metrics. The only exception in the comparison results
is the SiamBAN tracker [13], which is top-performing among
all trackers by exploring anchor-free network for object state
prediction.

4) LASOT
LaSOT [39] is a recent public large-scale tracking benchmark
dataset containing 1400 fully-annotated video sequences,
where 280 sequences belonging to 70 diverse classes are
selected for testing. The dataset is more challenging than
typical short-term tracking datasets [41], [42] due to much
longer sequences whose average length is about 2500 frames.
We validate our proposed tracker following the standard
One-Pass Evaluation (OPE). The success and normalized

FIGURE 10. Precision and success plots of OPE for all trackers on
UAV123. These trackers are ranked according to the performance scores.

precision plots are illustrated in Figure 11, in which the state-
of-the-art SiamBAN [13], SiamRPN++ [7], ATOM [48],
SiamMask [25], SiamDW [8], VITAL [56], C-RPN [12],
MDNet [50], DSiam [18] and ECO [30] trackers are
adopted for comparison. Our SiamRFL tracker outper-
forms all aforementioned trackers by a significant margin.
In comparison with the baseline SiamRPN++, our tracker
produces substantial gains of 2.5% on Success and 3.8%
on Normalized Precision. These results demonstrate that the
proposed fusion network is more effective than the fusion
strategy in SiamRPN++, i.e., weighted average. In addition,
our method performs better than SiamBAN tracker, which
achieves the leading performance among all comparison
methods.

5) GOK-10K
The dataset [40] is a recent high-diversity benchmark for
generic object tracking including 10k video sequences for
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FIGURE 11. Normalized precision and success plots of OPE for all trackers
on LaSOT. These trackers are ranked according to the performance scores.

TABLE 2. Comparison with state-of-the-art trackers on GOT-10k. The best
three results are highlighted in red, blue and green fonts.

training and 180 sequences for testing. These testing videos
cover 84 types of objects in the wild with diverse motions.
Notably, there is no overlap in object classes between training
and testing sets to evaluate the generation of trackers, and
all comparison methods should be trained only on the
dataset for equity. Following the testing protocol, we assess
the tracking performance using average overlap (AO) and
success rates (SR) corresponding to two overlap thresholds
of 0.5 and 0.75. The results are reported in Table 2.
The presented tracker achieves the top performance on
all evaluation metrics, which surpasses the second-ranked
ATOM [48] by 1.6% in terms of SR0.5 and 1.8% in terms of
SR0.75. Compared with SiamRPN++, our method improves
the performance by 4.5% on AO and 9.5% on SR0.75.

B. COMPARISON WITH SIAMESE TRACKERS
To highlight the potential of the proposed fusion network,
we compare our SiamRFL with several typical Siamese
trackers on OTB-100 dataset. Among these comparison
methods, SiamFC [5], SA-Siam [52], StructSiam [57],
SiamRPN [11], DaSiamRPN [15], C-RPN [12] and SPM [23]
adopt the features output from the last convolutional layer
of AlexNet [58], while the rest of SiamRPN++ [7],
PG-Net [32], SiamBAN [13] and SiamCAR [19] employ
the ResNet-50 [9] as backbone and combine the features
from multi-layers for tracking. According to Table 3, our
tracker achieves the leading performance on both Success
and Precision scores. We can discover that fusing multi-layer
features of one deeper backbone is very effective to lift
the tracking performance of Siamese trackers, but existed

TABLE 3. Success and precision scores of some typical Siamese trackers
on OTB-100 dataset. The best three results are highlighted in red, blue
and green fonts.

FIGURE 12. The ablation study of the proposed tracker on LaSOT
datasets.

ways [7], [13], [19], [32] have no capacity to maximize
the role of feature aggregation. In contrast, the proposed
fusion scheme is more adaptive and powerful, whose
outperformance and effectiveness have been verified by the
comparison results.

C. ABLATION STUDIES
We compare four variants of the proposed tracker on
LaSOT dataset [39] to manifest the impact of our con-
tributions, which consist of Baseline, Baseline+EnsTrain,
Baseline+RFNet and SiamRFL. Concretely, ‘‘Baseline’’ rep-
resents the original SiamRPN++ tracker [7] under standard
optimizing paradigm, while ‘‘Baseline+EnsTrain’’ denotes
that the tracker is trained using our present ensemble training
method. For ‘‘Baseline+RFNet’’, we replace traditional
fusion strategy in SiamRPN++ with our residual fusion
network, but still train the network using a standard optimizer.
‘‘SiamRFL’’ indicates our final tracker, in which both
residual fusion network and ensemble training framework are
employed.

