
Citation: Ren, H.; Lin, L.; Wang, Y.;

Dong, X. Robust 6-DoF Pose

Estimation under Hybrid Constraints.

Sensors 2022, 22, 8758. https://

doi.org/10.3390/s22228758

Academic Editor: Qing Guo

Received: 19 September 2022

Accepted: 8 November 2022

Published: 12 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Robust 6-DoF Pose Estimation under Hybrid Constraints
Hong Ren 1,2, Lin Lin 1,2, Yanjie Wang 1,2,* and Xin Dong 3

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering,

Jilin University, Changchun 130012, China
* Correspondence: wangyj@ciomp.ac.cn

Abstract: To solve the problem of the insufficient accuracy and stability of the two-stage pose
estimation algorithm using heatmap in the problem of occluded object pose estimation, a new robust
6-DoF pose estimation algorithm under hybrid constraints is proposed in this paper. First, a new
loss function suitable for heatmap regression is formulated to improve the quality of the predicted
heatmaps and increase keypoint accuracy in complex scenes. Second, the heatmap regression network
is expanded and a translation regression branch is added to constrain the pose further. Finally, a robust
pose optimization module is used to fuse the heatmap and translation estimates and improve the pose
estimation accuracy. The proposed algorithm achieves ADD(-S) accuracy rates of 93.5% and 46.2%
on the LINEMOD dataset and the Occlusion LINEMOD dataset, which are better than other state-
of-the-art algorithms. Compared with the conventional two-stage heatmap-based pose estimation
algorithms, the mean estimation error is greatly reduced, and the stability of pose estimation is
improved. The proposed algorithm can run at a maximum speed of 22 FPS, thus constituting both a
performant and efficient method.

Keywords: pose estimation; heatmaps; nonlinear optimization; multi-task networks

1. Introduction

The development of image processing technology has allowed computers to extract
an increasing amount of information from images. Consequently, object pose estimation at
6 degrees of freedom (DoF) has also become a new research hotspot. This task is proving
essential for applications in robotics, autonomous driving, and virtual reality. Therefore, 6-
DoF pose estimation has broad application prospects and an extremely high research value.

The high requirements of depth cameras on lighting conditions limit the application
scenarios of pose estimation algorithms using RGB-D images. At present, many algorithms
for direct pose estimation from RGB images without depth information have achieved
relatively good results but the applicability of these algorithms in complex scenes still needs
to be improved. In real application scenarios, objects are very often occluded. In these
cases, the insufficient information available in the RGB image will limit the accuracy of pose
estimation and may even result in serious estimation errors, which limits the usefulness of
single RGB images in practical scenarios. Therefore, the maintenance of the accuracy and
robustness of the pose estimation algorithm using single RGB images in complex scenes,
and especially those with occlusions, is a problem that deserves further study.

Traditional pose estimation algorithms commonly use hand-crafted features to es-
tablish an image-to-image relationship and calculate the pose in the real image based
on a template image [1,2]. Algorithms of this type are limited by the traditional feature
calculation methods and can only deal with objects with a rich texture, but their accu-
racy advantage has led to many algorithms [3–6] that adopt the idea of two-stage pose
estimation. With the development of deep learning, an increasing number of two-stage
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pose estimation algorithms are being proposed. These algorithms use the 2D projection of
three-dimensional keypoints on the CNN regression model to obtain the image keypoints
and then use the PnP method to calculate the pose. There are many methods for regress-
ing image keypoints; among them, heatmaps have been applied in many two-stage pose
estimation algorithms because of their accuracy in keypoint regression, their easy super-
vision and easy convergence during network training, and because they have achieved
satisfactory results.

When using heatmaps, in order to allow the network to use image information more
effectively and not be disturbed by the background, object detection and cropping are
usually performed, and only image blocks are used for keypoint regression. When the
object is occluded, only a part of it is contained in the image block, and some image
keypoints may be defined outside the image block. As shown in Figure 1, the heatmap
cannot regress keypoints outside the image, which leads to large errors and uncertainties
for these keypoints. However, the accuracy of the PnP algorithm in calculating the pose
depends almost entirely on the quality of the keypoint regression. As the errors in keypoint
calculation increase, the pose calculation results will become more unreliable. Figure 2
shows the result of an image keypoint positioning error affecting pose estimation. The
curves in the figure show the translation error caused by errors on different numbers of
keypoints when using 20 point pairs to solve the PnP problem. More erroneous keypoints
lead to larger translation errors, and this error accumulates almost exponentially. Therefore,
when the object is occluded, the two-stage pose estimation algorithm using a heatmap is
likely to obtain the pose estimation result with a large error, which reduces the applicability
of two-stage pose estimation algorithms using heatmaps on occluded objects.

(a) (b) (c)

(d) (e) (f)

Figure 1. Heatmaps cannot perceive keypoints outside the image. The blue boxes are object bounding
boxes and the red points are keypoints. (a) Unoccluded image; (b) Image block; (c) Heatmap for
unoccluded keypoints; (d) Occluded image; (e) Image block; (f) Heatmap for occluded keypoints.

To solve this problem, some methods [7,8] increase the number of keypoints, so that
even when the object is partially occluded, enough high-quality keypoints can be used for
the calculation of the pose. However, too many keypoints will increase the difficulty of
network training and reduce the computational efficiency. At the same time, it is not easy
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to distinguish which keypoints should be used to calculate the pose in different images,
which results in uncertainty.

Figure 2. Errors in the determination of the keypoints’ location affects the result of pose estimation.

