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A reconstruction design method for an aspherical record-
ing system for varied line-space gratings is introduced. This
method converts the recording system design from achieving
specific groove distribution coefficients within the expansion
model into reconstruction of the auxiliary mirror surface via
the ray-tracing method. The effects of higher-order expan-
sion terms in the expansion model are investigated and more
accurate design of the varied line-space grating recording
structure is achieved. By varying the surface reconstruction
target, this method can be used to design aspherical record-
ing structures with any auxiliary mirror surface shapes. ©
2022 Optica Publishing Group
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The varied line-space (VLS) grating, in which the line-spacing
varies throughout the grating surface, has been studied for
decades. This type of grating is used widely in spectrometers
because of its focusing and aberration-correcting capabilities
[1–3]. A high-resolution spectrometer comprising only a sin-
gle component can be achieved with use of the VLS grating.
Uncontrollable stray light and energy loss due to additional
optical elements are effectively avoided. Spectrometers with a
VLS grating have a wide range of applications that include syn-
chrotron radiation light sources and space-to-ground spectral
imaging-based remote sensing, among other fields [4–10].

At present, the main manufacturing method for the VLS
grating is interference lithography based on use of two non-
planar coherent beams. By varying the generating optical paths
of these recording beams, a VLS grating recording structure
can be realized that can generate specific groove distribu-
tions. Typical recording structures include double spherical
wavefront recording structures, single or double aspherical
wavefront recording structures with additional auxiliary mirrors,
and several other specialized recording structures [11–15]. The
mainstream method used to design the VLS grating recording
structure involves analysis of the expansion coefficients within
different recording structures based on optical path function
theory and obtaining an expansion solution with a suitable opti-
mization algorithm [11,14,15]. Because the higher-order terms

included in the expansion model are ignored, the results obtained
by this method always contain an inherent residual error that
affects the theoretical accuracy of the designed VLS grating. To
achieve different design goals, auxiliary mirrors with different
surface types are often used within the recording structure to
achieve different levels of wavefront control. For these different
auxiliary mirror types, traditional methods require correspond-
ing expansion models to be constructed, while some complex
surface mirrors, e.g., freeform mirrors [12,16], further increase
the complexity of the expansion models and the design difficulty.

In this Letter, we propose a reconstruction design method for
the aspherical recording systems used for VLS gratings. The
complete setup of the proposed method transforms the design
of the recording structure for the VLS grating from one based
on forward achievement of the target groove distribution to one
based on reconstruction of the auxiliary mirror surface using
the ray-tracing method, thus avoiding the higher-order expan-
sion error involved in the expansion groove method. By varying
the solution type of the target mirror surface, this method can
be applied to optimal design of aspherical recording structures
with different auxiliary mirror types for VLS gratings. A com-
parison of the design results obtained when using the traditional
method and the proposed reconstruction method is presented for
a planar VLS grating that shows that the reconstruction method
can realize more accurate results for the recording systems. A
design result obtained when using a freeform mirror rather than
a spherical mirror shows that the method can be applied to
the design of various aspherical recording structure types. The
numerous design degrees of freedom for the freeform mirror are
helpful in allowing complex groove distributions to be achieved.
In addition, the groove distribution of the VLS grating is always
allowed to have a specified tolerance. In our design method, the
groove distribution tolerance also forms part of the design opti-
mization. This additional design tolerance effectively reduces
the design process difficulty.

The reconstruction design method described above is used
to solve for the parameters of the recording system for a VLS
grating in which an auxiliary mirror is added to one beam. The
design parameters include recording structure parameters (LRC,
LRQ, LRD, θC, θQ, θD) and the surface type of the auxiliary mirror.
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Fig. 1. Illustration of recording system for a holographic VLS
grating with an auxiliary mirror.

