
applied  
sciences

Article

Reinforcement Learning with Dynamic Movement Primitives
for Obstacle Avoidance

Ang Li 1,2 , Zhenze Liu 3, Wenrui Wang 1,2,* , Mingchao Zhu 1,*, Yanhui Li 1, Qi Huo 1 and Ming Dai 1

����������
�������

Citation: Li, A.; Liu, Z.; Wang, W.;

Zhu, M.; Li, Y.; Huo, Q.; Dai, M.

Reinforcement Learning with

Dynamic Movement Primitives for

Obstacle Avoidance. Appl. Sci. 2021,

11, 11184. https://doi.org/10.3390/

app112311184

Academic Editor: Dario Richiedei

Received: 20 October 2021

Accepted: 22 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; liang@ciomp.ac.cn (A.L.); liyanhui@ciomp.ac.cn (Y.L.); huoqi@ciomp.ac.cn (Q.H.);
daim@ciomp.ac.cn (M.D.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Communication Engineering, Jilin University, Changchun 130025, China; zzliu@jlu.edu.cn
* Correspondence: wangwenrui16@mails.ucas.ac.cn (W.W.); zhumingchao@ciomp.ac.cn (M.Z.)

Abstract: Dynamic movement primitives (DMPs) are a robust framework for movement generation
from demonstrations. This framework can be extended by adding a perturbing term to achieve
obstacle avoidance without sacrificing stability. The additional term is usually constructed based
on potential functions. Although different potentials are adopted to improve the performance of
obstacle avoidance, the profiles of potentials are rarely incorporated into reinforcement learning
(RL) framework. In this contribution, we present a RL based method to learn not only the profiles
of potentials but also the shape parameters of a motion. The algorithm employed is PI2 (Policy
Improvement with Path Integrals), a model-free, sampling-based learning method. By using the PI2,
the profiles of potentials and the parameters of the DMPs are learned simultaneously; therefore, we
can optimize obstacle avoidance while completing specified tasks. We validate the presented method
in simulations and with a redundant robot arm in experiments.

Keywords: obstacle avoidance; Dynamic Movement Primitives; reinforcement learning; PI2 (policy
improvement with path integrals)

1. Introduction

As robots are applied to more and more complex scenarios, people set a higher
request to adaptability and reliability at the motion planning level. To deal with dynamic
environments, there are at least two different strategies to avoid collision for robots. One
is global strategy [1,2], it is usually based on search processes and often computationally
expensive and time-consuming [3], such that continuous fast trajectory modification based
on sensory feedback are hard to accomplish. The other is local strategy, it is always fast to
compute, but the computed trajectories are suboptimal. To this end, Dynamic Movement
Primitives (DMPs) [4] are introduced as a versatile framework to solve this problem.

1.1. Related Work

In DMPs framework, the additional perturbing term is modified online based on
feedback from the environment to achieve obstacle avoidance [5–8]. The perturbing term
is usually designed as different artificial potential fields to get better performance [5].
The classical one is static potential, and the effect of the static field is only related to the
distance between the end-effector and obstacles [9]. The dynamic potential field is most
combined with the DMP method [5]. By using the dynamic potential field, robots can
accomplish smoother avoidance movements because the potential depends on both the
distance and the relative velocity between end-effector and obstacles [6,7]. The closed-
form of harmonic potential function was presented to avoid the convex and concave
obstacles [10]. It inherited the convergence of the harmonic potential while not resulting
in the creation of a potentially infinite number of pseudo attractors on the obstacle [11].
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Although different forms of potential have their own advantages in different obstacle
avoidance scenes, it is very difficult to choose different potentials according to the scene.
In addition, the scenarios that robots work in are not invariable, so it is necessary to
introduce the framework of learning into obstacle avoidance.

