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A B S T R A C T   

This paper aims at developing a novel fast attitude maneuver framework for optical remote sensing satellites 
subject to multiple uncertainties and limited control energy. The proposed framework relies on a two-layer 
approach, where the first layer provides the agile attitude planning which enforces the satisfaction of the con-
trol energy constraint, whereas the second layer, named the special fast maneuver controller, ensures the high- 
precision attitude tracking by suitably manipulating the agile attitude planning information. In addition, a novel 
disturbance observer is introduced into the scenario to enhance the robustness of the proposed fast maneuver 
controller against multiple uncertainties. The uniform ultimate boundedness of the proposed method is analyzed 
rigorously with the Lyapunov theory. To demonstrate the effectiveness, the proposed method is applied to the 
fast attitude maneuver of both simulated and real Jilin-1 GaoFen-02 satellite, which shows excellent control 
performance despite multiple uncertainties and limited control energy.   

1. Introduction 

With the further development of space remote sensing technology, 
optical remote sensing satellites with low cost, low power consumption, 
low weight, and high precision have been widely used in many com-
mercial fields, such as location services, disaster response, and natural 
resource management [1,2]. The Flock constellation built by Planet Labs 
is the highest global timeliness medium [2], updating 5 m resolution 
images at a global scale per day. The Jilin-1 satellite constellation 
developed by China Chang Guang Satellite Technology Co., Ltd. consists 
of 54 satellites with the imaging capability of push and sweep, video, 
nighttime light, and multi-spectrum [3,4]. Compared with communi-
cation satellites and navigation satellites, remote sensing satellites need 
faster maneuverability to cover a wider area such that they can observe 
more potential targets within a limited observation time interval [5]. 
Therefore, the ability of the fast maneuver is crucial for remote sensing 
satellites [6]. 

To acquire the powerful ability of fast maneuver, various methods 
using Control Moment Gyroscopes (CMGs) have been developed for 
spacecraft. For example, to improve the dynamic performance, a 
constraint function-based Proportional-Integral-Derivative (PID) 

controller is introduced in Ref. [7], where the adaptive steering logic is 
employed to address singularity problem of the pyramid CMG configu-
ration. Moreover, for the typical multi-point imaging missions of earth 
observation satellites, a CMGs torque optimal control method ensuring 
agile slew maneuver is proposed in Ref. [8], where the attitude ma-
neuver control ability is significantly improved by determining the 
optimal slew momentum axis of CMGs. In addition, commercial remote 
sensing satellites WorldView-1/2/3/4 and Pleiades-1A/1B [9,10] 
mostly use CMGs technology, making sure that the ten times accelera-
tion of the attitude maneuver with accurate targeting and scanning. 

However, due to the limited cost, small optical remote sensing sat-
ellites generally prefer to use reaction wheels with limited control en-
ergy (i.e., the limited momentum, torque, and dynamic characteristics) 
rather than expensive CMGs. A “Yardstick design” slew trajectory al-
gorithm with torque and momentum constraints is developed for James 
Webb Space Telescope (JWST) in Ref. [11]. The algorithm enables 
minimum-time maneuver of JWST while avoiding the excitation of 
structural modes by planning the angular acceleration to a 
multi-segment continuous smooth curve. Actually, to avoid the vibra-
tion problem, the attitude planning curve of JWST is too smooth to 
achieve a time-optimal maneuver. Moreover, the lunar observation 
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satellite Clementine of the United States adopted a Bang-Coast-Bang 
(BCB) attitude maneuver path scheme combined with a PID controller 
[12] to accomplish the fast large-angle maneuver. The maneuver 
angular acceleration path of BCB scheme is divided into three sections 
(acceleration, uniform speed, and deceleration), which is the optimal 
solution for attitude maneuver with limited control energy. Neverthe-
less, it is difficult to meet the control accuracy requirement of optical 
remote sensing satellites, for there is a slight overshoot in the maneuver 
process. The similar method is proposed in Ref. [13], where maneuver 
trajectory is improved by a near time-optimal scheme with Bang-Bang 
logic. Additionally, an inverse dynamics in the virtual domain attitude 
planning scheme is developed in Refs. [14,15], which has the excellent 
performance in both minimum energy and minimum maneuver time 
control. From the short review above [11–13] and relevant discussions 
[16–18], designing an agile attitude planning curve subject to limited 
control energy is the key component in subsequent study attempts to 
overcome. 

On the other hand, even though many methods of the fast maneuver 
have emerged, the results are still inadequate in the presence of multiple 
uncertainties (i.e., space environment disturbances and inertia uncer-
tainty). It has been well recognized that the multiple uncertainties are 
one of the main causes to degrade the control performance [19,20], 
which is particularly important when imaging of optical remote sensing 
satellites [21,22]. To overcome this problem, the disturbance 
observer-based control (DOBC) and related methods [17,23,24] have 
been implemented in various control systems for disturbance suppres-
sion, such as aerospace systems [25–27], mechatronics systems [28,29], 
and chemical and process control systems [30,31]. The above researches 
have demonstrated that the principle of disturbance estimation 
compensation (i.e., treating space environment disturbances and inertia 
uncertainty as a kind of the lumped disturbance) is an efficient way to 
cope with the multiple uncertainties. Nevertheless, it is well known that 
the disturbance observer may cause an impact phenomenon in engi-
neering practice, leading to the performance degradation and instability 
of the control system. Up to now, the fast maneuver methods with robust 
disturbance observer have not been investigated for optical remote 
sensing satellites subject to multiple uncertainties and limited control 
energy. 