The success and precision plots of ablation study on
LaSOT are shown in Figure 12. Compared with ‘‘Base-
line’’, Our ensemble training framework (EnsTrain) lifts the
tracking performance by 0.5% on Success and 1.1% on
Normalized Precision, which proves that the framework is
also useful for some simple fusionmechanisms, likeweighted
average. However, ‘‘Baseline+RFNet’’ performs with 2.4%
drops on Success and 2.3% drops on Normalized Precision.
It is to say that the performance of tracker will degrade
severely if we adopt the proposed residual fusion network but
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FIGURE 13. Qualitative comparison of our tracker with four state-of-the-art approaches on some challenging sequences of OTB-100 dataset
(Fleetface, Jump, Singer-2, Skating1, Trans).

TABLE 4. Overall comparison on LaSOT datasets for multiple-layer
feature fusion using diverse fusion methods. L3, L4 and L5 represent
conv-3, conv-4 and conv-5, respectively. The best three results are
highlighted in red, blue and green fonts.

do not adjust the training way. The final SiamRFL tracker
surpasses all other variants, which obtains 2.4% Success
increments and 3.3%Precision increments comparedwith the
baseline. The phenomenon declares that our fusion network
is very powerful for visual tracking once we introduce
appropriate training method, i.e., the presented ensemble
training.

To furtherly highlight the advantages of our fusion
mechanism, we present the tracking results for aggregating
the features from diverse layers and compare it with weighted

average (WA), as shown in Table 4. When aggregating two
stages, ‘‘WA’’ yields slight improvements on combining conv-
4 and conv-5, but no improvement is gained on the other
two combinations. It means that weighted average has no
ability to fully reflect the effect of feature fusion. In contrast,
our residual network improves the tracking performance
more significantly. Taking conv-3 and conv-4 as instance, our
fusion method exceeds the conventional weighted average by
2.6% onAUC score and 2.9% onNormalized Precision score.
It is even better than the model that combines conv-3, conv-4
and conv-5 via weighted average. In addition, the best results
can be achieved by exploiting our fusion network to combine
all three stages.

D. QUALITATIVE RESULTS
The qualitative tracking results of some recent trackers on a
subset of OTB-100 [41] sequences are exhibited in Figure 13.
These results demonstrate that our SiamRFL tracker is able
to achieve very satisfactory visual performance and performs
better than other popular comparison methods. The main
reason is that the presented fusion mechanism can fuse
low-ranked detail features and high-level semantic features
in an adaptive and efficient way, which prompts our tracker
to be more robust and accurate when facing all kind of
interferences.

In the video sequence of Fleetface, our approach can
address the great challenge of in-plane and out-of-plane
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rotations well, and track the object closely. In the sequences
of Jump and Trans, there are severe scale and deformation
variations for the objects. The presented tracker successfully
adapts to these variations as well as precisely infers the
bounding boxes, when other trackers suffer from significant
scale and shape drifts. In video Singer2, our SiamRFL tracker
accurately distinguishes the object from background, which
proves that our tracker is strong to tackle the background
clutters. In the sequence of Skating1, our method can identify
the object more robustly although it is frequently occluded
by other similar objects, which is since our approach can
effectively perceive the detailed and semantic differences
between two objects with the proposed fusion framework.

V. CONCLUSION
In this paper, we proposed a novel residual fusion network
for Siamese tracker, which can aggregate multi-stage fea-
tures in a powerful way. Specifically, the network utilizes
deep-layer features as direct input to identify the object
from background in a semantic view, and refines the object
state by exploiting the local detail patterns in shallow-layer
features through residual channel. When incorporating the
network into Siamese tracker, an ensemble training approach
was presented to address the degradation problem, which
optimizes Siamese network and fusion network separately
by arranging multiple loss functions. The experimental
results on five popular benchmark datasets demonstrated the
effectiveness of our residual fusion network, as well as the
proposed tracker performs favorably against the state-of-the-
art trackers.

Although has achieved promising performance, there
are obviously some drawbacks in our proposed Siamese
tracker. For instance, we do not design an effective online
updater for our Siamese model. Since Siamese networks
are generally optimized in an offline manner, an appropriate
online updating mechanism is very important to help the
trackers to dynamically learn the object appearances, which
can lift the performance of trackers in complex scenes. In the
future, we would pay more attention to solve the online
updating problem.
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