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Abstract: Vehicle detection on aerial remote sensing images under the complex background of
urban areas has always received great attention in the field of remote sensing; however, the view
of remote sensing images usually covers a large area, and the size of the vehicle is small and the
background is complex. Therefore, compared with object detection in the ground view images, vehicle
detection in aerial images remains a challenging problem. In this paper, we propose a single-scale
rapid convolutional neural network (SSRD-Net). In the proposed framework, we design a global
relational (GR) block to enhance the fusion of local and global features; moreover, we adjust the image
segmentation method to unify the vehicle size in the input image, thus simplifying the model structure
and improving the detection speed. We further introduce an aerial remote sensing image dataset with
rotating bounding boxes (RO-ARS), which has complex backgrounds such as snow, clouds, and fog
scenes. We also design a data augmentation method to get more images with clouds and fog. Finally,
we evaluate the performance of the proposed model on several datasets, and the experimental results
show that the recall and precision are improved compared with existing methods.

Keywords: remote sensing images; vehicle detection; object localization; data enhancement; convolu-
tional neural network (CNN)

1. Introduction

With the development of remote sensing technology, the quantity of remote sensing
images has also been greatly increased. Compared with aerospace remote sensing image,
aerial remote sensing image has the advantages of large imaging scale, high resolution,
and accurate geometric correction [1–3]. Therefore, aerial remote sensing is still an im-
portant remote sensing way; it usually uses airplanes or balloons as working platforms,
and the flying altitude is between hundreds of meters and tens of kilometers. In aerial
remote sensing images, vehicle detection is an indispensable technology in civil and mil-
itary surveillance, such as traffic management and urban planning [4–7]; however, the
method of manual interpretation for vehicle identification has low data utilization and
poor information timeliness, which is easily affected by physical conditions, mentality,
and subjective consciousness. Therefore, it is particularly necessary to perform automatic
vehicle detection on remote sensing images efficiently and accurately.

Compared with general images, aerial remote sensing images have a unique perspec-
tive; this task becomes challenging due to the following reasons:

Large field of view (FOV): Aerial remote sensing images are taken by high-resolution
imaging sensors, and the obtained images generally have the characteristics of a large field
of view (few target pixels) and high resolution. Therefore, simply down-sampling to the
input size required by most algorithms is not suitable.
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Larger scale range: Since the collection height of remote sensing images and sensor
parameters are different, the scales of the similar targets are also inconsistent. Generally,
objects of interest in aerial images are often very small and densely clustered.

Special perspective: Aerial imagery is a top view, which makes the ground target have
complete rotation invariance, and the direction angle is arbitrary. Therefore, there is no
overlap of goals.

Complex background: In the urban remote sensing image, there are a large number of
objects with similar characteristics as the vehicle target; moreover, the aerial images are
susceptible to weather such as clouds and fog, it is necessary to consider the impact of
complex weather conditions on the aerial images.

Traditional target detection algorithms [8], such as Viola Jones detectors [9,10], HOG
detector [11], and deformable part model (DPM) [12–15], are usually designed for the
geometric features, spatial relationships, target contours, and other features [16]. These
algorithms can only achieve low accuracy, while the methods with higher accuracy, such
as frame difference, can only detect vehicles in motion. Such strategy information is not
very robust to the diversity of the environment, and it is difficult to well adapt to the
needs of the actual scenes. Since the introduction of convolutional neural networks in the
ImageNet large-scale visual recognition challenge (ILSVRC) [17,18], the network model
based on deep learning has achieved remarkable results in the field of target detection.
Meanwhile, the design of large, high-quality general-purpose labeled datasets, such as
Pascal VOC [19,20], LVIS [21], and MS COCO [22], have also promoted the progress of
target detection technology.

Within the last decades, deep learning methods have been widely used in various
research fields [23–26], and the emerging development of convolutional neural networks
(CNNs) brought some significant improvements. The CNN-based “two-stage” methods,
such as R-FCN [27] and Faster RCNN [28], achieve state-of-the-art (SOTA) performance
in terms of accuracy. In contrast, the end-to-end model, which does not require region
proposals [29] has higher detection speed, such as YOLO [30–33] and SSD [34]. In addition,
transformer-based detection models [35–37], such as DETR [38], usually have excellent
global perception capabilities.