It is possible to apply human beings learning skill to robot obstacle avoidance. In
particular, the robot motion can be governed by a demonstration trajectory with DMPs.
Then, in a similar way as human beings adjust their position in the process of obstacle
avoidance, parameters of the potential function and DMPs can be adjusted through learning
based on certain criteria. These kinds of learning approaches have been developed in a
lot of research. A method was presented to learn the coupling term of DMPs from human
demonstrations to make it more robust while avoiding a larger range of obstacles [12].
This algorithm has the ability to model different types of obstacle avoidance behaviors by
learning coupling terms, and uses the learned coupling terms to avoid obstacles in a reactive
manner. To improve the performance, a neural network was introduced to learn a function
that predicts the coupling term given sensory inputs [13]. The neural networks prediction
is based on physical constraints, which guaranteed that the obstacle avoidance behavior
was always stable and converged to the goal position. A biologically-inspired hierarchical
learning framework was also used to modulate the coupling term of DMP, which guides
and regulates the obstacle avoidance behavior [14]. A multi-layer perception-decision-
action analysis framework was adopted to extract unified low-dimensional geometric
descriptors of system obstacles, and then use them in combination with heuristics and
learning techniques for rapid reasoning of the environment. Most of the obstacle avoidance
learning algorithms focus on the learning of the coupling terms, while rarely considering
the correction of the overall DMP-encoded policy, especially the adjustment of the weight
terms of the Gaussian function. DMPs could be optimized by learning algorithms like
Relative Entropy Policy Search, by combining the approach with potential fields, and two
proposed extensions significantly increase the probability that the joint angle is within the
normal range in the reference trajectories and achieve obstacle avoidance without further
sensors [15]. However, the potential field with fixed parameters is adopted here, which
will not be flexible enough in the whole obstacle avoidance process.

In many scenarios, such as robot assembly, robot welding, and robot handling, DMP
can help the robot avoid obstacles by collecting information about the surrounding space
with the help of sensors. On the premise of ensuring the learning ability of DMP for
the trajectory, improving the obstacle avoidance performance of the robot has important
research significance. A learning framework is presented that incorporates DMP weights
and learning coupling terms in this paper. One possible learning method to develop
this framework is Reinforcement Learning (RL) [16]. A well designed reward function is
significant to RL in obstacle avoidance. Final strategies with good performance would be
determined by achieving a high reward score when the algorithm is trained repeatedly [17].
The employed RL method in this work is PI2 (Policy Improvement with Path Integrals),
which has outstanding performance in optimizing DMPs [18–20]. PI2 can simultaneously
optimize planned trajectories and obstacle avoidance potential in a DMP in this framework.
In our framework, firstly, a DMP is initialized with an initial trajectory and pre-defined
potential. Then, the DMP and potential function parameters are updated iteratively by
executing PI2 to accomplish the desired behavior while avoiding obstacles. Meanwhile,
the cost for each resulting trajectory is computed with the task-specific cost function in
the process. During execution, exploration is ensured through adding exploration noise
to the DMP and potential function parameters. Therefore, we can fully focus on the cost
function design to optimize the DMP parameters and potential function and obtain a
better performance in obstacle avoidance. We validate the performance of our approach on
simulated scenarios including different shapes of obstacles and different dimensions of
obstacle avoidance. We also validate the presented framework on a real 7-DOF redundant
manipulator. The manipulator is required to track accurately through a via point while
avoiding collision with obstacles on the demonstration trajectory.
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1.2. Contribution

This article contributes to the following aspects:

1. The PI2 method is employed to optimize the planned trajectories and obstacle avoid-
ance potential in a DMP;

2. A well designed reward function which combines instantaneous rewards and terminal
rewards is proposed to make the algorithm achieve better performance;

3. Simulations and experiments on a real 7-DOF redundant manipulator are designed to
validate the performance of our approach. In addition, a simulation with specified
via-point shows the flexibility in trajectory learning.

The remainder of this paper is organized as follows: in Section 2, we recall the theory
of obstacle avoidance for DMPs and analyze the effect of potential strength on obstacle
avoidance. Section 3 discusses how to use the RL algorithm (PI2) to simultaneously opti-
mize trajectory shape generated with DMPs and the potential field strength for obstacle
avoidance. In Section 4, simulations and experiments are conducted by performing ob-
stacle avoidance tasks in two and three dimensions to verify our approach. Thereafter,
the conclusions are drawn in Section 5.

2. Obstacle Avoidance for Dynamic Movement Primitives

Dynamic motion primitive is a trajectory learning method that can modify its ongoing
control strategy with a reactive strategy, so it can be used for obstacle avoidance. Now,
we briefly review the formulation of DMPS and how to accomplish obstacle avoidance
with DMPs.