In order to improve the accuracy and stability of the two-stage pose estimation al-
gorithm using heatmap on the problem of occluded object pose estimation, this paper
improves the pose estimation algorithm using a heatmap from two aspects. First, the pre-
diction of the heatmap by the regression network should be improved, as this will ensure
the accuracy of keypoint prediction within the image block range in complex situations.
In this regard, in this paper a new loss function called “Heatmap Wing Loss” is proposed,
which is used to improve the quality of the predicted heatmap and to ensure the accuracy
of keypoint prediction. Second, multiple constraints should be jointly imposed on the
pose to ensure the stability of the estimation results. In this paper, inspired by end-to-end
algorithms [9–11], starting from a heatmap regression network, a translation regression
branch is added to predict the translation pose directly. The rotational pose is calculated
from the predicted keypoints using the PnP algorithm. At the same time, a robust pose opti-
mization module is proposed, which fuses the two constraints of translation and keypoints
to calculate the pose.

The algorithm was evaluated on the LINEMOD dataset and the Occlusion LINEMOD
dataset, both of which are widely used standard pose estimation datasets. These two
datasets focus on the pose estimation of conventional non-occluded and occluded objects.
On both datasets, our algorithm achieves excellent results, outperforming other recent pose
estimation algorithms. At the same time, the fastest pose estimation rate of the proposed
algorithm is 22 FPS, which makes it suitable for real-time applications.

In summary, in the present work, the two-stage pose estimation algorithm using
heatmaps is extended and a new robust pose estimation algorithm under hybrid constraints
is proposed. The specific contributions are as follows:

• To improve the accuracy of keypoint positioning, Heatmap Wing Loss is designed
specifically for heatmap regression. Using Heatmap Wing Loss, the algorithm im-
proves the quality of the network-predicted heatmap and ensures the stability of
keypoint positioning when the object is blocked.

• Referring to the end-to-end algorithm, the heatmap regression network is expanded
to add a translation regression branch, so that a variety of constraints on the pose
can be imposed, leading to an improvement of the pose estimation stability in occlu-
sion scenes.
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• To better integrate the two constraints of the keypoints and translation, a pose opti-
mization module is designed to further improve the accuracy of the estimated poses.

2. Related Work

Recently, many excellent algorithms [12–15] proposed in the BOP Challenge [16,17]
aimed to solve the problem of 6D pose estimation using RGB images, and have achieved
excellent results in many datasets. However, most of these algorithms are post-refinement
algorithms which require a pre-estimation to obtain a rough result in advance. This kind of
coarse-to-fine algorithm greatly affects the efficiency and makes it difficult to be applied in
real scenarios.

This paper focuses on non-post-optimized pose estimation algorithms using RGB
images. These algorithms are mainly divided into two categories. The first is end-to-end
methods, which directly predict the pose from the input image through the neural network.
The second includes two-stage methods, which obtain the 2D information related to the 3D
object points using a neural network, such as when keypoints are projected from 3D model
points, and then use the PnP algorithm to solve the pose.

2.1. End-to-End Methods

An intuitive approach incorporating deep learning for pose estimation is to use the
neural network to output the pose directly. However, due to the large solution space
of the pose, the direct regression of translation vectors and rotation matrices is usually
inefficient and there are many algorithms that provide different solutions. SSD-6D [10]
extends the object detection network SSD to the pose estimation task. It discretizes the
output space of the rotation and uses regression to predict the rotation. Deep-6DPose [18]
extends the Mask-RCNN [19] network with a pose estimation branch, which uses the 2D
object center in the image and the depth of the camera to replace the translation vector,
and uses a differentiable Lie algebra for rotation estimation. Li et al. focused on the pose
estimation of indoor objects [20], modified Faster R-CNN [21], and added a translation and
rotation vector output. The classification and regression methods were used to predict the
rotation vector with the conclusion drawn that the regression method has higher accuracy.
Different from the method of directly extracting the pose using the image, Martin et al.
proposed an Augmented Autoencoders (AAE) [22] by applying template matching. The
encoder could automatically obtain the spatial rotation characteristics of the object and
the required pose corresponding to a pre-computed template, which greatly simplified
the calculation amount. The idea of end-to-end algorithms for pose estimation is simple,
but due to the characteristics of the neural network, it is difficult to judge whether the
network has learned enough features to express the pose; therefore, the accuracy of these
methods is usually poor. However, end-to-end algorithms can be used to refine the pose.
For example, DeepIM [23] uses the coarse pose and the 3D model to render the image,
and learns the difference between the real image and the rendered image through the
neural network, which allows it to calculate the deviation between the coarse pose and
the real pose. DeepIM performs pose refinement using PoseCNN and achieves excellent
results. However, DeepIM requires a rough estimate as a basis, which includes the real-time
performance of the algorithm.

2.2. Two-Stage Methods

Compared with end-to-end methods, two-stage algorithms that determine the pose
through 2D-3D correspondence have higher accuracy. Two-stage algorithms can be sub-
divided into direct coordinate methods, heatmap methods, voting methods and dense
correspondence methods according to the 2D feature types predicted.

Direct coordinate methods: Neural networks can directly predict the coordinates
of keypoints from the input image through training. The YOLO-6D algorithm proposed
by Tekin et al. [4] draws on the YOLO object detection algorithm, which outputs the
projection of the eight corners of the 3D bounding box of the object on the 2D image directly,



Sensors 2022, 22, 8758 5 of 20

and proposes a 3D bounding box confidence equation. Kartik Gupta et al. proposed
CullNet [24], which changed the original single output of YOLO-6D to three branches,
predicted the eight corners at different scales, predicted the corner confidence, and used
corners with the highest confidence to calculate the pose. A segmentation-driven pose
estimation algorithm was proposed by Hu et al. [25] which segmented the object and
predicted the corner positions and confidences of the object’s 3D bounding box within each
image block. Finally, the N prediction points with the highest confidence are used to apply
the PnP calculation of the pose.

Due to the large solution space of directly-predicted coordinates, such methods lack
the ability of spatial generalization, and the positioning accuracy of the keypoints is not
sufficient, which limits their performance.