In this paper, a novel fast attitude maneuver framework (FAMF) for 
optical remote sensing satellites subject to multiple uncertainties and 
limited control energy is developed, achieving the same orbit multi- 
point imaging mission with excellent time resolution and observation 

coverage. The main challenges stem from the agile attitude planning, 
enforcing the satisfaction of the control energy constraint in the 
considered system. Furthermore, it is worth noting that it is difficult to 
design parameters as a metric of reaction wheels dynamic characteristics 
in attitude planning, and few results have been reported. Additionally, 
the above studies are inadequate in terms of the robustness of distur-
bance observers, which is very important for practical engineering ap-
plications. Compared with the existing results, the main contributions of 
this paper are summarized as follows.  

(1) A novel FAMF relying on an integrating two-layer approach 
seamlessly is developed to guarantee precision and fast control 
performance of optical remote sensing satellites subject to mul-
tiple uncertainties and limited control energy. The uniform ulti-
mate boundedness of the proposed FAMF is analyzed rigorously 
by the Lyapunov theory.  

(2) Compared with previous attitude planning methods in Refs. 
[11–13,16] for satellites, this paper designs a novel agile attitude 
planning which enforces the satisfaction of the limited control 
energy by introducing specified parameters as a metric of corre-
spondent control energy constraints. In addition, from the macro 
view, the Bang-Coast-Bang-Smooth (BCBS) logic is designed 
instead of BCB logic to ensure smooth attitude planning.  

(3) A special robust disturbance observer-based fast maneuver 
controller is designed by suitably manipulating the agile attitude 
planning information. Moreover, unlike conventional distur-
bance observers in Refs. [23,24,27], the novel robust disturbance 
observer is included in the scenario by sigma-modification, which 
requires no prior information on the system disturbance upper 
bounds. In essence, the sigma-modification has significant bene-
fits in reducing the peaking phenomenon and adding damping to 
ensure uniform ultimate boundedness. 

The structure of this paper is organized as follows. In section 2, some 
preliminary knowledge of the same orbit multi-point imaging mission is 
introduced, which is followed by the attitude dynamics of satellites. 
Section 3 provides the problem description and several imperative def-
initions. The proposed FAMF for attitude control and the corresponding 
analysis are given in Section 4. Simulation studies and real experiments 
are then shown in Section 5 to show the effectiveness of the proposed 
control method. Finally, the conclusions are presented in section 6. 

Fig. 1. The same orbit multi-point imaging for optical remote sensing satellites. Left: schematic diagram of multi-point imaging. Right: agile attitude trajectories with 
three degree-of-freedom on attitude sphere. Red dot: the starting point. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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2. Preliminaries 

In this section, we first illustrate the application significance of the 
proposed fast maneuver method for the same orbit multi-point imaging. 
Then, the quaternion-based attitude dynamics with multiple un-
certainties of optical remote sensing satellites is presented for the 
controller design and convergence analysis, which are developed in the 
subsequent sections. 

2.1. The same orbit multi-point imaging 

In order to improve the time resolution and observation coverage of 
optical remote sensing satellite constellation, the same-orbit multi-point 
imaging mission is developed from the perspective of applications. This 
imaging mission relies on the fast maneuver method to achieve 
continuous push-scanning imaging of different imaging targets. The 
schematic diagram is shown in Fig. 1, where has three prospective im-
aging targets might be addressed in the future. When the imaging of 
target A is completed, the satellite must reorientate to target B rapidly 
within the specified time. Otherwise, target B will be missed, and the 
imaging task will fail. 

In general, the maneuverability of satellites is affected by two fac-
tors. The first factor is the control energy, which is irrevocable after 
satellite manufactured. The second factor is the fast maneuver control 
method, which is the main research objective of this work. 

2.2. Attitude dynamics 

Optical remote sensing satellites are usually designed by satellite- 
payload integration technology. Therefore, the unit quaternion for 
rigid bodies is suggested to describe the satellite attitude kinematics and 
dynamics. The dynamics equation can be expressed as follows [5,32] 

Q̇ =

[
q̇0

q̇

]

=
1
2

[
− qT

S(q) + q0I3

]

ω

Jω̇ = − S(ω)(Jω + hw) + u + d

(1)  

where Q = (q0, q1, q2, q3)
T
= (q0, qT)

T
∈ ℝ × ℝ3 denotes the quaternion 

of the body-fixed frame FB(O − XBYBZB) with respect to the inertia frame 
FI(O − XIYIZI). In detail, the quaternion satisfies q2

0 + qTq = 1, and can 
be represented as q0 = cos(θ /2), q = esin(θ /2), where the unit vector 
e ∈ ℝ3 is the Euler axis and θ ∈ ℝ is the Euler angle; ω ∈ ℝ3 denotes the 
angular velocity of the rigid body with respect to the inertial frame FI, 
which is expressed in the body-fixed frame FB; J ∈ ℝ3×3 denotes the 
inertia matrix; u ∈ ℝ3 and hw ∈ ℝ3 denote the control torque and 
angular momentum of reaction wheels, respectively; d ∈ ℝ3 denotes the 
space environment disturbances. Besides, for any vector x ∈ ℝ3, S(x) ∈
ℝ3×3 denotes the corresponding antisymmetric matrix as 

S(x)=

⎡

⎣
0 − x3 x2
x3 0 − x1
− x2 x1 0

⎤

⎦ (2) 

In addition, for the quaternion Q, we can get the corresponding 
rotation matrix R(Q) which satisfies ‖R(Q)‖ = 1 is given by 

R(Q) =
(
q2

0 − qT q
)
I3 + 2qqT − 2q0S(q)

Ṙ(Q) = − S(ω)R(Q)
(3)  

Assumption 1. [27]. The space environment disturbances such as 
gravity-gradient, solar radiation pressure, residual magnetic torque, and 
aerodynamic drags, are assumed to be bounded and slow-varying 
enough in practice, namely, the space environment disturbances 
satisfy ‖d‖ ≤ d and ‖ḋ‖ = 0, where d is an unknown positive constant. 