The movement trajectory can be generated by using DMPs. The differential equations
of DMPs are inspired from a modified linear spring-damper system with an external forcing
term [21]:

τv̇ = K
(
xg − x

)
−Dv +

(
xg − x0

)
f(t)θ, (1)

τẋ = v. (2)

where x and v are, respectively, the displacement and velocity; xg is the goal point of a
movement while x0 is the starting point; K is the stiffness matrix corresponding to the
stiffness of the system while D is the damping matrix; τ is a constant scaling factor to
determine the movement period. The last term on the right-hand side of (1) is modulatable
and parameter vector θ can be learned to generate arbitrarily movements. f is Gaussian
basis function, and it is defined as

(f(t))j =
wj,tst

∑
p
k=1 wk,t

. (3)

In the definition equation for f(s), wj = exp
(
−0.5hj

(
sj − cj

)2
)

is Gaussian function
with parameters hj and cj corresponding to the center and width. f(s) depends explicitly
on a phase variable s instead of time. s is defined as

τṡ = −αs, (4)

where α is a preset constant. (4) can be called a ‘canonical system’. The state variable s with
initial value 1 converges to 0 during the moving duration.

To achieve the avoidance behaviors, a repellent acceleration term ϕ(x, v) is added to
the transformation system (1)

τv̇ = K
(
xg − x

)
−Dv +

(
xg − x0

)
f(s)θ+ϕ(x, v). (5)

For the additional term, one of the most commonly used forms is to model human
obstacle avoidance behavior with a differential equation. Here, we will leave aside the
concrete dimensions while only constructing a general form. It can be extended to high or
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low dimensional space depending on the actual tasks. The differential equation is written
as [5]

ϕ(x, v) = −∇xU(x, v) = λRvα exp(−βα), (6)

where U is a potential depending on position x and velocity v; β and λ are constants, λ is
the potential field intensity factor, and it can determine the strength of the repellent term
in 2D or 3D space; R is a rotation matrix of angle π

2 with the axis r = (o− x)× v, where o
denotes the obstacle position and × denotes the cross product; α is a steering angle, and it
is defined as [6] (shown in Figure 1).

α = arccos

(
(o− x)Tv
‖o− x‖‖v‖

)
, (7)

where ‖‖ is the Euclidean norm. The value of α is always positive. In this work, we
only focus on this formulation of the repulsive term. Compared with other approaches,
the formulation can guarantee convergence to the goal position, even if the effects of
obstacles persist during the whole movement duration. Because the variables x, v and o
are all available, obstacle-avoidance movements are also easily obtained by using these
extended DMPs.

Figure 1. The diagram of the steering angle α.

As we mentioned before, the strength of potential filed is largely determined by λ
and the effect of λ is evident on movement generation. Therefore, different λ lead to
different behavior in obstacle avoidance. By setting different values of λ, there is different
performance in obstacle avoidance as shown in Figure 2. It is not difficult to find that, if λ
is set to a smaller value such as λ = 0.003 (see the orange curve in Figure 2), the generated
movement may fail in an obstacle avoidance; if λ is set to a bigger value such as λ = 0.1 (see
the purple curve in Figure 2), the movement has a bad performance in tracking the desired
trajectory. Choosing an appropriate λ is important for generating a better movement (see
the green curve in Figure 2). In other words, it is very essential to choose a better potential
field for obstacle avoidance and good tracking performance.

To our knowledge, the profiles of the generated movement with DMPs are determined
not only by the obstacle avoidance repulsive term but also by the parametrized nonlinear
term. To this end, if we want to obtain a trajectory with good performance in both obstacle
avoidance and trajectory tracking, the parameters θ of the DMPs and the strength λ of
the potential are optimized simultaneously in the movement generation process. This
could be regarded as a high-dimensional optimization problem obviously. Reinforcement
learning algorithms are able to optimize motion primitive parameters efficiently and
robustly in high-dimensional problems [19]. Thus, we will present a framework based
on RL to optimize the parameter of DMP and the strength of the repulsive potential field
simultaneously in the next section.
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Figure 2. Obstacle avoidance behavior with different values of λ.