Many recent works have exploited SOTA detectors to detect, such as Faster R-CNN [27],
deformable R-CNN [39], YOLOv4 [33], etc. Observing the input size of the model, the
Faster RCNN model will resize the short side of the input image to 600 pixels and YOLO
runs on either 608 × 608-pixel inputs. None of these models can directly receive the typ-
ical size of aerial remote sensing images (ITCVD [40]: ~5616 × 3744 pixels, DOTA [41]:
~4000 × 4000 pixels).

In order to meet the requirements of the standard architecture, it is not feasible to
resize the image, because this way will lead to the loss of small pixel targets directly (MS
COCO dataset definition [22]: <32 × 32 pixels). To solve the above-mentioned problems,
existing algorithms usually segment the original image first. The YOLT [42] model adopts
a “sliding window” method for cropping and designed a 15% overlap to ensure all regions
will be analyzed; however, the size of the target object depends on the shooting height and
camera parameters. Using a fixed size to crop the original image, the target pixel still has a
large dynamic range, which affects the target detection ability.

There are many down-sampling layers inside the existing detection models, which
will expand the receptive field. Vehicle targets in aerial remote sensing images are rel-
atively small in size (ITCVD [40]: ~30 × 15 pixels) and have fewer features. They are
submerged by background features easily, and it is difficult to extract effective feature
information. Existing algorithms usually use feature fusion to improve the ability to detect
small targets. Specifically, the SSD model [34] uses a pyramidal feature hierarchy and the
Mask R-CNN [43] model uses Feature Pyramid Network [44] (FPN) structure. The ablation
experiment shows that the model is beneficial to improve the ability to detect small targets;
however, current techniques are still suboptimal in the applications of aerial images. There
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is a large amount of redundant information for aerial remote sensing images, which affects
the detection efficiency.

In addition, several studies indicate that it is crucial for small targets detection by
enhancing the fusion of contextual information. Some studies have adopted long- and
short-term memory networks (LSTM) [45] and spatial memory networks (SMN) [46] to
enhance target features. For instance, AC-FCN [47] pointed out that the information
between targets can help improve detection capabilities, whereas, the structure of this type
of method is usually complex and these methods are still simple feed-forward networks,
which are easy to cause the loss of feature information; moreover, FA-SSD [48] improves the
ability to extract context information from small targets by using more high-level abstract
features. These methods achieve good results; however, they are not suitable for aerial
images because they do not have real-time capabilities.

We also notice that the lack of data sets is another important reason why aerial images
are difficult to process. The labeled boxes of some datasets do not provide directions so
that there is a large amount of overlap in the labeled boxes of the dense target area; it
will have a great impact on the target detection in dense areas. Research on the target
detection algorithms based on deep learning is inseparable from the support of data. Many
scholars have also established target detection datasets for remote sensing images, such as
DOTA [41], VEDAI [49], DLR 3K [50], and so on; in fact, most of the images in the DOTA
data set come from Google Earth, taken by aerospace remote sensing satellites, and such
images cannot truly reflect the perspective of aerial remote sensing images. The VEDAI
dataset has a small number of vehicles, sparse distribution, and simple background, all of
which make vehicle targets relatively easy to detect. Although the DLR 3K dataset is more
challenging and authentic, it only contains 20 aerial images. The number of images in the
dataset is too few for training a convolutional neural network model.

Furthermore, for the cloud and fog phenomenon in aerial remote sensing images,
there are usually two solutions: one of them is to improve the image quality through
the haze removal algorithm, such as DCP (Dark Channel Prior) [51,52], MC (Maximum
Contrast) [53], CAP (Color Attenuation Prior) [54], and so on. Another solution is to train
pictures containing haze and constrain the features through the objective function. Never-
theless, existing haze removal algorithms usually produce a halo effect or color distortion
phenomenon [55]. The existing datasets also do not include the haze phenomenon.

As described, although the performance of the above models is impressive, none of
the existing frameworks can handle aerial remote sensing images well. To address these
problems, we propose several prioritization schemes. The main contributions of this paper
are presented as follows:

(1) An adaptive image segmentation method based on the parameters of aerospace
vehicles and cameras is proposed; this method limits the size of the target to a small
range by dynamically adjusting the crop size. It plays a major role in improving the
speed and accuracy of model detection.