In practice, the inertia matrix of satellites is calibrated by a precise 

measurement instrument, which has a certain calibration error. Besides, 
the fuel burning of the propulsion will also change the inertia matrix. Let 
J̃ ∈ ℝ3×3 denote the error inertia matrix expressed as 

J̃= Jm − J (4)  

where Jm ∈ ℝ3×3 denotes the nominal measurement value of the inertia 
matrix. 

Assumption 2. The inertia matrix Jm is bounded and positive definite 
constant, there exists a positive constant Jm such that ‖Jm‖ ≤ Jm and 
‖J̇m‖ = 0. Error inertia matrix ̃J is unknown but bounded constant, there 

exist unknown positive constants Je such that ‖J̃‖ ≤ Je and ‖ ˙̃J‖ = 0. 

Remark 1. Generally, the measurement error of the inertia matrix can 
be less than 10%, which doesn’t change the characteristic of the inertia 
matrix Jm, hence Jm guarantees the positive definiteness is the same as J, 
and J̃ is bounded. Additionally, the error inertia matrix J̃ changing 
caused by the fuel burning is slow-varying enough in practice, hence 

‖
˙̃J‖ = 0 is reasonable. 

3. Problem formulation 

Considering the same orbit multi-point imaging illustrated in Section 
2.1 and multiple uncertainties items illustrated in Section 2.2, the con-
trol problems in this paper can be described as follows. Substituting (4) 
into (1), the mathematical model can be rewritten in a general form as 

Q̇ =

[
q̇0

q̇

]

=
1
2

[
− qT

S(q) + q0I3

]

ω

Jmω̇ = − S(ω)(Jmω + hw) + u + dl

(5)  

where dl ∈ ℝ3 denotes the lumped disturbance, which given as 

dl = d + J̃ω̇ + S(ω)̃Jω (6) 

According to Assumptions 1 and 2, we can get the derivative of dl as 

ḋl = J̃ω̈+S(ω̇)̃Jω + S(ω)̃Jω̇ (7) 

On the other hand, the control energy constraints should be 
considered in the attitude planning process, where the angular accel-
eration constraint is given as 

|ω̇i| ≤ ω̇i =
ui

Ji
− δ1,  i = x, y, z (8)  

where x, y, z denote the euler axis of satellites; ω̇i ∈ ℝ,  ω̇i ∈ ℝ,  i = x, y,
z denote angular acceleration and its theoretical maximum, respectively; 
ui ∈ ℝ,  i = x, y, z denotes the maximum control torque of reaction 
wheels; Ji ∈ ℝ,  i = x, y, z denotes the principal axis inertia of satellites; 
δ1 ∈ ℝ denotes the negative effect of coupling dynamics and the lumped 
disturbance on maximum angular acceleration. The angular velocity 
constraint is given as 

|ωi| ≤ωi =
hi

Ji
− δ2,  i = x, y, z (9)  

where ωi ∈ ℝ,  ωi ∈ ℝ,  i = x, y, z denote the angular velocity and its 
theoretical maximum, respectively; hi ∈ ℝ,  i = x, y, z denotes the 
maximum control momentum of reaction wheels; δ2 ∈ ℝ denotes the 
negative effect of coupling dynamics on the maximum angular velocity. 

Assumption 3. The lumped disturbance dl and its derivative ḋl are 

bounded, there exist unknown positive constants dl, ḋl such that 

‖dl‖ ≤ dl, ‖ḋl‖ ≤ ḋl. 

Remark 2. Considering the discussions above, the lumped disturbance 
in (5) comes from the space environment disturbances and inertia 
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uncertainty. Equation (8) and (9), Assumption 1, and Assumption 2 
indicate that d, J̃, ω̇,ω are all bounded, which means that the lumped 
disturbance dl is bounded. Besides, ω̈ is bounded for the dynamic 
characteristics of the reaction wheel is bounded in practice, hence the 
derivative of the lumped disturbance ḋl in (7) is bounded. Therefore, 
Assumption 3 is reasonable. 

Assumption 4. We assume δ1 in (8) and δ2 in (9) are small positive 
constants. 

Remark 3. In practical engineering, the influence of coupling dy-
namics for optical remote sensing satellites is very small. In addition, the 
lumped disturbance is generally far less than the control torque of re-
action wheels, which can be confirmed by the analysis of on-orbit data. 
Hence, the maximum angular acceleration and velocity in (8) and (9) are 
mainly affected by three factors: the principal axis inertia of satellites, 
the maximum angular momentum and torque of reaction wheels. So, 
Assumption 4 is reasonable. Of course, We will consider the influence 
of δ1 and δ2 in the subsequent work. 

The first aim of this paper is to ensure the fast attitude maneuver in 
the presence of the limited control energy described in equations (8) and 
(9). The second is to restrain the effect of multiple uncertainties, i.e., the 
lumped disturbance described in equation (5) to ensure precision con-
trol performance. 

4. Attitude planner and controller design 

In this section, the novel FAMF decomposing into attitude planning 
and tracking control is developed for the satellite system in (5). As 
shown in Fig. 2, the attitude planner enforces the satisfaction of the 
energy constraint, and then generates attitude planning information 
according to the desired attitude, orbit quaternion, and orbit angular 
velocity. The special fast maneuver controller composed of outer loop 
controller, based-controller, nonlinear feedback controller, robust 
disturbance observer, and compensation controller is designed by suit-
ably manipulating the attitude planning information. Thus, the attitude 
planning and tracking control are integrated seamlessly to ensure pre-
cision and fast attitude maneuver. 