3. Reinforcement Learning for Obstacle Avoidance
3.1. Reinforcement Learning: The PI2 Algorithm

Autonomous learning systems are generally used in the field of control, and reinforce-
ment learning is one of their frameworks [22]. PI2 (policy improvement with path integrals)
is a scalable RL method for high dimensional continuous state systems. Moreover, PI2 is a
sampling-based and model-free learning method, and algorithm parameter adjustment is
not required. Therefore, we can fully focus on the cost function design in the process of
applying PI2. The most important challenge is the cost function design in the application
of RL algorithms including PI2. For PI2, the cost function is generally defined as

J(τi) = φtN +
∫ tN

ti

(rt + uT
t Rut)dt, (8)

where J is the a finite horizon cost function for a trajectory τi; φtN denotes the terminal
cost at time tN ; rt + uT

t Rut is the immediate cost at time t, and here, rt is an arbitrary
state-dependent cost function, u is a policy parameter vector determined by θ and λ, and
R is a positive definite weight matrix. The goal of applying PI2 is to find the policy ut that
minimizes the cost function

Vt = min
uti :tN

Eτi [J(τi)], (9)

where the expectation Eτi [.] is taken over all possible trajectories when the policy u is used.
In the process of applying the policy improvement method, we minimize the cost

function through an iterative process of exploration and parameter updating. The principles
of stochastic optimal control can be used to solve the PI2, and the details are discussed
in [18]. The PI2 algorithm needs to be applied to the controlled dynamics systems with
parameterized policy

ẋt = ft + Gt(ut + εt), (10)

where xt is the system state; ft is the passive dynamics, Gt is the control matrix, and they
are both related to the system state; ut is the control input with Gaussian noise εt, The
variance of the Gaussian noise is Σ. The transformation system of DMP falls into one kind
of this control system [22].



Appl. Sci. 2021, 11, 11184 6 of 13

A second-order partial differential equation of value function is derived by minimizing
the HJB (Hamilton–Jacobi–Bellman) equation of our problem

∂tVt = rt + (∇xVt)Tft − 1
2 (∇xVt)TGtR−1GT

t (∇xVt)

+ 1
2 trace

(
(∇xxVt)GtΣGT

t
) . (11)

where ∇x and ∇xx are, respectively, the Jacobian and Hessian matrix. We can also obtain
the optimal control input, and it is a function of the system state [17]

u∗ti
= −R−1GT

t (∇xti
Vti ). (12)

To solve the Equation (11), we use an exponential transformation Vt = −λ log ϕt and
introduce an assumption λR−1 = Σ. With this, we can get a linear second-order partial
differential equation

− ∂t ϕt = −
1
λ

rt ϕt + fT
t (∇x ϕt) +

1
2

trace
(
(∇xx ϕt)GtΣGT

t

)
, (13)

where a boundary condition should be satisfied that ϕtN = exp
(
− 1

λ φtN

)
. According to the

Feynman–Kac theorem [18,23], we can get the solution to the exponential transformation
of the value function

ϕti =
∫

p(τi) exp
(
− 1

λ

(
φtN +

∫ tN

ti

rtj dt

))
dτi , (14)

where p(τi) is the probability of a trajectory τi, and it can be written as:

p(τi) =
e−

1
λ s(τi)∫

e−
1
λ s(τi)dτi

, (15)

where s(τi) is defined as

s(τi) = φtN +
N−1

∑
j=i

rtj dt +
1
2

N−1

∑
j=i

∥∥∥∥xtj+1 − xtj

dt
− ftj

∥∥∥∥2

Htj

dt, (16)

and Htj is expressed as
Htj = Gtj R

−1GT
tj

. (17)

Thus, the optimal controls can be written in the expectation form

uti =
∫

p(τi)u(τi)dτi =
∫

p(τi)R−1GT
ti

(
Gti R

−1GT
ti

)−1
Gti εti dτi (18)

In this way, the probability p(τi) can be calculated by forward integrating the system
dynamics and calculating the costs. Moreover, the optimal control policies can also be
approximated by drawing random samples of the noise vector ε. The P-weighted sum of
the local controls uti of these samples is used to approximate the value of the integral [17,18].
In the process of applying the PI2, the forward integrals of system dynamics are replaced by
local controls extracted from probability distributions and running random controllers on
the real system. We can get the cost statistics from the experiments. Each of the experiments
is regarded as a roll-out.