(2) In view of the high speed and accuracy of YOLOv4 [33], this paper uses YOLOv4 as
the main frame of vehicle detection. We present the single-scale rapid convolutional
neural network (SSRD-Net). A structure with denser prediction anchor frames is
proposed, optimizing the feature fusion structure to improve the ability to detect
small targets.

(3) We designed an aerial remote sensing image dataset (RO-ARS) with rotating boxes.
The dataset has annotated flight height and camera focal length. In order to improve
the authenticity of the dataset, we propose affine transformation and haze simulation
methods to augment the dataset.

The rest of this paper is organized as follows: Section 2 starts with the proposed image
cutting method and then introduces the details of the proposed dataset, including the affine
transformation and haze simulation methods. Furthermore, the details of the proposed
SSRD-Net model are introduced. In Section 3, through several experiments, the image
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segmentation method, affine transformation, and haze simulation method are evaluated
and discussed. Finally, the conclusions are provided in Section 4.

2. Method

The framework of our proposed vehicle detection method is illustrated in Figure 1.
It is mainly composed of three parts: image pretreatment, feature extraction, and image
mosaic. During image pretreatment, original large-scale images are cropped into small-
scale blocks for training and testing. Through the proposed model (SSRD-Net), we will get
the vehicle detection result of each block. In the end, we mosaic all the blocks together and
use the non-maximum suppression [56] (NMS) method to eliminate duplicate targets. In
this section, we will give the details for each part of the framework proposed, and discuss
how our method improves the accuracy of vehicles detection in aerial images.
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2.1. Image Segmentation

As described, putting the original image into the detection model is not suitable for
aerial remote sensing images with a large field of view. If the original image is cropped
with a fixed size, the target in the resulting image, which has a large-scale range, will
remain unchanged. For this reason, it requires the detection model to have multi-scale
target detection capabilities, which will affect the detection efficiency of the method. In
order to solve the problem of inconsistent target scales in aerial remote sensing images at
different flight heights and camera focal lengths, we propose an adaptive cutting method.

The above can be known by analyzing the shooting situation of aerial remote sensing
images that the image shooting angle is usually close to vertical to the ground. According
to the schematic diagram of the camera in Figure 1, the parameter relationship can be
represented as

w
v
=

wt

h
(h >> v) (1)

where w is the optical size of the target on CMOS/CCD, wt is the physical size, v is image
distance and h is object distance. The basic relationship among focal length (f ), object
distance (h), and image distance (v) can be expressed by a Gaussian imaging equation:

1
v
+

1
h
=

1
f

(2)

Obviously, the object distance (h) is much larger than the image distance (v) in the
aerial remote sensing image, so we conclude:

v = f (3)
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According to Formulas (1) and (3), the actual number of pixels occupied by the target
can be expressed as:

k =
w
p
=

wt · f
h · p (h >> v) (4)

where p denotes the pixel size.
It can be concluded that the number of the target pixels depends on the flight altitude

and camera focal length. Accordingly, we partition images of arbitrary size into manageable
cutouts with the number of target pixels. Partitioning takes place via a sliding window
with overlap. The size of partitioning (LP) and overlap (Lo) are defined as:{

Lp = a · k (a = Ngird)

Lo = b · k (1 < b < a)
(5)

where a and b are the hyperparameters. By default, a is equal to the number of output grids
(Ngird) so that each grid corresponds to only one target. To avoid omissions caused by the
segmentation of the target, b is set to a number greater than 1 (1.5 by default). During the
mosaic process, non-maximal suppression of this overlap is necessary to refine detections
at the edge of the cutouts.

2.2. Data Augmentation

According to the research status described in Section 1, the number of pictures in the
aerial image data set is insufficient. It is a heavy task to construct a large number of aerial
remote sensing images. To enrich the content of the dataset and improve the robustness of
our model, we design a method to increase the dataset size.