Heatmap methods: Unlike methods based on direct coordinate prediction, heatmaps
provide an intermediate state for coordinate regression, which allows the network to be fully
convolutional and consequently easier to train and converge. Heatmaps are widely used to
predict keypoints in various pose estimation algorithms. Zhao et al. proposed BetaPose [7],
an algorithm that trains a keypoint detector to predict pre-defined keypoints on the object,
and began to use heatmaps as an indirect way of expressing keypoints, thereby improving
the prediction performance. During training, Zhao et al. [26] used a pair of images as input
and used the projection consistency constraint to improve the accuracy of the predicted
keypoints on the image. Oberweger et al. [8] proposed an algorithm to deal with occlusion,
which divided the object into blocks to ensure that the main body of the input image is not
occluded when regressing the keypoints. The use of heatmaps to predict keypoints allows
for higher accuracy than direct coordinate prediction; consequently, heatmap methods
usually also have better pose estimation performance. However, due to the limitations
of the heatmap itself, it cannot predict the keypoints outside the image range, which also
affects the application of heatmap-based methods in occluded object pose estimation.

Voting methods: To predict keypoints outside the image range, some algorithms use
voting-based keypoint localization. Proposed by Yu et al., PoseCNN [9] implements a
voting scheme to determine the object center point, regresses the pixel-level unit vector
pointing to the center, and then determines the center through multi-pixel voting. Inspired
by PoseCNN, Peng et al. proposed the PVNet [27] algorithm, which predicts the direction
of all pixels in the object to the keypoints, and uses a RANSAC algorithm-based voting
method to determine the keypoints, thus improving the robustness of the pose estimation
against occlusion greatly. Yu et al. modified PVNet to use a distance-based loss function,
which further improved the speed of network training and the pose estimation performance.
HybridPose [28] predicts a hybrid intermediate representation that includes keypoints,
edge vectors, and symmetric correspondences, and utilizes different features for accurate
pose prediction. ER-Pose [29] upgrades HybridPose’s mask-based voting to edge-based
voting, which helps the network to focus more on the object’s global shape and structure.
The voting method predicts denser features, and while it can cope with occlusion, it also
incurs increased computational cost and thus the inference speed is limited.

Dense correspondence methods: In addition to the above algorithms based on sparse
pre-defined keypoints, there are also methods based on dense coordinates, which usually
predict the pixel-level object’s 3D coordinates or a UV map of pixels to create a dense 2D-3D
correspondence, instead of the sparse correspondence found in the above algorithm. These
algorithms try to solve the problem that occluded objects are difficult to predict due to
pre-defined keypoints that cannot be seen. Kiru Park et al. proposed pix2pose [30], which
uses a GAN to predict the 3D model coordinates and confidence levels corresponding
to each pixel from the input image directly, and also proposed a new loss function to
convert the predicted 3D coordinates of each pixel into its nearest symmetrical pose.
DPOD [31], proposed by Zakharov et al., predicts the output UV map from the input
image to build pixel-level 2D-3D correspondence. At the same time, DPOD also proposes
a refinement module to further improve the accuracy of pose estimation. GDR-Net [32]
exploits the intermediate geometric features regarding 2D-3D correspondences to output
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image-like 2D patches, and 2D convolutional Patch-PnP is used instead of PnP to calculate
the pose. The dense coordinate method is robust to severe occlusions; however, due to the
large continuous search space, the regression of the coordinates is more difficult than the
prediction of sparse keypoints.

Overall, the heatmap method can balance the accuracy of pose estimation and the ease
of training and convergence of the network, and is the most likely algorithm to be applied
in practice. In order to solve the problem that it is difficult to predict the occluded keypoints
in the heatmap method, which leads to difficulty estimating the pose of the occluded object,
this paper incorporates the direct prediction of translation. The translation is used together
with the heatmap as a constraint to jointly estimate the object pose. Therefore, our method
can effectively eliminate the drawbacks of the heatmap method and maintain the stability
of pose estimation.

3. Proposed Approach
3.1. Pipeline

As mentioned above, since heatmaps cannot predict keypoints outside the image,
when the object is heavily occluded and there are not enough keypoints included in the
image patch, serious errors will occur in the pose estimation. In order to improve the
accuracy and robustness of pose estimation, the usual two-stage pose estimation algorithm
is extended with the pose estimation algorithm presented in this paper.

In the preliminary stage, object detection is performed on a given image I to obtain
the bounding box of the object. The image I is cropped according to the square bounding
box which is calculated using Algorithm 1 to ensure that only the object to be estimated
remains in the image block. The cropped image is uniformly scaled to N × N to obtain the
image block I′.

Algorithm 1 calculation of the output bounding box

Input: The predicted bounding box of the object, including the upper left coordinate of the
bounding box xi, yi, width wi and height hi;

Output: The square bounding box of the object, including the upper left coordinate of the
bounding box xo, yo, side length No

1: Calculate the center of predicted bounding box.{
xc = xi + wi/2
yc = yi + hi/2

2: Calculate the side length of the square bounding box.

No = 1.1 ∗max(wi, hi)

3: Calculate the upper left coordinate of the square bounding box.{
xo = xc − No/2
yo = yc − No/2

return xo, yo, No;

As shown in Figure 3, our pose estimation algorithm is divided into two stages. In
the first stage, the object image block I′ is input into a multi-task CNN network and the
heatmap corresponding to keypoints and the vector T′ representing the pose translation
are the output. The heatmap is then parsed to obtain the predicted image keypoints.
After obtaining the predicted image keypoints, the PnP problem is solved to obtain the
initial rotation matrix R′. The second stage uses the initial pose estimate {R′|T′} as the
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initial value, and uses a heatmap-based non-linear optimization algorithm to calculate the
estimated pose {R|T}.

Figure 3. Visualization of proposed pipeline. We use a multi-task network to simultaneously predict
the heatmap and translation, and use a nonlinear optimization method to calculate the pose.

Each part of the algorithm will be described in detail below.