Remark 4. The orbital quaternion and orbital angular velocity are 
calculated by the satellite’s six orbital elements, which are easy to get 
from GPS equipped with satellites. 

4.1. Attitude planner design and error dynamics 

The same orbit multi-point imaging mission described in section 2.1 
is a continuous push-scanning imaging process for different imaging 
targets by the fast lateral swing of satellites. In order to realize the fast 
maneuver of lateral swing angle, the following agile attitude planning, 
which enforces the satisfaction of the control energy constraint, is 
developed by Bang-Coast-Bang-Smooth logic. This work is presented as 
follows: 
{

θd
x (k + 1) = θd

x (k) + Tωd
x (k)

ωd
x (k + 1) = ωd

x (k) + Tad
x (k)

(10)  

where k ∈ ℝ denotes the planning index; T ∈ ℝ denotes control step; 
θd

x ∈ ℝ denotes planning desired lateral swing angle; ωd
x ∈ ℝ denotes 

planning desired lateral swing angular velocity; ad
x ∈ ℝ denotes planning 

desired lateral swing angular acceleration is designed as 

ad
x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− rl
xsign

(
a
)

|a| > rl
xh,

⃒
⃒ωd

x

⃒
⃒ < ωl

x, or
|a| > rl

xh,
⃒
⃒ωd

x

⃒
⃒ ≥ ωl

x, − ωd
x sign

(
a
)
≤ 0

− a/h |a| ≤ rl
xh,

⃒
⃒ωd

x

⃒
⃒ < ωl

x, or
|a| ≤ rl

xh,
⃒
⃒ωd

x

⃒
⃒ ≥ ωl

x, − ωd
x a ≤ 0

0 other

(11)  

where rl
x ∈ ℝ denotes the set maximum maneuver angular acceleration; 

ωl
x ∈ ℝ denotes the set maximum maneuver angular velocity; h ∈ ℝ 

denotes the smoothing parameter of attitude planner; a is a intermediate 
variable as 

a =

⎧
⎪⎪⎨

⎪⎪⎩

ωd
x + 0.5

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
rl

xh
)2

+ 8rl
x|y|

√

− rl
xh

)

sign(y), |y| > rl
xh2

ωd
x + y

/
h, |y| ≤ rl

xh2

y =
(
θd

x − θv
)
+ hωd

x

(12)  

where θv ∈ ℝ denotes the desired lateral swing angle. 
According to the planning desired lateral swing angle θd

x, angular 
velocity ωd

x, and angular acceleration ad
x, the desired attitude quaternion 

Qbo
d ∈ ℝ× ℝ3, angular velocity ωbo

d ∈ ℝ3 and angular acceleration abo
d ∈

ℝ3 of the body-fixed frame FB(O − XBYBZB) with respect to the orbital 
frame Fo(O − XoYoZo) can be calculated as 

Fig. 2. Fast maneuver controller structure diagram.  
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Qbo
d =

[

cos
θd

x

2
sin θd

x
2 0 0

]T

ωbo
d =

[
ωd

x 0 0
]T

abo
d =

[
ad

x 0 0
]T

(13) 

The satellite attitude control system is designed in the inertial frame. 
According to the desired attitude quaternion Qbo

d , angular velocity ωbo
d 

and angular acceleration abo
d in (13), the desired attitude quaternion 

Qd ∈ ℝ× ℝ3, angular velocity ωd ∈ ℝ3 and angular acceleration ad ∈ ℝ3 

of the body-fixed frame FB with respect to the inertia frame FI can be 
calculated as 

Qd = QoI ⊗ Qbo
d

ωd = ωbo
d + R

(
Qbo

d

)
ωo

ad = abo
d = ω̇d

(14)  

where QoI ∈ ℝ × ℝ3 and ωo ∈ ℝ3 denote the attitude and angular ve-
locity of the orbital frame Fo(O − XoYoZo) with respect to the inertia 
frame FI, respectively. 

Let Qe ∈ ℝ × ℝ3 and ωe ∈ ℝ3 be the quaternion error and the angular 
velocity error as 

Qe = Q− 1
d ⊗ Q

ωe = ω − R(Qe)ωd
(15)  

where Q− 1
d ∈ ℝ × ℝ3 denotes the inverse of Qd; ⊗ denotes multiplication 

operation of quaternion. 
The rotation matrix R(Qe) is calculated by (3) as 

R(Qe) =
(
q2

e0 − qT
e qe

)
I3 + 2qeqT

e − 2qe0S(qe)

Ṙ(Qe) = − S(ωe)R(Qe)
(16) 

Based on the attitude dynamics in (1), the quaternion error and the 
angular velocity error in (15), and the error rotation matrix in (16), the 
error dynamics is given as 

Q̇e =

[
q̇e0

q̇e

]

=
1
2

⎡

⎣
− qT

e

S(qe) + qe0I3

⎤

⎦ωe

Jmω̇e = − S(ω)(Jmω + hw) + JmS(ωe)R(Qe)ωd

− JmR(Qe)ω̇d + u + dl

(17)  

Remark 5. It should be noted that rl
x and ωl

x in (11) are the parameters 
of the attitude planning, and they should meet the constraints in (8) and 
(9) respectively. To ensure fast attitude maneuver, the previous method 
using the BCB strategy cannot be realized in the actual physical system 
for the limited dynamic characteristics of reaction wheels. Hence, the 
BCBS logic is designed by setting the smoothing parameter h in (11). As 
shown in Fig. 3, the agile attitude planning is equal to BCB when h = T, 
and with the larger the parameter h is, the smoother the attitude plan-
ning is. Of course, the parameter h cannot be too large, because the 
parameter design should consider both stability and rapidity. Thus, the 
control energy constraint and maneuverability are comprehensively 
designed in the attitude planning process. 