Affine transformation explains the mapping between two images, which can be re-
garded as the superposition of linear transformation and translation transformation; it
plays an important role in image correction [57–59], image registration [60], etc. In cartesian
coordinates, it is expressed as:[

u
v

]
= A ·

[
x
y

]
+ B =

[
a00 a01
a10 a11

]
·
[

x
y

]
+

[
b00
b10

]
(6)

where (x, y) is the original pixel point coordinates, (u, v) is the point coordinates after an
affine transformation. Its basic transformations as shown in Figure 2, include: translation,
scale, rotation, reflection and shear. Notably, aerial remote sensing images can be rotated at
any angle and the scale is limited (0.8–1.2 by default).
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Moreover, to solve the problem of complex cloud and fog weather in aerial images,
we propose an image degradation method in the cloudy interference state. Retinex (Retina
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Cortex) theory [51,52] points out that the observable information of an object is determined
by two factors: the reflection properties of the object and the light intensity around the
object. The light intensity determines the dynamic range of all pixels in the original image,
and the inherent property (color) of the original image is determined by the reflection
coefficient of the object.

As shown in the left of Figure 3, the object is illuminated by global atmospheric light,
and then the light is reflected to form an image. The process can be expressed as:

I(x) = J(x)t(x) + A(1− t(x)) (7)

where I(x) is the observed intensity, A is the global atmospheric light, J(x) is the scene
radiance, and t(x) is the medium transmission and describes the portion of the light that is
not scattered and reaches the camera.
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The goal of haze simulation is to create A and t(x), we only need to add global
atmospheric light noise to the original image. The noise can be considered as a random
process, we use Perlin Noise [61,62] and Fractal Brownian Motion [63,64] to simulate it.

As shown in Figure 3, we define a lattice structure, each vertex of the lattice has a
random gradient vector (

→
a00,

→
a01,

→
a10,

→
a11 in Figure 3); therefore, each coordinate in the noise

map is surrounded by four vertices. The dot product of the distance vector and the gradient
vector is defined as:

gij =
→
aij·
[

u− i
v− j

]
(i = 1, 2; j = 1, 2) (8)

where aij is the gradient vector of each corresponding corner, [u− i.v− j] is the distance
vector between the target point and each corresponding vertex; thus, the noise at this point
can be defined as:

k0 = g00(1− s(u)) + g01s(u) (9)

k1 = g10(1− s(u)) + g11s(u) (10)

n = k0(1− s(v)) + k1s(v) (11)

where s(t) is the weight function, and it needs to meet the following requirements:

s(0) = 0 and s(0.5) = 0.5 and s(1) = 1 (12)

To make the noise more natural, the first and second derivatives of the smoothing
function we used are zero at both t = 0 and t = 1:

s(t) = 6t5 − 15t4 + 10t3 (13)
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Ultimately, we got the simulated noise, which is shown in Figure 3. As can be seen,
the appearance of the noise is determined by the number of lattice structures. To simulate
the effect of clouds and fog more realistically, we have fused different noises:

N =
j

∑
i=0

niqi (j = 1, 2, 3, . . .) (14)

s.t. L(n0) < L(n1) < L(n2) < . . . < L(nj) (15)

where q is a scaling factor (0.7 by default), and L(n) represents the number of lattice
structures in n. Notably, the number of lattices should remain the same to ensure the
additivity of noise at different scales.

2.3. The Proposed SSRD-Net

Motivated by YOLOv4 [33], our approach uses a one-stage object detection strategy. In
this section, we will give the details for each of the sub-networks. We design a single-scale
vehicle detector, named SSRD-Net, to simultaneously perform small-sized vehicle object
localization and classification.

2.3.1. Overall Architecture

In recent years, hierarchical detection models have achieved good performance, such
as Feature Pyramid Networks (FPN) [44]. Usually, these models must stack more convo-
lutional layers to ensure the appropriateness of the receiving domain. In the detection of
small-sized objects, each pixel belonging to the small-sized object has a great influence on
the final detection result, and an excessively deep network structure will make the target
feature submerged by environmental information. We have initially unified the target
scale as described in Section 2.1, so we propose some strategies to reduce the depth of the
model, increase the number of the feature channels, and remove the irrelevant structure of
the model.

As shown in Figure 4, the model designed mainly consists of four parts: input,
backbone, neck, and head. The input part is an RGB aerial image resized to 608× 608 pixels.
The detection backbone extracts feature of the image through a series of convolutional
structures. The detection neck is a feature extraction network that combines shallow
features and deep features. The detection head predicts the category of each pixel in the
output heat map, the position offset of bounding boxes, and the deflection angle.
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Figure 4. Overall architecture of the SSRD-Net framework.