3.2. Mutli-Task Network

Since the heatmap cannot be used to regress keypoints outside the image, its use as
the sole constraint to calculate the pose will reduce the stability of the pose estimation.
Therefore, it is necessary to increase the constraints of the pose calculation. Different from
other heatmap methods such as BetaPose, which only output heatmaps, in this paper the
output of the heatmap regression network is expanded to heatmaps corresponding to
different keypoints and vectors that represent the object translation pose. The network
structure is shown in Figure 4.

Figure 4. Multi-task network. We extend the heatmap regression structure to output both heatmaps
and translations.

In order to reduce the network’s computational load, keypoint prediction algorithms
such as BetaPose usually output a heatmap of size N/2× N/2 for an input image of size
N× N, and then scale the keypoints to correspond to the input image. The disadvantage of
this operation is that there is an error in the keypoints calculated by the prediction heatmap,
and the scaling of the keypoints will cause that error to be amplified and accumulated.
In the proposed approach, the multi-task network will directly output a heatmap of size
N × N to reduce the amplification and accumulation of errors.

In this paper, HRNet [33,34] is selected as the backbone of the multi-task network.
HRNet connects the feature maps at different resolutions in parallel, which allows it to
retain the high-resolution features during the whole process. In this manner, no features are
lost due to the pooling-upsampling operations, which is advantageous for high-accuracy
heatmap regression.

To ensure the computational efficiency and reduce the amount of operations, before
the image is input into HRNet, a convolutional layer with a stride of 2 is used to reduce the
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feature map size and improve the inference speed. After fusing the multi-layer features
output by HRNet, the fused features are upsampled to the input image size and spliced
with the input image. The input image-sized heatmap is obtained after the operation of
the last convolution block. When an image of size H ×W × 3 is used as the input with C
keypoints defined, the output size of the network heatmap branch is H ×W × C.

The prediction of the translation is not very demanding on the features space, and does
not require high-resolution feature maps for regression. Moreover, if the high-resolution
feature map is used to perform the full-connection calculation directly, the computational
workload of the network will be greatly increased, and its computational efficiency will
be adversely affected. Therefore, the network expands the lowest resolution feature map
output with HRNet in a fully-connected operation. The translation prediction branch uses
three fully connected layers with 4096, 1024, and 3, nodes.

Since the image blocks are cropped and scaled before being input to the network, there
will be a multi-value correspondence problem between the translation and the image block,
so the network cannot be used to predict the translation directly. As an alternative, in this
paper the projected position of the object center is regressed in the cropped and scaled
image (u0, v0) and the translation z-direction component corresponding to the scaled image
block t̂z as the extended translation component.

If the camera internal parameters are
fx 0 ux
0 fy uy
0 0 1

,

the cropping position of the image block is (x0, y0), and the cropped image block is enlarged
by k times to obtain the input image block; then, the relationship between the real translation
pose of the object

(
tx, ty, tz

)
and the output of the network translation branch is as shown

in Equation (1). This translation regression is independent of image cropping and scaling.

tx =

(( u0
k + x0

)
− ux

)
tz

fx

ty =

(( v0
k + y0

)
− vy

)
tz

fy

tz =
t̂z

k

(1)

3.3. Loss Function

The loss function of the entire network consists of two parts. First, for the prediction
of translation, the L2 Loss is used to evaluate the deviation of the predicted value from the
true one. In the extended translation component, (u0, v0) and t̂z have different prediction
difficulties. Therefore, the loss function of the translation is shown in Equation (2), where
α1, α2 are control parameters,

(
u0, v0, t̂z

)
and

(
u0, v0, t̂z

)
are the actual and predicted values

of the extended translation vector.

LossT = α1L2(u0, u0) + α1L2(v0, v0) + α2L2(t̂z, t̂z) (2)

In heatmap regression, many algorithms use the mean square error (MSE) loss for
training. However, it is not the optimal loss function, as the vast majority of pixels in the
heatmap are invalid background zero-valued pixels, and only a few foreground pixels
near keypoints have values. When using heatmaps to calculate keypoint location, only a
small portion of the foreground pixels with the maximum value and its neighbors are really
used. Therefore, different pixel values of the heatmap have different keypoint positioning
importance, and the importance of a heatmap pixel increases with its proximity to the
keypoint position. However, MSE loss will account for all pixels of the heatmap during the
training process, resulting in the reduction in useless background pixel errors for most of
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the network training time, which is not conducive to the rapid convergence of the network
and also affects the prediction accuracy of foreground pixels.

The proposed approach aims to distinguish different pixels in the whole network
training process to obtain more accurate prediction results of foreground pixels. Inspired
by [35,36], a Heatmap Wing Loss (HWing Loss) function is proposed which is more suitable
for heatmap regression. The loss function expression is shown in Equation (3). HWing
Loss is designed to be a piecewise function, where p and p̂ represent the real and predicted
pixel value; consequently, the the image pixel error is p− p̂. δ, ε, and ω are parameters,
while θ is the threshold. When the pixel error is greater than θ, the large-error form of
the function (second line) is used, which does not distinguish foreground pixels from
background pixels and uses a linear function to reduce the impact of outliers on training.
When the error is less than θ, the small-error part (first line) is adopted. In this case, due to
the characteristics of the ln function, the gradient value of the loss function increases as the
error decreases, and the sensitivity to small errors is improved; the exponential part ε− p
is used to solve the problem of the discontinuous gradient of the ln function when the error
is 0. The denominator δ− p allows the loss function to distinguish the foreground from the
background pixels, enhances the gradient of the foreground pixel part, and increases the
significance of foreground pixels during training.