4.2. Attitude controller design and convergence analysis 

To ensure the attitude control performance of optical remote sensing 
satellites with multiple uncertainties, the robust disturbance observer- 
based fast maneuver controller is developed. The attitude tracking 
controller is divided into outer loop controller and inner loop controller 
ensuring the objective of high-precision attitude tracking. According to 
the error dynamics in (17), the outer loop controller is designed as 

ωv
e = − Kqqe (18)  

where Kq ∈ ℝ is outer loop attitude controller gain; ωv
e ∈ ℝ3 denotes 

virtual control signal. 
From (14), (17) and (18), the inner loop controller is designed as 

u= ub + uf + ud (19)  

where ub ∈ ℝ3 denotes based-controller; uf ∈ ℝ3 denotes nonlinear 
feedback controller; ud ∈ ℝ3 denotes disturbance compensation 
controller. The specific form of each controller is 

ub = − KωJmω∼ e

uf = S(ω)(Jmω + hw) − JmS(ωe)R(Qe)ωd + JmR(Qe)ω̇d

− Jmqe −
1
2
KqJm(S(qe) + qe0I3 )ωe

ud = − d̂ l

(20)  

where Kω ∈ ℝ is the inner loop attitude controller gain; ω̃e ∈ ℝ3 denotes 
the virtual angular velocity tracking error calculated by ω̃e = ωe − ωv

e; 
d̂l ∈ ℝ3 denotes the estimation of the lumped disturbance. 

To deal with the bounded lumped disturbance, a robust disturbance 
observer is developed, which has significant benefits in reducing the 
peaking phenomenon and adding damping to ensure uniform ultimate 
boundedness. The disturbance observer is designed as 

d̂l = p + LJmωe
ṗ = − L(p + LJmωe) − L( − S(ω)(Jmω + hw) + JmS(ωe)R(Qe)ωd )

− L( − JmR(Qe)ω̇d + u ) − σ d̂ l

(21)  

where L ∈ ℝ is disturbance observer gain; σ ∈ ℝ is sigma-modification 
gain; p ∈ ℝ3 denotes auxiliary variable of the disturbance observer. 
Let estimation error of disturbance observer d̃l ∈ ℝ3 as 

d̃l = d̂l − dl (22) 

Fig. 3. Planning lateral swing angle, angular velocity and angular acceleration 
of BCB and BCBS. 
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Theorem 1. For error dynamics subject to multiple uncertainties in (17), 
let controller in (18) and (19), and disturbance observer in (21) be applied. 
Then, it is shown that all system variables are uniformly ultimate bounded, 
and the robust fast maneuver for attitude control can be achieved. 

Proof. Choose the Lyapunov function V as 

V =V1 + V2 + V3 (23)  

where 

V1 = qT
e qe + (1 − qe0)

2

V2 =
1
2

ω̃T
e ω̃e

V3 =
1
2

d̃
T
l d̃l

(24) 

According to (17), differentiating V1 in (24) results in 

V̇1 = 2qT
e q̇e − 2(1 − qe0)q̇e0 = qT

e (S(qe) + qe0I3 )ωe + (1 − qe0)qT
e ωe (25) 

From ω̃e = ωe − ωv
e and the outer loop controller in (18), we can obtain 

ωe = ω̃e − Kqqe (26) 

Substituting (26) into (25) leads to 

V̇1 = − KqqT
e qe + qT

e ω̃e (27) 

According to (17), (20) and (26), differentiating V2 in (24) results in 

V̇2 = ω̃T
e
˙̃ωe = − Kωω̃T

e ω̃e − ω̃T
e qe − ω̃T

e J− 1
m d̃l (28) 

According to (21), differentiating V3 in (24) results in 

V̇3 = − Ld̃
T
l d̃l − d̃

T
l ḋl − σd̃

T
l d̂l (29) 

Taking sum of (24) and (27)~(29), we have 

V̇ = − KqqT
e qe − Kωω̃T

e ω̃e − ω̃T
e J− 1

m d̃l − Ld̃
T
l d̃l − d̃

T
l ḋl − σd̃

T
l d̂ l (30) 

According to Young’s inequality and (30), we have 

V̇ ≤ − Kq‖qe‖
2
− Kω

⃦
⃦
⃦ω∼ e

⃦
⃦
⃦

2
− L

⃦
⃦
⃦
⃦d
∼
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⃦
⃦
⃦
⃦

2

+
1
2
⃦
⃦J− 1

m

⃦
⃦
⃦
⃦
⃦ω∼ e

⃦
⃦
⃦

2
+

1
2
⃦
⃦J− 1

m

⃦
⃦

⃦
⃦
⃦
⃦d
∼

l

⃦
⃦
⃦
⃦

2

+
1
8

⃦
⃦
⃦
⃦d
∼

l

⃦
⃦
⃦
⃦

2

+ 2‖ḋl‖
2
−

1
2

σ
⃦
⃦
⃦
⃦d
∼

l

⃦
⃦
⃦
⃦

2

+
1
2

σ‖dl‖
2 (31) 

According to Assumption 3 and (31), we further obtain  

where 

cV =Kq(1 − qe0)
2
+

1
2

σd2
l + 2ḋ

2

l (33) 

Then we have 

V̇ ≤ − μV V + cV (34)  

where 

μV = min
{

Kq, 2
(

Kω −
1
2
⃦
⃦J− 1

m

⃦
⃦

)

, 2
(

L −
1
2
⃦
⃦J− 1

m

⃦
⃦ −

1
8
+

1
2

σ
)}

cV = sup
t≥0

|cV |

(35) 

It is clear that 0 ≤ V(t) ≤ max
{

cV
2μV

,V(0)
}

holds for all t ≥ 0. Therefore, 

the boundedness of all the signals can be guaranteed. The proof has been 
completed. □ 

Remark 6. The based-controller ub = − KωJmω̃e in (20) can be simplified 
to ub = − KqKωJmqe − KωJmωe, which is a PD controller. Hence to ensure 
the proposed controller can be applied in practical engineering, the outer loop 
attitude controller gain Kq and inner loop attitude controller gain Kω are 
designed to not only guarantee μV > 0 in (35), but follow the frequency 
response design method of classical control theory in [33]. 