In the detection backbone, the focus structure divides the target into smaller pixel
sizes; however, each pixel belonging to a small-sized object has a great influence on the
final detection result, which is not friendly to small targets. Therefore, we introduce
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the up-sample structure before Focus to increase the channel and reduce the depth of
the network.

In the detection neck, small targets can only be detected by a 76 × 76 grid, so we elimi-
nate the 38 × 38 and 19 × 19 grid modules in the original YOLO method; this significantly
reduces the computational complexity of the model and improves the detection efficiency
of the network. In addition, due to the lack of effective communication between recep-
tive fields of different sizes, these models are limited in their ability to express generated
features. We introduced the global relational (GR) block to alleviate these limitations.

In the detection head, we use a detection frame with a rotation angle to detect the
target, which effectively distinguishes dense targets, prevents a large amount of overlap
between the detection frames, and further improves the actual detection effect.

Table 1 below is the network structure of the proposed model.

Table 1. SSRD-Net Network Architecture.

From Number Type Output Shape Param

/ / / input [−1, 3, 608, 608] /
0 −1 1 Upsample [−1, 3, 1216, 1216] -
1 −1 1 Focus [−1, 64, 608, 608] 7040
2 −1 1 Convolution [−1, 128, 304, 304] 73,984
3 −1 1 Convolution [−1, 128, 152, 152] 147,712
4 −1 3 BottleneckCSP [−1, 128, 152, 152] 161,152
5 −1 1 Convolution [−1, 256, 76, 76] 295,424
6 −1 9 BottleneckCSP [−1, 256, 76, 76] 1,627,904
7 −1 1 Convolution [−1, 512, 38, 38] 1,180,672
8 −1 9 BottleneckCSP [−1, 512, 38, 38] 6,499,840
9 −1 1 Convolution [−1, 1024, 19, 19] 4,720,640

10 −1 1 SPP [−1, 1024, 19, 19] 2,624,512
11 −1 3 BottleneckCSP [−1, 1024, 19, 19] 10,234,880
12 −1 1 Convolution [−1, 512, 19, 19] 525,312
13 −1 1 GR Block [−1, 512, 19, 19] 1,048,576
14 −1 1 Upsample [−1, 512, 38, 38] -
15 [−1, 7] 1 Concat [−1, 1024, 38, 38] -
16 −1 1 BottleneckCSP [−1, 512, 38, 38] 1,510,912
17 −1 1 Convolution [−1, 256, 38, 38] 131,584
18 −1 1 GR Block [−1, 256, 38, 38] 262,144
19 −1 1 Upsample [−1, 256, 76, 76] -
20 [−1, 5] 1 Concat [−1, 512, 76, 76] -
21 −1 1 BottleneckCSP [−1, 256, 76, 76] 378,624
22 −1 1 Detect [−1, 17328, 186] 143,406

388 Conv layers 3.157 × 108 gradients 103.0 GFLOPS 3.157 × 107

parameters

In Table 1, “from” means the input of the block, “number” means the number of
repetitions, and “Param” is the parameter amount of the block. The backbone of the model
adopts the CSPDarknet53 architecture, which effectively extracts the feature information of
different receptive fields. The feature fusion part removes unnecessary output structures
and improves the detection speed of the model.

2.3.2. Global Relational Block

The location of the target in the aerial image is arbitrary. There are a large number of
similar targets in the urban context. The simple connection of the convolution operator will
make the network only focus on the local neighborhood, and cannot sensitively capture
the global relationship among the entire spacetime. The global context-aware blocks are
built in many detection tasks, via the aggregation of convolution operators in the same
layer. Based on this observation, the design of the GCA block was inspired by Non-
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local Neural Networks [65], Double Attention Networks [66], and Compact Generalized
Non-local Networks [67].

The key to the global context awareness block is that the response of a location is
the weighted sum of all location features. We define global context-aware blocks in a
convolutional neural network as:

yi = ∑
∀j

f (xi, xj)

C(x)
g(xj) (16)

where i is the index of an output position and j is the index of all possible positions. x is
the input feature map and y is the output feature map of the GR block. f

(
xi, xj

)
represents

the correlation measurement function of two points in the feature map. g(x) represents the
convolutional map of x. The response is normalized by a factor C(x).