3.2. Reinforcement Learning of Potential and Shape

PI2 is usually used to optimize the movement shape generated by DMP. It aims to
minimize a cost function by tuning the policy parameters θ. Based on this, we extend
the PI2 method to simultaneously optimize potential function parameters and movement
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shape. According to (5) and (6), the transformation system with obstacle avoidance can be
written as

τv̇ = K
(
xg − x

)
−Dv +

(
xg − x0

)
f(s)θ+ λRvα exp(−βα). (19)

Since the PI2 algorithm is only a special case of optimal control solution, it can
be applied to control systems with parameterized control policy [17]. By using the PI2
algorithm, the transformation system (19) can be parameterized

τv̇ = K
(
xg − x

)
−Dv +

(
xg − x0

)
f(s)

(
θ+ εθ

)
+
(

λ + ελ
)

Rvα exp(−βα), (20)

where εθ is the noise which is added to explore the movement shape and ελ is added to
explore the strength of the potential. In addition, εθ and ελ are generated by sampling
from Gaussian functions, and their variances are Σθ and Σλ, respectively. Simultaneous
optimization of these two parameters belongs to the category of hierarchical reinforcement
learning [20]. The parameters θ and λ are learned simultaneously on different levels
of abstraction.

In the learning process, the exploration for the shape of DMP usually occurs in the
fixed potential field. This means that the potential update should begin before updating
the shape. Because the strength of potential λ remains unchanged during execution, it is
not temporal-dependent on the cost. To this end, only the cost-to-go at t = 0 is employed
to calculate the probability of λ. The cost used is the total cost of the trajectory in the last
roll-out. No negative interference exists between learning θ and λ, as they are updated
with the equally probability weights because their costs are exactly equal [19,20]. The PI2
algorithm applied in learning both potential strength and DMP shape is summarized in
Algorithm 1.

Algorithm 1 PI2 algorithm for learning potential strength λ and DMP shape parameters θ.

Input:
Initial potential strength λ0; initial DMP shape parameters θ0; constant β; terminal
cost φtN ; immediate cost term rt + θT

t Rθt; variance of noise Σθ and Σλ; Gaussian basis
function from the system dynamics gti ; number of roll-outs per update K

Output: Final potential strength λ; final DMP shape parameters θ
1: while cost J not converged do
2: for k = 1 to K do
3: τk,i=0:N , θk,i=0:N , λk = create_trajectory

(
k, θ, Σθ, λ, Σλ

)
4: calculate generalized trajectory cost s(τi,k) with (16)
5: calculate probability of a trajectory p(τi,k) with (15)
6: end for
7: for i = 0 to N do

8: δθti = ∑K
k=1

[
p(τi,k)Mti ,kεθ

ti ,k

]
, where Mti ,k =

R−1gti ,kgT
ti ,k

gT
ti ,kRgti ,k

9: [δθ]j =
∑N−1

i=0 (N−i)[δθti ]j
wj,ti

∑N−1
i=0 (N−1)wj,ti

10: θ = θ+ δθ
11: end for

12: p(τ0,k) =
e−

1
λ

s(τ0,k)

∑K
l=1

[
e−

1
λ

s(τ0,l)
]

13: δλ =
K
∑

k=1

[
p(τ0,k)ε

λ
k
]

14: λ = λ + δλ
15: end while
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Since the state of a DMP system can be divided into the controlled part and the
uncontrolled part, in the meantime, the control transition matrix depends on only one
variable of the uncontrolled part [18,21], and the trajectory cost of DMP can be given as

s(τi,k) = φtN ,k +
1
2 ∑N−1

j=i rtj ,k +
1
2 ∑N−1

j=i+1

(
θ+ Mtj ,kεθ

tj ,k

)T
R
(

θ+ Mtj ,kεθ
tj ,k

)
, (21)

where Mtj ,k is computable (cf. Algorithm 1). In this way, only local sampling and an
iterative procedure need to be considered in the process of updating θ.

4. Simulations and Experiments

In this section, we will evaluate the algorithm for obstacle avoidance in simulations
and experiments. The obstacles in our evaluations are modeled by using point clouds
on the boundary [6]. The details of edge point detection are not discussed further here,
the data of these points are available by default in our simulations and experiments. Thus,
the positions of the edge points will be directly used in 2D or 3D.