Remark 7. Different from conventional disturbance observers in [23,24, 
27], the robust disturbance observer in (21) is included in the scenario by 
sigma-modification, a technique widely used in adaptive control [34,35] to 
add damping, which ensures uniform ultimate boundedness of the proposed 
FAMF. Besides, the sigma-modification can reduce the peaking phenomenon. 

5. Simulations and real experiments 

In this section, the maneuver efficiency and robustness of the pro-
posed method are demonstrated by numerical simulations and real ex-
periments of the Jilin-1 GaoFen-02 satellite, a high-resolution optical 
remote sensing satellite. In particular, the high-fidelity dynamics model 
is used to ensure the validity and feasibility of numerical simulations, 
including: the star sensor model is established based on the ground star 
observation experiments; the three-axis fiber optic gyro model is 
established according to the results of gyro calibration and allan vari-
ance analysis; the reaction wheel model is established as second-order 
elements by model identification. 

To be more persuasive, the error quaternion-based PD controller 
[14] and the robust adaptive controller [19,34] are applied to the sim-
ulations. The error quaternion-based PD controller is among the most 
used controller of satellites, for its simplicity and applicability. The 

specific form of the PD controller is 

u= − Jm
(
Kpqe +Kdωe

)
(36)  

where Kp ∈ ℝ denotes the proportional coefficient; Kd ∈ ℝ denotes the 
derivative coefficient. In particular, we make |qei| < q, i = 1,2, 3 to 
constrain the angular velocity of the PD controller. 

The robust model reference adaptive controller (RMRAC) has 
excellent command tracking performance and robustness to model un-
certainties and environmental disturbances, so it is widely used in 
aerospace control systems. The RMRAC in this paper is designed as 

u=(I3 + Ĝ)( − K1K2Jmqe − K2Jmωe − d̂ l − JmS(ωe)R(Qe)ωd + JmR(Qe)ω̇d)

(37)  

Table 1 
The satellite parameters.  

Parameters Value 

Orbital altitude (Km) 535 
Orbital type Sun-synchronous orbit 
Inertia matrix Jm (kg m2) 

⎡

⎣
54.6 0.69 − 0.17
0.69 49.2 0.02
− 0.17 0.02 28.7

⎤

⎦

Reaction wheel torque (Nm) 0.1 
Reaction wheel momentum (Nm s) 1.2  

V̇ ≤ − Kq‖qe‖
2
−

(

Kω −
1
2
⃦
⃦J− 1

m

⃦
⃦

)

‖ω̃e‖
2
−

(

L −
1
2
⃦
⃦J− 1

m

⃦
⃦ −

1
8
+

1
2

σ
)

‖d̃l‖
2
− Kq(1 − qe0)

2
+ cV (32)   
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with the adaptive laws as 

˙̂dl = Γ1(ωe + K1qe) − σ1 d̂l 

˙̂G = − Γ2ub(ωe + K1qe)
T
− σ2 Ĝ (38)  

where K1,K2 ∈ ℝ denote the control gain; Γ1,Γ2, σ1, σ2 ∈ ℝ denote the 
parameters of adaptive laws. The reference model of RMRAC is a second 
order element with poles p1,p2. 

5.1. Simulation parameters 

5.1.1. The satellite parameters 
The orbital parameters, inertia parameters and reaction wheel pa-

rameters of the satellite are shown in Table 1. 

5.1.2. The controller parameters 
According to the studies described above, the controller parameter 

design is shown in Table 2. For the attitude planner of FAMF, we design 
rl
x = 0.00147 ≤ 0.8ux/Jx, and ωl

x = 0.0157 ≤ 0.75hx/Jx for two rea-
sons. The one is to ensure sufficient control torque to cope with multiple 
uncertainties and coupled dynamics. The other is because it is impos-
sible that the angular momentum of the reaction wheel is zero when the 
attitude maneuver begins. In general, reaction wheels work in an 
angular momentum interval when the attitude of satellites is stable, and 
the rest angular momentum can be used for attitude maneuver. For the 
based-controller, its amplitude margin Gm = 20.3dB > 6dB, phase 
margin Pm = 70.1deg ≥ 65deg ensure reasonable robustness and 
rapidity. In addition, the multiple uncertainties change slowly according 
to the flight data from on-orbit satellites. Therefore, relatively small 
observer gains are designed considering the suppression of sensor noise. 

For PD and RMRAC, their parameters are designed to exert their 
control ability as much as possible, and ensure the stability of attitude 
maneuver. Moreover, to achieve the fair comparison, the output torques 
of all controllers are limited by saturation according to the maximum 
torque of reaction wheels. 

5.2. Simulation results 

In order to demonstrate excellent control performance despite mul-
tiple uncertainties and limited control energy of the proposed method, 
the PD and RMRAC method are compared with the proposed FAMF in 
terms of the maneuver efficiency and robustness. This section conducts 
simulation analysis on the following three cases. 

5.2.1. Case I the maneuver efficiency assessment 
Lateral swing to 10∘, − 10∘, 25∘, 0∘ at time = 20  s, 80  s, 150  s 

230  s, respectively. In addition, any uncertainty is not considered, 
namely Jm = J, d = (0,0, 0)TNm. 