We define f
(

xi, xj
)

as the similarity of the dot-product:

f (xi, xj) = θ(xi)
Tφ(xj) (17)

where θ and φ are the convolutional structures to be trained, so that, there will be a pairwise
connection between xi and xj. We set the normalization factor as C(x) = N, where N is the
number of positions in input feature map, because it simplifies gradient computation.

In detail, as shown in Figure 5, given discriminative feature maps MC×H×W
i , we

transform them into a latent space (QC/2×H×W , KC/2×H×W , VC/2×H×W) by using different
convolutional layers respectively. Then, they were reshaped to QHW×C/2

r , KC/2×HW
r and

VHW×C/2
r . According to Equation (17), we can obtain a vector subset of feature vectors to

capture the relationship between each subregion, THW×HW can be expressed as:

THW×HW = so f tmax(Qr
HW×C/2 · Kr

C/2×HW) (18)
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The correlation matrix is defined as follows:

Fr
C/2×H×W = reshape(THW×HW ·Vr

HW×C/2) (19)

GC×H×W is calculated by a convolutional layer with 1 × 1 filter on Fr. To prevent
network degradation, we define R2C×H×W as:

R2C×H×W = GC×H×W + Mi
C×H×W (20)
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Finally, we obtain the output layer MC×H×W
o through a convolutional layer with

1 × 1 filters. With the iterative update of the weight, this block can gradually extract useful
context information to correct the prediction of this pixel.

The BR block enhances the discrimination of pixel features by designing a pixel-to-
pixel relationship matrix. It is completely differentiable, so it can be easily optimized
through backpropagation. The BR block has the same input and output dimensions, so it
can be easily integrated into our detection model.

2.3.3. Prediction

Based on the regression method, we design the target detection model. As analyzed in
Section 2.1 Equation (5), the size of the grid corresponds to a target. We divide the image
into an S × S (76 × 76 by default) grid and each grid cell predicts some bounding boxes,
confidence for those boxes, class probabilities and the rotation angle of those boxes.

As shown in Figure 6, each cell in the grid is designed with anchors centered on the
cell. The output of the model includes the center coordinates of the bounding box

(
bx, by

)
,

the long-side and short-side of bounding boxes (bl , bs), and angle a. We define them as:

bx = σ(tx) + i · cx (21)

by = σ(ty) + j · cy (22)

bl = pl · etl (23)

bs = ps · ets (24)
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Here (i, j) is the coordinate of the corresponding grid,
(
cx, cy

)
is the pixel size of cell,[

σ(tx), σ
(
ty
)]

is the coordinate offset of cell, pl and ps are the long-side and short-side of
anchors. We consider the rotation angle as the result of classification, so each bounding box
has 180 labels for angle recognition.

Compared with other methods, the non-horizontal box has one more angle dimension,
and the detection box does not need to consider the target category. We design a variant
of focal loss to penalize the difference between the category of each pixel output by the
network and the ground truth. For the output grid (S× S), each cell in the grid generates
B bounding box, each bounding box contains: center coordinates (x, y), long-side (l),
short-side (s), object confidence (c), angle (a). Object loss (Lobj) and angle loss (Langle) are
calculated by binary cross entropy (BCE). We define them as:

Lobj =
S2

∑
i=0

Iobj
ij [ĉi ln(ci) + (1− ĉi) ln(1− ci)] (25)
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Langle =
S2

∑
i=0

B

∑
j=0

Iobj
ij

180

∑
k=0

[âk ln(ak) + (1− âk) ln(1− ak)] (26)

where, â and ĉ is the ground true values of a, c. Iobj
ij denotes whether the object appears in

the bounding box j predictor in cell i. Object loss and angle loss are considered as multi-
classification problems, so the cross-entropy loss function is adopted. For the SoftMax
activation function used in the model, the cross-entropy loss function can avoid the problem
that the activation function enters the saturation region, and the gradient disappears in
some cases.

Consider three geometric parameters: overlap area, center point distance, and aspect
ratio, we use CIOU [68] to calculate the bounding box loss (Lbox):

Lbox = IOU −
(
(x− x̂)2 + (y− ŷ)2

c2 + αv

)
(27)

IOU =
Area of Overlap
Area of Union

(28)

v =
4

π2

(
arctan

ŝ
l̂
− arctan

s
l

)2
(29)

α =
v

(1− IOU) + v
(30)

where (x̂, ŷ, l̂, ŝ) is the ground true of (x, y, l, s). c is the diagonal length of the smallest
enclosing box covering two boxes. α is the weight parameter, and the parameter v represents
the consistency of the aspect ratio. The CIOU loss considers the aspect ratio of the Bounding
box, which improves the regression accuracy.