HeatmapWingLoss(p, p̂) =

ω ln
(

1 + | p− p̂
δ− p

|ε−p
)

|p− p̂| < θ

|p− p̂| − C |p− p̂| > θ

(3)

Figure 5 shows a comparison between HWing Loss and MSE Loss when the back-
ground pixel is p = 0 and the foreground pixel is p = 1. It can be seen that in the small
error part, HWing Loss distinguishes better between the gradients of the foreground and
background pixels. Smaller pixel errors result in a more obvious distinction, which makes
the network pay more attention to and optimize the error of the foreground pixel during
the training process. This feature can improve the prediction accuracy of the foreground
part, thereby improving the accuracy of keypoint location and pose estimation.

Figure 5. Gradient of Heatmap Wing Loss and MSE Loss.

The final overall loss function is shown in Equation (4).

Loss = LossT + βLossheatmap

= α1L2(u0, u0) + α1L2(v0, v0) + α2L2(t̂z, t̂z) + β ∑
N

∑
p

HWingLoss(p, p̂) (4)
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3.4. Initial Pose

After the network output has been obtained, the initial pose {R′|T′} can be calculated.
The initial translation T′ can be obtained using Equation (1), while the keypoints are used
for the calculation of the initial rotation R′.

In order to obtain more accurate keypoints from the heatmaps, the algorithm in [37]
was expanded to perform sub-pixel keypoint optimization, as shown in Equation (5),
where (u, v) are the optimized keypoint coordinates, (u0, v0) are the coordinates of the
maximum point of the heatmap, and L′u, L′v, L′′u , and L′′v represent the first- and second-
order differences at the (u0, v0) position. After obtaining the keypoints, the maximum
pixel values of each heatmap are used to filter the keypoints. The K1 points with the
largest maximum values are selected to calculate the initial pose. The initial rotation R′ is
calculated using the EPnP algorithm [38].

u = u0 −
L′u(u0)

L′′u(u0)

v = v0 −
L′v(v0)

L′′v (v0)

(5)

3.5. Pose Optimization

The initial pose {R′|T′} obtained in Section 3.4 is not sufficiently accurate for high-
precision applications. The reason is that when using the keypoints to calculate the initial
pose, although the keypoints have been screened using the maximum heatmap values,
the number of erroneous keypoints in different instances may not be the same, and the
EPnP algorithm cannot reduce the influence of the wrong key points during calculation.
Therefore, the initial pose can be further optimized using nonlinear optimization.

When the position of the keypoints obtained by the network regression is correct, then
any 3D keypoint Poi should coincide with the predicted image keypoint pi after mapping to
the image after applying the rotation R, the translation T and internal parameter K. Since
the predicted values of rotation R and translation T are inaccurate, for each keypoint there
is the following error:

ei0 = ‖pi − (KRPoi + T)‖2 (6)

However, there are also errors in the position of the keypoints predicted by the network.
The position of pi itself is inaccurate. Image keypoints with large errors will lead to large
errors in pose calculation or even wrong estimations. It is therefore necessary to reduce
the influence of inaccurate keypoints. Considering that the keypoints are inferred from the
predicted heatmap, the accuracy of keypoints is often correlated with the quality of that
heatmap. Therefore, the keypoint error can be determined using the maximum value mi
of the predicted heatmap. The closer the maximum value mi of the predicted heatmap is
to 1, the higher the quality of the heatmap, and consequently the lower the error of the
keypoint. On the contrary, if the maximum value mi of the predicted heat map is closer to
0, this indicates that the quality of the heatmap is poor, which may be caused by occlusion
or keypoints outside the image range, and the larger the keypoint error at this time. After
combining the heatmap quality, the error corresponding to each keypoint is as follows:

ei = miei0 = ‖mi(pi − (KRPoi + T))‖2 , d2
i (7)

Similar to Section 3.4, the K2 keypoints with the largest predicted heatmap maxima are
selected for pose optimization, where K2 is less than or equal to K1 in Section 3.4. To further
reduce the influence of outliers on optimization and improve the robustness of nonlinear
optimization, we define the total error of the K2 keypoints as shown in Equation (8), where
c is a parameter.

E =
K2

∑
i=1

c2

2
log(1 + (

di
c
)2) (8)
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∂

∂di
E =

di

1 + ( di
c )

2
(9)

Equation (9) provides the partial derivative of the total error E to each keypoint error
di. Compared with using ∑ ei directly, the error definition of Equation (8) can significantly
reduce the proportion of outlier errors in the total error, as well as the influence of outliers
on optimization. Smaller values of the parameter c result in a smaller gradient of the
error function and consequently the influence of outliers on optimization is suppressed.
However, if c is too small, the correct prediction points with small errors will be mistaken
as outliers, which will affect the correctness of optimization. Therefore, it is necessary to
choose the value of parameter c reasonably.

Finally, the Levenberg–Marquardt (-L–M) algorithm is used to optimize Equation (10)
and achieve pose optimization.

R∗, T∗ = arg min
R,T

E

= arg min
R,T

K2

∑
i=1

c2

2
log(1 + (

mi(pi − (KRPoi + T))
c

)2)
(10)

4. Experiments
4.1. Benchmark Datasets

We trained and evaluated the algorithm using the LINEMOD dataset [39] and the
Occlusion LINEMOD dataset [40].

The LINEMOD dataset is commonly used for 6-DoF object pose estimation. There
are multiple pose estimation scenes in the dataset, including complex backgrounds and
non-textured objects. Almost all objects in the scenes are not occluded. Each image has
an object and is annotated with its translation, rotation, object class, and object mask. The
dataset also provides 3D models. There is a total of 15,783 images of 13 categories, including
11 asymmetrical categories, namely ape, benchvise, cam, can, cat, driller, duck, holepuncher,
iron, lamp, phone, as well as 2 symmetrical categories, namely eggbox and glue. There are
approximately 1200 instances of each of the categories.

The Occlusion LINEMOD dataset is an extension of the LINEMOD dataset which only
includes 8 categories, namely ape, can, cat, driller, duck, eggbox, glue, and holepuncher.
There are multiple objects marked with poses, categories, and masks in each image and
most objects in the image are partially occluded. The Occlusion LINEMOD dataset was
used for evaluation only, and only the LINEMOD dataset is used for training.