Table 2 
The controller parameters.   

Parameter Value 

FAMF ωl
x 0.0157 

rl
x 0.00147 

h 10T 
Kq 0.6 
Kω 1.5 
L 0.45 
σ 0.05 

PD Kp 0.5 
Kd 1.5 
q 0.0471 

RMRAC K1 0.6 
K2 1.5 
Γ1,Γ2 0.5 
σ1,σ2 0.05 
p1,p2 0.35  

Fig. 4. The attitude trajectories with three degrees-of-freedom on attitude 
sphere. Red dot: the starting point. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 5. Lateral swing angle.  

Fig. 6. Lateral swing angular velocity.  
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As mentioned above, the multi-point imaging mission acquires a 
series of images for the target area when the attitude maneuver 
completing. The earlier the maneuver is completed, the wider range of 
imaging is possible. If the maneuver is too slow, the imaging target may 
be missed. With the simulation conditions mentioned in Case I, the 
maneuver efficiency of three control methods will be assessed with the 
following two maneuver efficiency assessment criteria (MEAC). The one 
(MEAC.1) is the basic imaging condition with pointing accuracy errors 
less than 0.05∘, and attitude stability errors less than 0.005∘/ s. The other 
(MEAC.2) is the excellent imaging condition with pointing accuracy 
errors less than 0.01∘, and attitude stability errors less than 0.001∘/ s. 

The attitude trajectories are shown in Figs. 4–6. Fig. 4 shows the 
attitude trajectories with three degree-of-freedom on the attitude 
sphere, and Figs. 5 and 6 show the lateral swing angle and angular ve-
locity trajectories of the same orbit multi-point imaging. The proposed 
FAMF method can achieve accurate and stable tracking control for all 
the maneuvers. Meanwhile, the angular velocity of FAMF converges to a 
steady state rapidly at the end of the maneuver. Whereas the angular 
velocity trajectories of PD and RMRAC are also steady but relatively 
slow. 

According to the attitude trajectories and two MEAC, the attitude 
maneuver time is counted in Table 3. To quantify the maneuver effi-
ciency, the attitude maneuver time of FAMF is considered as a bench-
mark for comparison at 100%, and the comparison bar chart is shown in 
Fig. 7. Obviously, FAMF, RMRAC and PD vary considerably in level of 
maneuver efficiency. In general, FAMF ensures the highest degree, 
RMRAC followed and PD worst. The bar chart indicates that FAMF has 
obvious advantages in the small angle maneuver. With the increase of 
maneuver angle, the advantage of FAMA decreases by a small amount, 
for the maneuver time of large angle depends more on the maximum 
angular velocity. Specifically, according to the left chart in maneuver 
10∘, FAMF has 12% and 40% advantages over RMRAC and PD, respec-
tively. Whereas in maneuver 35∘, FAMF has only 8% and 21% advan-
tages. On the other hand, FAMF by MEAC.2 gives clearly better results 

by comparing the differences between the left chart and right chart in 
Fig. 7, namely, FAMF has the advantage in achieving high quality and 
fast imaging. For example, in maneuver 10∘, FAMF by MEAC.1 has 12% 
and 40% advantages over RMRAC and PD, respectively, when by 
MEAC.2 has 25% and 60% advantages. 

5.2.2. Case II the robustness assessment of time-invariant uncertainties 
Lateral swing to 20∘ at time = 20  s and existing constant space 

environment disturbances without considering inertia uncertainty, 

Table 3 
The maneuver efficiency assessment.  

Maneuver 
index and 
Angle 

MEAC.1 (s) MEAC.2 (s) 

FAMF RMRAC PD FAMF RMRAC PD 

No.1 (10∘) 27.0 
(100%) 

30.1 
(112%) 

37.8 
(140%) 

29.5 
(100%) 

37.0 
(125%) 

47.1 
(160%) 

No.2 (20∘) 38.0 
(100%) 

43.5 
(115%) 

49.5 
(130%) 

40.2 
(100%) 

49.5 
(123%) 

58.3 
(145%) 

No.3 (35∘) 54.5 
(100%) 

58.8 
(108%) 

65.9 
(121%) 

56.5 
(100%) 

64.5 
(114%) 

75.6 
(134%) 

No.4 (25∘) 43.6 
(100%) 

49.3 
(113%) 

54.5 
(125%) 

45.6 
(100%) 

54.9 
(120%) 

63.8 
(140%)  

Fig. 7. The bar chart of maneuver efficiency assessment. Left: MEAC.1. Right: MEAC.2.  

Fig. 8. Attitude quaternion.  

Fig. 9. Lateral swing angle.  
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namely, Jm = J, d = (0.005,0.001,0.003)TNm. 
With the parameter settings mentioned in Case II, the simulation 

results are shown in Figs. 8–11. The attitude quaternion is shown in 
Fig. 8, and lateral swing angle is shown in Fig. 9, where the attitude 
tracking control trajectories of FAMF are smooth and accurate. In 
contrast, the PD and RMRAC have 0.021∘ and 0.005∘ pointing accuracy 
errors, respectively. The pointing accuracy errors of RMRAC have little 
effect on imaging, but PD does not meet excellent imaging condition 
with pointing accuracy errors less than 0.01∘. Lateral swing angular 
velocity is shown in Fig. 10, where the angular velocity trajectories of 
three control methods are smooth, showing time invariant uncertainties 
have no effect on angular velocity control. The disturbance estimate is 

shown in Fig. 11, which is the key for FAMF to achieve accurate tracking 
control. 