Finally, the total loss can be expressed as:

L = Lbox + Lobj + Langle (31)

Examples of skew IoU computation are shown in Figure 7 and the optimization process
is summarized in Algorithm 1.

Algorithm 1 Skew IoU computation

1: Input: Vertex coordinates of rotating bounding boxes B1, B2
2: Output: IOU between rotating bounding boxes B1, B2
3: Set u← ∅ , union : S = 0
3: Add intersection points of B1 and B2 to u
4: Add the vertex of B1 inside B2 to u
5: Add the vertex of B2 inside B1 to u
6: Set c← the mean coordinates of the point in u
7: Compare the coordinates of each point in u and c, Sort u into anticlockwise order
8: Split convex polygon into n triangles
9: For each triangle (i) in n do

10: Si ← sqrt[p(p− a)(p− b)(p− c)] (Heron’s formula)
11: S← S + Si
12: End for
13: IOU(B1, B2)← S/[S(B1) + S(B2)− S]
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3. Result

In this section, we discuss the setup and preprocessing of the dataset. Then, we evalu-
ate the proposed detection method, and compare it with the state-of-the-art target detectors.

3.1. Datasets

As shown in Table 2 below, we show the comparison of different optical remote sensing
datasets. Among them, F/H refers to the camera focal length and flying height.

Table 2. Comparison of different optical remote sensing datasets.

Dataset Images Instances Image Size Source Annotation Way Cloud F/H

ITCVD [40] 135 23,543 5616 × 3744 Aircraft Horizontal × ×
DLR 3K [50] 20 14,235 5616 × 3744 Aircraft Horizontal × ×
DIOR [69] 23,463 192,472 800 × 800 Google Earth Horizontal × ×

UCAS-AOD [70] 910 6029 ~1280 × 680 Google Earth Horizontal × ×
DOTA [41] 2806 188,282 ~2000 × 1000 Google Earth Oriented × ×
LEVIR [71] 22,000+ 10,000+ 800 × 600 Google Earth Horizontal × ×

HRRSD [72] 21,761 55,740 ~1000 × 1000 Google Earth Horizontal × ×
RO-ARS 200 35,879 ~2000 × 1000 Aircraft Oriented

√ √

Through comparison, it can be seen that remote sensing datasets usually have large-
scale characteristics. The source images are mainly acquired from Google Earth, and most of
the datasets are annotated with horizontal bounding boxes. There is no cloud phenomenon
in the existing datasets, and a lack of F/H data. For the datasets above, we evaluate our
method in ITCVD, DLR 3K, and our RO-ARS datasets.

3.1.1. Image Segmentation

Since ITCVD and DLR 3K lack focal length and flight height data, they cannot calculate
the crop size. To verify the effectiveness of the adaptive segmentation method proposed in
Section 2.1, we performed size statistics on the RO-ARS dataset. The size distributions of
different cutting methods are shown in Figure 8.

Figure 8 (left) is the original width- height distribution of bounding boxes, the middle
is the width-height distribution obtained by the proposed resize method. After labeling
with rotating bounding box, the distribution of the long side–short side is as shown in
Figure 8 (right).

The setting of anchors in target detection models depends on the target size distribu-
tion. After clustering by the Kmeans method, each color in Figure 8 represents a cluster. In
analyzing the size distribution of the bounding box, we can find the rotating bounding box
after resize can unify the target size better; this design makes it possible to meet the needs
of the model with fewer anchors.

In addition, we also count the size and location distribution of vehicle targets, as
shown in Figure 9.

It can be seen that the size of the target is relatively concentrated, and the position is
evenly distributed in all positions of the picture, which can better reflect the insensitivity of
the target position in the dataset.
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3.1.2. Angles Distribution

Through analysis of the rotating bounding box, we count the angle distribution of the
bounding box, as shown in Figure 10.

In original dataset, the rotation angle of the bounding box is 0◦ and 90◦ exceeds
20%. After affine transformation, variance and standard deviation are smaller than the
original ones and the angular distribution is more even. It is helpful to improve the
network’s ability to learn the target angle characteristics, and also proves the importance of
affine transformation.