Figure 1 shows an illustration of the complete recording system.
Among the parameters shown in Fig. 1, O1 and O are the center
points of the auxiliary mirror and the grating substrate, respec-
tively, and point P is the point of intersection of the grating
substrate and the light ray reflected from point Q on the aux-
iliary mirror. Coherent beams from the two laser sources at C
and D will generate the required groove on the grating substrate.
According to optical path theory [11], the groove function n
of point P can be represented by the relative optical path dif-
ference between points P and O. Assuming that the recording
wavelength here is λ, the groove function can be represented as

n =
1
λ

[︁
LCP − LDQP −

(︁
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)︁ ]︁
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pz

j
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Because the groove function n is relatively complex, it is
always converted into a fourth-order polynomial form of the
sagittal and meridional coordinates of point P on the grating
surface, where nij stands for the expansion parameter to the
basement xizj in the groove function n. Additionally, the coordi-
nates of reflection point Q on the auxiliary mirror will also be
expanded into a polynomial form of the coordinates of point P.
By then deriving the partial derivative of Eq. (1), expressions
can be obtained for the meridional and sagittal components of
the groove density:
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where α, β, and γ represent the x, y, and z components of the
directional vector for the corresponding light ray. Here, x, y, and
z represent the coordinates of the corresponding point. At the
same time, for the optical path of the system shown in Fig. 1,

the partial derivative of the optical path LDQP with respect to the
coordinates of point Q should have a value of zero according to
Fermat’s principle, i.e.,
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By combining Eqs. (2)–(5), the expressions for the meridional
and sagittal components of the groove density at point P can be
obtained:
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Based on the deduction above, and assuming that the record-
ing structure parameters (LRC, LRQ, LRD, θC, θQ) have been
selected, the recording structure design can be converted into
a calculation of the description of the reflective mirror from
the known groove distribution coefficients. The parameter θD

is ignored in this case because it can be decided using Eq. (7)
along with the definition of the groove density at the center of
the grating and θC. The complete design strategy is introduced
as follows (see Fig. 2):

(1) obtain the optical path LCPi − LCO and the directional vectors
αCPi , βCPi , and γCPi for each of the sampling points Pi on the
grating substrate;

(2) the relative optical path difference LDQiPi − LDO1O and direc-
tional vectors αQiPi , βQiPi , and γQiPi of sampling point Pi

in the aspherical wavefront recording beam can then be
determined using Eqs. (1), (6), and (7);

Fig. 2. Reconstruction process for a single structure: (a) calcula-
tion of the optical path and the direction of incidence in the spherical
beam at feature point Pi; (b) calculation of the optical path differ-
ence and the direction of incidence in the aspherical beam at each
feature point Pi; (c) calculation of the coordinates and the normal
direction of Qi based on the optical path definition; (d) surface
fitting performed to obtain the description of the auxiliary mirror.
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Fig. 3. Flow chart of the design process.

(3) by combining the known LRD, LRQ, θD, and θQ with the
optical path difference LDQiPi − LDO1O and the directional
vectors αQiPi , βQiPi , and γQiPi obtained in step 2, it is possible
to solve for the coordinates of the corresponding reflection
point Qi on the auxiliary mirror for each sample point Pi,
and the corresponding surface normal information at Qi can
be obtained simultaneously;

(4) a fitting method for the coordinates and the normal infor-
mation of feature point Qi obtained in step 3 is then used to
obtain the surface description [8,17] and complete the entire
recording structure design.

Therefore, the optimization matter for design of the record-
ing structure can be converted from determination of the groove
distribution coefficients to determination of the mirror fitting
matter using this reconstruction method, which means that the
multi-objective matter and the expansion residual error of the
groove distribution coefficients can be avoided. However, it is
also necessary to optimize the recording structure parameters
using an optimization algorithm to achieve the best possible
ground shape fitting, i.e., to reduce the residual surface shape
fitting error. In addition, a specific tolerance error is allowed
for the groove distribution in most cases. In this reconstruc-
tion design method, the groove distribution coefficients can also
be used as part of the optimization parameters. By selecting the
coefficients to be within the allowable tolerances and the record-
ing structure parameters of the recording structure for use as the
optimization parameters, the program takes the peak-to-valley
value or the root mean square value of the residual surface fitting
error as the single evaluation objective. Finally, with the aid of
a genetic algorithm, a complete optimization process for design
of the VLS grating recording system is established. Figure 3
shows the flow chart for the complete design process.