The goal of our work is to achieve obstacle avoidance and get a good following of the
desired trajectory. Therefore, we design the cost function for this task as

J(τi) = φtN +
∫ tN

ti

(
G
∥∥∥xt − xd

t

∥∥∥+ 1
2

θT
t Rθt

)
dt, (22)

where φtN = L(1 − successo f avoidance). This means that, if the obstacle avoidance is
successful φtN = 0; otherwise, φtN = 1, and we can set L to a large value such as L = 10, 000
and try to avoid collisions; G is a constant, and we can select it based on the specific tasks;
xd

t is the desired position at time t; R is an identify matrix, and it is set as R = 10−5I.
The parameters for the PI2 learning algorithm, including the exploration noise for shape
and potential strength, should be tailored respectively to individual context in the following
simulations and experiments.

4.1. Simulations

In the first simulation, we will test and compare the behaviors in Section 2 and, using
our RL algorithm in Section 3, performing the same tasks. In addition, in this simulation,
we set G = 10, λ0 = 0.1, β = 1, K = 400, Σθ = 0.01I and Σλ = 0.001. It should be
noted that θ0 is learned from the initial desired trajectory. For the exploration noise Σθ

and Σλ, higher exploration noise usually leads to quicker convergence, but it can also
cause safety issues. The fixed noise is used in our work, so relatively small noise is chosen.
In this way, the rate of convergence is slow; however, a better performance can be obtained.
The learning results of potential field strength λ are presented in Figure 3. The cost does not
converge to a perfectly good value. In the meantime, the potential strength λ converges to
λ = 0.0051 in Figure 4. In order to evaluate the performance improvement of the method
more intuitively, we calculate the sum of the distances(SOD) of all track points relative to
the original ones in a DMP. We have calculated separately when SOD takes different values
of λ. As shown in Table 1, potential strength calculated by PI2 performances is 10.4% better
than a constant value 0.01.

Table 1. SOD with different values of λ.

λ 0.0051 (PI2) 0.01

SD (cm) 73.55 82.08
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Figure 3. Obstacle avoidance behavior with RL algorithm: PI2.

Figure 4. Learning curve for obstacle avoidance. Left: cost profiles with roll-outs. Right: the potential
strength λ profiles with roll-outs.

The PI2 algorithm used in this work is a random strategy improvement algorithm,
but our optimization function focuses on the optimization of the overall trajectory, so it
is difficult to achieve a particularly good overall effect under the condition of ensuring
safety. To this end, we set a convergence threshold on the basis of selecting a suitable K
value to improve the convergence speed. After all, convergence to the global optimum
cannot be guaranteed [22]. Even so, the advantages of PI2 algorithm are still very obvious,
and we can design different cost functions to achieve obstacle avoidance while completing
different sub-tasks such as via-point task. In the via-point task, the goal is to pass through
the pre-set point xset =

[
0.15 0.2

]T at t = 200 ms, so the cost function of this task could
be described as

J(τi) = φtN +
∫ tN

ti

(
G
∥∥∥x200ms

t − x200ms
set

∥∥∥+ 1
2

θT
t Rθt

)
dt. (23)

In this cost function, we set G = 10, 000, K = 100, Σθ = 0.1I and λ = 0.0051,
the optimized potential strength; other parameters are the same as the first simulation.
However, different from the first simulation, this simulation focuses on illustrating shape
learning, and show the relationship between costs over motion and the corresponding
trajectory shape. Therefore, the updating of potential field strength is not considered here,
but the optimized results from the first simulation are used as the parameter set. The results
are shown in Figure 5. We can see that the initial curve with the optimized potential is
the same as the first simulation. After about 60 updates shown in Figure 6, the costs for
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via-point learning sessions have converged which terminates the training after that. For the
via point learning with PI2, as the cost decreases from 19,996 to 20, the trajectory passes
through the pre-set point (the blue point in Figure 5) without nearly any error. However,
the performance for tracking the original desired trajectory is very poor while passing near
the preset point. This is because it is far from the original desired trajectory both in time
and space to let the trajectory pass through the pre-set point at t = 200 ms. Moreover,
in the process of learning DMP shape θ, G is selected as a larger value, so it will naturally
have a greater influence on the original trajectory shape and better pass through the preset
target point. After passing the pre-set point, the trajectory will follow the original obstacle
avoidance track to the maximum extent.