5.2.3. Case III the robustness assessment of time-variant uncertainties 
Lateral swing 20∘ at time = 20  s, inertia uncertainty is − 10% and 

existing slow variable space environment disturbances, namely Jm =

0.9J, d = (d1, d2, d3)
TNm, where di = ai sin(ςit + φi), i = 1, 2,3, a1 =

0.005, a2 = 0.001, a2 = 0.003, ς1 = 0.02, ς2 = 0.03, ς3 = 0.01, φ1 =

0.3, φ2 = 0.9, φ3 = 0.5. 
With the parameter settings mentioned in Case III, the simulation 

results are shown in Figs. 12–15-. The attitude quaternion is shown in 
Fig. 12. Lateral swing angle and angular velocity are shown in Fig. 13 
and Fig. 14, respectively. The same as shown in Case II, the lateral swing 
angle and angular velocity trajectories of FAMF are smooth and accurate 
despite time variant uncertainties. A little worse is RMRAC has 0.005∘ 

dynamic errors of pointing accuracy, but its angular velocity trajectories 
are not affected by time variant uncertainties. The worst is PD, which 

Fig. 11. Disturbance estimate.  

Fig. 12. Attitude quaternion.  

Fig. 13. Lateral swing angle.  

Fig. 14. Lateral swing angular velocity.  

Fig. 15. Disturbance estimate.  

Fig. 10. Lateral swing angular velocity.  
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has 0.022∘ dynamic errors of pointing accuracy and 0.0006∘/ s dynamic 
errors of attitude stability, leading to degradation of imaging quality. 
The disturbance estimate is shown in Fig. 15, where time variant un-
certainties are estimated and compensated. 

5.3. Real experiments 

The proposed method has been applied to the Jilin-1 GaoFen-02 
satellite. The satellite model and real experimental schematic diagram 

are shown in Fig. 16. The telemetry data of satellite attitude maneuver 
control are received by Changchun Station by the mission within the 
satellite telemetry circle, where carried out the fast maneuver control 
experiment of lateral swing 20∘ at time = 20  s. 

The attitude quaternion is shown in Fig. 17. Lateral swing angle and 
angular velocity are shown in Fig. 18 and 19, respectively. It is evident 
that the trajectories of simulations and real experiments are consistent, 
whether control precision or maneuver time. Meanwhile, the pointing 
accuracy errors and attitude stability errors of real experiments are 
0.001∘ and 0.0005∘/s, respectively, which are far better than excellent 
imaging condition with pointing accuracy errors less than 0.01∘, and 
attitude stability errors less than 0.001∘/s. In general, the real experi-
ments prove the excellent performance of the proposed method. On the 
other hand, owing to the simulations and real experiments are consis-
tent, the simulation results can be the reference in the process of imaging 
mission planning. 

6. Conclusions 

In this paper, a novel FAMF has been proposed for attitude control of 
optical remote sensing satellites subject to multiple uncertainties and 
limited control energy. Based on the same orbit multi-point imaging 
mission, the agile attitude planning which enforces the satisfaction of 
the energy constraint is developed, providing sufficient references for 
controller design. Then, the special fast maneuver controller, ensures the 
high-precision attitude tracking by suitably manipulating the agile 
attitude planning information. Moreover, a novel robust disturbance 
observer is introduced to enhance the robustness of FAMF against 
multiple uncertainties, while reducing the peaking phenomenon and 

Fig. 16. Jilin-1 GaoFen-02 satellite model and mission schematic diagram.  

Fig. 17. Attitude quaternion of real experiments.  

Fig. 18. Lateral swing angle of real experiments and simulations.  

Fig. 19. Lateral swing angular velocity of real experiments and simulations.  
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adding damping. Subsequently, the uniform ultimate boundedness of 
the proposed controller is analyzed rigorously with the Lyapunov the-
ory. Finally, the simulations and real experiments of Jilin-1 Gaofen-02 
satellite assess the maneuver efficiency and robustness of three control 
methods. The analysis of the simulations shows that FAMF has more 
advantages than other control methods. The real experiments of FAMF 
indicate that the control results of the simulations and real experiments 
are consistent, and the pointing accuracy errors and attitude stability 
errors are far better than the excellent imaging condition. At present, the 
FAMF has become a mature control mode, improving the time resolution 
and observation coverage of remote sensing optical satellites. 
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modelling of very low Earth orbit satellites for Earth observation, Acta Astronaut. 
187 (2021) 475–491, https://doi.org/10.1016/j.actaastro.2021.07.004. 

[10] X. Wang, G. Wu, L. Xing, W. Pedrycz, Agile earth observation satellite scheduling 
over 20 Years: formulations, methods, and future directions, IEEE Syst. J. 15 
(2020) 3881–3892, https://doi.org/10.1109/jsyst.2020.2997050. 

[11] K.Q. Ha, M.D. Femiano, G.E. Mosier, Minimum-time and vibration-avoidance 
attitude maneuver for spacecraft with torque and momentum limit constraints in 
redundant reaction wheel configuration, in: L.D. Peterson, R.C. Guyer (Eds.), Space 
Systems Engineering and Optical Alignment Mechanisms, SPIE, 2004, 
pp. 126–137, https://doi.org/10.1117/12.558456. 

[12] G. Creamer, P. DeLahunt, S. Gates, M. Levenson, Attitude determination and 
control of Clementine during lunar mapping, J. Guid. Control Dynam. 19 (1996) 
505–511, https://doi.org/10.2514/3.21650. 

[13] L. You, Y. Dong, Near time-optimal controller based on analytical trajectory 
planning algorithm for satellite attitude maneuver, Aero. Sci. Technol. 84 (2019) 
497–509, https://doi.org/10.1016/j.ast.2018.10.030. 
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