Usually, when using the LINEMOD dataset, 30% of the images in each category are
randomly selected as the training set and the remaining 70% is used as the test set. As
a result, the amount of data in the training set is too small, which results in the network
having insufficient accuracy and being prone to overfitting. Therefore, the strategy of [27]
was used to add synthetic images to the training set, resulting in a total of 20,000 training
images per class. Among these image, 10,000 images are rendered whose viewpoints
are uniformly sampled, while another 10,000 images are synthesized using the “Cut and
Paste” strategy.

4.2. Evaluation Metrics

The algorithm’s performance was evaluated using the ADD(-S) metric, which consid-
ers the mean distance between the 3D points of the model. For asymmetric objects, the
ADD metric is used, and the mean distance is the mean distance between the coordinates
of the vertices of the 3D model and the estimated coordinates, as shown in Equation (11),
where Np is the total number of 3D points on the 3D model, and xi is the i-th 3D point. If
the mean distance is less than 10% of the object’s diameter, the prediction is considered
to be correct. For symmetric objects, the ADD-S metric is used, and the mean distance is
calculated based on the nearest point distance, as shown in Equation (12). The performance
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evaluation is calculated as the percentage of the number of correctly predicted images in
the test set of the total number.

ADD(R, T) =
1

Np

Np

∑
i=1

((Rxi + T)− (Rxi + T)) (11)

ADD− S(R, T) =
1

Np

Np

∑
i=1

min
xj

((Rxi + T)− (Rxj + T)) (12)

4.3. Implementation

The farthest point sampling algorithm was used to select C = 32 points on the 3D
model as 3D keypoints, map them to the image to obtain image keypoints and subsequently
create supervised heatmaps. The input images were uniformly cropped and scaled to
128× 128 pixels. Each batch comprised 32 images. The learning rate was set to 0.001. All
models were trained for 40 epochs and the learning rate was reduced to 0.0001 from the
30th epoch onwards. In Heatmap Wing Loss, the parameters were set to ω = 14, θ = 0.5,
δ = 2, and ε = 2.1. In the overall loss function, α1 = 1, α2 = 5, and β = 1 were used.
For the evaluation, K1 = K2 = 24 keypoints with the largest confidence coefficient were
selected for initial pose estimation and optimization. The pose optimization module was
implemented using Ceres [41].

4.4. Ablation Studies

In order to verify the role and performance of the translation and optimization mod-
ules, ablation studies were conducted on the Occlusion LINEMOD dataset. The perfor-
mance of the algorithm with and without the translation and optimization modules was
compared to that of the original algorithm, which included both. The results are shown in
Table 1, which compares the ADD(-S)/% accuracy and ADD(-S)/m error of the different
algorithms. Figure 6 presents the visualization results of some examples.

Table 1. Comparison results of module ablation studies.

Metric ADD(-S)/% ADD(-S)/m ADD(-S)/% ADD(-S)/m ADD(-S) /% ADD(-S)/m ADD(-S)/% ADD(-S)/m

Trans.
Module ! ! # #

Opt.
Module ! # ! #

ape 31.5 0.14 14.8 0.08 32.3 0.33 25.8 0.41
can 75.1 0.04 10 0.06 75.8 0.03 69.8 0.03
cat 30.6 0.66 4.9 0.17 26.8 3.02 24 2.79

duck 34.6 0.35 11.3 0.09 31.1 0.76 28.3 0.65
driller 56 0.09 29 0.06 61.7 0.09 53.4 0.10
eggbox 46.7 0.38 1.4 0.13 51.4 1.11 42.1 1.13

glue 53.4 0.36 21.6 0.10 51.1 3.72 50.5 6.25
holepuncher 42 0.03 8 0.05 41.9 0.03 35.6 0.03

mean 46.2 0.26 12.6 0.09 46.5 1.14 41.2 1.42

From the results, it can be seen that the basic algorithm without the use of translation
and optimization modules achieves an accuracy of 41.2% on the Occlusion LINEMOD
dataset. The use of the optimization module results in an accuracy increase of 5.3 percentage
points (pp). The optimization effect is clear, indicating that the nonlinear optimization
module is robust to outliers, as shown in the third column and fourth column of Figure 6.
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(a) (b) (c) (d)

Figure 6. Visualized results of different algorithm configurations. (a): full algorithm; (b): without
the optimization module; (c): without translation model; (d): without optimization module and
translation module.

The accuracy of the algorithm using the translation module alone on the Occlusion
LIMEMOD dataset is significantly lower than that of the basic algorithm. However, the
accuracy of the algorithm when both the translation and the optimization modules are
used is almost the same as that of the algorithm using only the optimization module, which
further illustrates the improvement of the optimization module to the accuracy of the
algorithm’s pose estimation.

The effect of the translation module is reflected in the ADD(-S)/m error term, which
represents the mean difference measured using the ADD distance between the real pose and
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the estimated pose of all data in the test set. The ADD(-S)/m error is shown in Equation (13),
where ADD(-S)(R,T) is defined in Equations (11) and (12), and Ndata is the total number of
data in the test set. Compared with using only the optimization module, employing both
modules results in a reduction in the ADD(-S) error by more than 75%. When the translation
module is not used, the difficult categories are significantly misestimated, resulting in a
high ADD(-S) error. This is the case especially for cat, eggbox, and glue categories, where
the ADD(-S) error exceeded 1m. However, when the translation module was employed, the
ADD(-S) error of most categories was reduced to less than 0.4 m, and the effect was very
obvious. This shows that the addition of the translation module improves the robustness of
the algorithm’s pose estimation and reduces erroneous estimation.