Figure 5. Obstacle avoidance behavior with different values of λ.

,

,

,

,

,

Figure 6. Via-point learning cost profiles with roll-outs.

In these two simulations, we consider two sets of learning situations. The first one is
to simultaneously optimize obstacle avoidance and tracking effect of the desired trajectory.
However, according to the results, the optimization effect of DMP shape is not obvious,
but the potential field intensity can be optimized to a certain extent. The potential field
strength optimized by our method can learn a better potential and get a better obstacle
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avoidance performance. The second simulation is based on the optimized potential field
strength, and we set another via-point target and modify the cost function. The simulation
results are good and cost converges to a very small value.

4.2. Experiments

The goal of this task is for the real 7-DOF robot to track the trajectory learned from the
demonstration, avoiding collision with an obstacle in the meantime. In addition, the RL
method is used to optimize the performance in the task.

In the demonstration process, we pulled the end-effector of the robot according to the
planned trajectory and the poses of the end-effector will be recorded over time. Here, we
focus on trajectory and obstacle avoidance of the robot end-effector, and joint angles are
solved automatically using inverse kinematics of the robot. The demonstrated trajectory
in end-effector space is shown in Figure 7. We use a DMP with ten basis functions to
train each pose of the end-effector. It should be noted that we are mainly concerned with
the change in the translational pose position of the end-effector, so the rotational pose
is fixed [3], which means only three working DMPs are learning the Cartesian positions
of end-effector of the 7-DOF robot. The initial potential strength is 0.1, and the cost is
designed as (22); only G is changed to G = 1. The variance of the exploration noise of each
pose is respectively 0.01, 0.001, and 0.01. The acquired point cloud of obstacle is processed
by applying standard filtering techniques [14]. In addition, for the sake of simplicity, we
are only going to consider the case where the obstacle is a sphere.

Figure 7. Obstacle avoidance behavior with different values of λ.

Figure 8 depicts the trajectories of a real experiment for the 7-DOF robot, the blue line
is the desired trajectory (learned from demonstration), the red dotted line is the obstacle
avoidance trajectory with constant value of potential λ and trajectory shape θ, and the
green dotted line is the learned trajectory with PI2. The training and learning process
is the same as the simulations, so this will not be described in more detail again in this
paper. Compared with the training trajectories before and after the learning, it is obvious
that the potential field strength and trajectory shape obtained by reinforcement learning
method can make the real robot perform better in obstacle avoidance. This is consistent
with the simulation results. Although the robot only performs the trajectory learned
offline, the training information is projected into the training space using obstacles and
trajectory information in the real space. If trajectory tracking error is not taken into account,
the proposed reinforcement learning framework is available in most cases; furthermore,
the RL framework can be extended to more practical applications.
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Figure 8. Obstacle avoidance behavior with different values of λ.

In summary, simultaneous learning potential and trajectory shape are available by
using the prosed RL framework whether in simulations or real experiments. In addition, it
enables the robot to obtain better performance in obstacle avoidance, tracking the desired
trajectory and performing other subtasks.

5. Conclusions

In this paper, we propose a reinforcement learning framework for obstacle avoidance
with DMP. The strength of repulsive potential is incorporated in the RL framework, such
that the shape of DMP and the potential are optimized simultaneously. Because the RL
algorithm PI2 is a model-free, probabilistic learning method, different task goals can be
achieved only by designing cost functions. To optimize obstacle avoidance performance,
we pick the overall tracking error as cost function, and set a large terminal cost in the case of
obstacle avoidance failure. The proposed approach is evaluated in 2D obstacle avoidance.
The potential strength is optimized and the tracking is improved to some extent. PI2 is a
suboptimal stochastic optimization method; therefore, many more attempts are necessary
if you want to achieve better performance. Even so, it is verified that simultaneous learning
of potential and shape is valid in the proposed RL framework. In addition, then, we test our
RL framework by adding a sub-task, via-point. In this situation, it can not only maintain
good obstacle avoidance performance but also can successfully achieve passing through
the pre-set point. We also evaluate the approach on one 7-DOF robot, and the evaluation
demonstrates that the algorithm behaves as expected in real robots.
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