A planar VLS grating for use in a synchrotron radiation source
beamline station is designed to demonstrate the accuracy of the
proposed reconstruction method. The grating is required to have
a specified groove distribution within an area of 210 × 30mm2

on the plane, and the equivalent groove density at the grating
center is 1200 g/mm. The groove distribution on the merid-
ian plane is designed using both the expansion method and the
reconstruction method. The absolute error and relative error dis-
tributions of the groove density obtained using these two design
methods are shown in Fig. 4. Because of the influence of the
higher-order terms that were ignored in the expansion method,
there is an inherent error in the groove density between the

Fig. 4. (a) Absolute error and relative difference in the groove
density between the designed value and the ray-tracing value
obtained based on the expansion method. (b) Absolute error and
relative error distributions of the groove density between the
designed result and the intended design obtained by using the expan-
sion method. (c) Absolute error and relative error distributions for
the groove density between the design result and the intended design
obtained by using the reconstruction method.

design result and the ray-tracing-based result, and the maximum
error is 0.023 g/mm. The maximum value of this groove density
error between the design result and the intended design obtained
via the expansion method is 0.36 g/mm within the full range of
the grating meridian diameter. The results obtained by using the
reconstruction design method show greater accuracy, and the
maximum density error is reduced to 0.002 g/mm. Although
both the traditional method and the reconstruction method can
obtain groove distributions that meet the design requirements,
the reconstruction method achieves greater accuracy.

Because this VLS grating is designed to be within a 210 ×

30mm2 aperture size, a full-size design is required. Therefore,
we conducted additional design tests for the groove distribution
at the full grating size. The spherical surface was still used as
the fitting target for the auxiliary mirror in this case, and all
optimization control parameters remained unchanged. Because
the grating was designed to have varied line-space and straight
lines, control of the sag distribution of the groove within the
design process leads to out-of-control results. The error in the
groove function ranges up to 336λ. The sagittal and meridional
components of the groove density error reached maxima of 3.38
g/mm and 8.76 g/mm, with averages of 0.75 g/mm and 2.84
g/mm, respectively. We converted the surface fitting target of
the auxiliary mirror from a spherical surface into a freeform
surface, which can be described as a polynomial with a spe-
cific order. With all control parameters remaining constant, the
final design result was obtained after ten iterations. Over the
entire grating aperture, the groove function error was less than
0.14λ, and the sagittal and meridional components of the groove
density error were less than 0.01 g/mm and 0.005 g/mm, respec-
tively. Figure 5 shows a comparison between these two design
results within the normalized grating aperture, including the
groove function error, and the meridional and sagittal compo-
nents of the groove density error. The horizontal axis represents
the normalized meridian coordinate of the VLS grating, and
the vertical axis represents its normalized sagittal coordinate.
In addition, parallel calculations were used to perform simulta-
neous fitting of the feature points of each offspring individual,
which greatly reduced the extra time required when compared
with the traditional circle method. This comparison result shows
that the numerous design degrees of freedom of freeform sur-
faces offer an enhanced capability for realization of VLS grating
designs.
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Fig. 5. Comparison of the groove distributions of the spherical
mirror added system and the freeform mirror added system: (a)
optical distance error characteristics for the spherical mirror added
system; (b) meridional density error characteristics for the spher-
ical mirror added system; (c) sagittal density error characteristics
for the spherical mirror added system; (d) optical distance error
characteristics for the freeform mirror added system; (e) merid-
ional density error characteristics for the freeform mirror added
system; (f) sagittal density error characteristics for the freeform
mirror added system

In this Letter, a reconstruction design method for an aspherical
recording system is proposed for VLS gratings. The recording
system design is converted into a reconstruction of the surface
shape of the auxiliary mirror from a known groove distribu-
tion by searching for a suitable recording structure parameters.
Genetic algorithms are used to realize global optimization. The
results of the forward ray-tracing approach used here effec-
tively verify that this reconstruction design method achieves
greater design accuracy than the traditional expansion method.
By replacing the auxiliary mirror fitting target with other mir-
ror types, including ellipsoid meridians, parabolic mirrors, and
freeform mirrors, this method can be extended to optimal design
of aspherical recording systems for arbitrary VLS gratings. The
numerous design degrees of freedom of freeform surfaces offer
great advantages for realization of specific groove distributions.
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