ADD(−S)/m =

Ndata
∑ ADD(−S)(R, T)

Ndata
(13)

The reason why the translation module improves the stability of pose estimation is that
when the algorithm only uses one keypoint constraint but the number of accurate keypoints
is too small, such as less than 4, too many wrong keypoints will cause large errors in the final
pose, which will result in large translation errors in the estimated poses of some instances.
After adding the direct translation prediction, a more accurate initial value is used for
the pose calculation, which constraints the calculation and reduces the influence of the
erroneous keypoints on the estimated result. Therefore, there is no excessively large error
estimation for each instance, and the stability of pose estimation for difficult-to-estimate
objects is maintained.

In this study, comparative experiments with different loss functions were carried out to
verify the effectiveness of HWing Loss. In order to exclude the influence of other modules,
comparative experiments were carried out using the basic pose estimation algorithm
without the translation and optimization modules. In the experiment, MSE Loss and
HWing Loss were used to train the heatmap regression network and tested on the Occlusion
LINEMOD dataset. Table 2 shows the mean keypoint localization errors (in pixel units)
of the pose estimation algorithm trained with different loss functions on the Occlusion
LINEMOD dataset. The algorithm trained with HWing Loss has an average reduced
keypoint location error of 2.2 pixels in each category compared to the one trained using
MSE lossMore precise keypoint positioning bestows the pose estimation algorithm trained
with HWing Loss with higher pose estimation accuracy.

Figure 7 shows a comparison of heatmaps predicted by a heatmap regression network
trained with HWing Loss and MSE Loss. It can be seen that the effective foreground part
of the predicted heatmap obtained using MSE Loss is more scattered, while HWing Loss
results in a heat map foreground part that is more concentrated. Higher quality prediction
heatmaps also result in more accurate keypoint predictions.

(a) (b) (c)

Figure 7. Predicted heatmap using HWing Loss and MSE Loss. (a) occluded object and keypoint;
(b) heatmap using HWing Loss; (c) heatmap using MSE Loss.
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Table 2. Comparison of mean keypoint location errors on the Occlusion LINEMOD dataset of
algorithms trained with different loss functions.

Mean Keypoint Location Error/cm

Loss Function Heatmap Wing Loss MSE Loss

ape 8.4 9.1
can 4.1 4.6
cat 13 15.1

duck 9 10
driller 5.2 6.8

egg box 38.4 39.2
glue 14.6 20.7
hole 8.2 12.8

Mean 12.6 14.8

4.5. Performance on LINEMOD

We evaluated the performance of the algorithm for unoccluded object pose estimation
on the LINEMOD dataset. Figure 8 depicts some qualitative results, where green is the
ground-truth and blue is the estimated pose annotated frame.

To verify the performance of the proposed algorithm, the performance of ADD(-S)
on the LINEMOD dataset was compared with other current pose estimation algorithms
using RGB images. The specific results are shown in Table 3, where the highest accuracy
rate of a category is shown in bold. Since eggbox and glue are symmetrical objects, the
ADD-S indicator was used. Regarding the compared algorithms, BetaPose [7], CDPN [42],
DPVL [43], RPVNet [44], HybridPose [28], ER-Pose [29], and GDR-Net [32] are two-stage
methods like the proposed one. BetaPose [7] is the same as ours in terms of using a heatmap,
CDPN [42], and GDR-Net [32] use dense correspondence, and DPVL [43], RPVNet [44],
HybridPose [28], and ER-Pose [29] are voting methods. Meanwhile, PoseCNN [9] is an
end-to-end algorithm, and DeepIM [23] is a refinement-based algorithm that relies on the
refinement of PoseCNN’s rough estimation.

From the comparison results, is is evident that among all non-post-refinement algorithms,
the proposed algorithm has the highest accuracy rate in four categories, and has the highest
mean pose estimation accuracy. Compared with BetaPose, which is also a heatmap method, the
proposed algorithm greatly improves the estimation accuracy (the accuracy rate is increased by
20.9 pp). Compared with DeepIM, which uses the rough pose of PoseCNN and then applies a
CNN module for refinement, the proposed algorithm also achieves an accuracy improvement
of 4.9 pp. The results indicate that the proposed algorithm achieves excellent pose estimation
performance compared to these state-of-the-art algorithms.

Table 3. Comparison of methods on the LINEMOD dataset in terms of the ADD(-S) metric.

Method Proposed BetaPose CDPN DPVL RPVNet HybridPose ER-Pose poseCNN DeepIM

ape 73 41.2 64.4 69.1 55.6 63.1 62.6 - 77
benchvise 99.5 85.7 97.8 100 98.7 99.9 100 - 97.5

cam 96.9 78.9 91.7 94.1 83.6 90.4 95.8 - 93.5
can 99.3 85.2 95.9 98.5 93.2 98.5 99.2 - 96.5
cat 92.3 73.9 83.8 83.1 75.5 89.4 90.7 - 82.1

driller 98 77 96.2 99 94.7 98.5 99 - 95
duck 72.7 42.7 66.8 63.5 63.5 65 68.6 - 77.7

eggbox 99.8 78.9 99.7 100 95.8 100 100 - 97.1
glue 96.6 72.5 99.6 98 93.4 98.8 98.7 - 99.4
hole. 95.3 63.9 85.8 88.2 82.5 89.7 89.7 - 52.8
iron 98.1 94.4 97.9 99.9 96.1 100 99.6 - 98.3
lamp 99.4 98.1 97.9 99.8 96.8 99.5 99.4 - 97.5

phone 95 51 90.8 96.4 91.5 94.9 96.8 - 87.7

Mean 93.5 72.6 89.9 91.5 86.1 91.3 92.3 62.7 88.6
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Figure 8. Visualizations of results on the LINEMOD dataset.

4.6. Performance on Occlusion LINEMOD

To evaluate the proposed algorithm’s performance on occluded object pose estimation,
the algorithm was applied on the Occlusion LINEMOD dataset. Some qualitative results
are shown in Figure 9, where the real pose annotation is shown in green and the estimated
pose annotation is blue. It can be seen that the proposed algorithm can maintain excellent
pose estimation accuracy even when the object is partially occluded or at extreme angles.

A performance comparison using the ADD(-S) metric was also conducted between
the proposed and the other pose estimation algorithms using RGB images on the Occlusion
LINEMOD dataset. The results are shown in Table 4, where bold designates the the highest
accuracy rate of a category. The ADD-S metric was used for the egg box and glue category
objects due to their symmetry. For the compared algorithms, HeatmapNet [8] is a heatmap
method which applies image segmentation to improve the quality of the heatmap regression
of occluded keypoint; DPVL [43], RPVNet [44], HybridPose [28], and ER-Pose [29] use
the voting method, DPOD [31] and GDR-Net [32] employ dense correspondence, while
DPOD+Ref adds a CNN-based refinement module on the basis of DPOD.

From the comparison results, it is evident that the proposed algorithm has the highest
mean pose estimation accuracy among algorithms without post-refinement. Among the
algorithms with known class data, our algorithm has the leading accuracy rate in five classes.
HeatmapNet [8] uses image segmentation and is optimized for occluded objects, but it
still lags behind the proposed algorithm by 15.8 pp. The voting and dense correspondence
methods predict dense features. Compared with our algorithm, they theoretically have
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natural advantages in estimating the pose of the occluded object. However, in terms
of results, our algorithm has a similar pose estimation accuracy with voting and dense
correspondence methods, which is better than DPVL [43], and RPVNet [44], while the
accuracy is slightly worse than HybridPose and ER-Pose. The refined version of the
DPOD is only 1 pp better than the proposed one, which also demonstrates the superior
performance of the proposed algorithm in the problem of occluded object pose estimation.
It is worth mentioning that compared with the voting method or dense correspondence
method used in other algorithms, our algorithm uses a more simple and direct sparse
correspondence method. Therefore, our algorithm has only been trained for 40 epochs,
while other algorithms have been trained for at least 200 epochs. In other words, our
algorithm can achieve equally excellent results using fewer resources. Overall, our method
is found to be one of the leading RGB-based pose estimation algorithms.

Figure 9. Visualizations of results on the Occlusion LINEMOD dataset.

Table 4. Method accuracy comparison on the Occlusion LINEMOD dataset in terms of the
ADD(-S) metric.

Method Proposed HeatmapNet RPVNet DPVL DPOD HybridPose ER-Pose GDR-Net DPOD+Ref

ape 31.5 17.6 17.9 19.2 - 20.9 25.9 39.3 -
can 75.1 53.9 69.5 69.8 - 75.3 72.1 79.3 -
cat 30.6 3.3 19 21.1 - 24.9 25.3 23.5 -

duck 34.6 19.2 31.1 34.3 - 27.9 35.8 44.4 -
driller 56 62.4 63.7 71.6 - 70.2 72.9 71.3 -
eggbox 46.7 25.9 59.2 47.3 - 52.4 48.7 58.2 -

glue 53.4 39.6 46.6 39.7 - 53.8 58.8 49.3 -
hole. 42 21.3 42.8 45.3 - 54.2 47.4 58.7 -

Mean 46.2 30.4 43.7 43.5 32.8 47.5 48.3 53.0 47.2

4.7. Running Time

Our algorithm is based on object detection; therefore, the running time depends on
the object detection network performance. For a 640× 480 image, when using an Intel
I7-9700K CPU and NVIDIA RTX3080 GPU, the object detection time using yolo-v5 was
about 11 ms. The multi-task network forward inference took about 23 ms; the heatmap
inference keypoint location required about 5 ms; the EPnP algorithm ran for about 0.3 ms
in order to solve the initial pose; and the nonlinear optimization required about 5 ms. The
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overall pose estimation took about 45 ms, corresponding to a rate of about 22 frames per
second, which means that the proposed algorithm is suitable for real-time pose estimation.

5. Discussion

In this paper, by proposing a new heatmap loss function and increasing the pose esti-
mation constraint, a new two-stage pose estimation algorithm using heatmap is provided,
which improves the accuracy and stability of the algorithm in the pose estimation problem
of occluded objects. However, there is still room for improvement.

1. In this paper, only the translation component is used for the pose constraint. In addi-
tion, the predicted rotation component, keypoint correlation information and symme-
try information can all be used to constrain the pose. Using more constraints on pose
in the algorithm is more conducive to improving the stability of pose estimation.

2. It is difficult for the two-stage algorithm using heatmap to estimate the pose of
occluded object. The main reason is that the heatmap cannot locate key points outside
the range of the image. Therefore, we can learn from the idea of voting method
to generate features that represent key points outside the image range within the
image range.

3. This paper only focuses on the pose estimation problem of a single object in an image,
when there are multiple objects in the image, the algorithm needs to estimate the pose
of each object one by one, which affects the operation efficiency of the algorithm. How
to estimate multiple objects in an image at the same time will be studied later.

6. Conclusions

In this paper, a robust pose estimation algorithm is proposed under hybrid constraints
for accurate and robust estimation of the translation and rotation of an object relative to
the camera. Our pose estimation algorithm can predict the heatmap and the translation
simultaneously. Heatmap Wing Loss is proposed in heatmap regression to improve the
accuracy of keypoint prediction on occluded objects. The addition of translation estimation
provides a relatively accurate constraint to the pose when the object is occluded and the
keypoint prediction is inaccurate, thus improving the robustness of the pose estimation
algorithms on occluded objects. At the same time, a robust pose optimization method
is used to fuse the heatmaps and translation estimate, which further improves the pose
estimation accuracy. The proposed algorithm achieved state-of-the-art results on both the
LINEMOD and the Occlusion LINEMOD datasets. In the future, how to further improve
the accuracy of pose estimation of occluded objects will be studied.
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