Remote Sens. 2022, 14, 2088 14 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

box after resize can unify the target size better; this design makes it possible to meet the 
needs of the model with fewer anchors. 

In addition, we also count the size and location distribution of vehicle targets, as 
shown in Figure 9. 

 
Figure 9. The target size and position distribution (RO-ARS). 

It can be seen that the size of the target is relatively concentrated, and the position is 
evenly distributed in all positions of the picture, which can better reflect the insensitivity 
of the target position in the dataset.  

3.1.2. Angles Distribution 
Through analysis of the rotating bounding box, we count the angle distribution of 

the bounding box, as shown in Figure 10. 

 

 
Figure 10. Distribution of tilt angles (ITCVD dataset). 

In Figure 10, 𝐷(𝑥) is the variance, σ is the standard deviation. They are defined as: 
2

2 ( 1/180)
( )

180
x

D x σ
−

= =   (32)

Figure 10. Distribution of tilt angles (ITCVD dataset).

In Figure 10, D(x) is the variance, σ is the standard deviation. They are defined as:

D(x) = σ2 =
∑ (x− 1/180)2

180
(32)

3.1.3. Cloud Simulation

The current aviation dataset is designed to work in sunny weather; however, bad
weather, including cloud and fog, is inevitable in outdoor application. The aerial remote
sensing data set must include enough complex weather images. The examples of the cloud
simulation method described in Section 2.2 are shown in Figure 11.
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3.2. Model Size

The proposed SSRD method is an improvement of the YOLOv5 model, we have made
statistics on the parameters of the current popular target detection network, as shown in
Table 3.

Table 3. Parameters of neural networks for target detection.

Method Input Shape Anchors Head Parameters Params Size (MB)

YOLOv3 3 × 608 × 608 9 3 61,949,149 236.32
YOLOv4 3 × 608 × 608 9 3 63,943,071 245.53

YOLOv5-m 3 × 608 × 608 9 3 22,229,358 84.80
YOLOv5-base 3 × 608 × 608 9 3 48,384,174 184.57

YOLOv5-x 3 × 608 × 608 9 3 89,671,790 342.07

SSD 3 × 608 × 608 9 3 23,745,908 90.58
Faster-RCNN 3 × 608 × 608 9 3 137,078,239 522.91

SSRD-base (ours) 3 × 608 × 608 3 1 31,574,318 120.45
SSRD-tiny (ours) 3 × 608 × 608 3 1 5,375,662 20.51

As can be seen from Table 3, the SSRD method has smaller params size compared
with other models. The convolution depth of SSRD-tiny method is 0.5 times of SSRD-base,
and the number of BottleneckCSP layers is 1/3 times that of SSRD-base. Some application
scenarios have strict restrictions on the size of the model, such as embedded devices. The
params size is positively related to the size of the output model and the small and dedicated
model will have great advantages.

3.3. Evaluation Metrics

To verify the effectiveness of our proposed method, we conduct a qualitative and
quantitative comparison among the current popular target detectors. The metrics of re-
call/precision rate, F1-score and average precision (AP) are used, which are formally
defined as:

Recall =
number of true detections
number of existing objects

=
TP

TP + FN
(33)

Precision =
number of true detections
number of detected objects

=
TP

TP + FP
(34)

F1 = 2× Precision× Recall
Precision + Recall

(35)

The area under the Precision(P)-Recall(R) curve is defined as AP. Since it is relatively
difficult to calculate the integral, the interpolation method is introduced. The formula for
calculating AP is defined as follows:

AP =
N

∑
k=1

maxk̃≥kP(k̃)∆R(k) (36)

The proposed method was tested and evaluated on a computer with an Intel Core
i7-10700F 2.90 GHz CPU, 16 GB computer memory, and GeForce GTX 2060Ti GPU with
6 GB memory, implemented using the open-source Pytorch framework.

During the training, stochastic gradient descent [73] (SGD) is used to optimize the
parameters and the basic learning rate is 1 × 10−4 The weights are initialized with Kaim-
ing distribution [74]. The IoU threshold of non-maximum suppression (NMS) is 0.65
for inference.
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3.4. Ablation Experiments

Since the RO-ARS dataset proposed contains a large number of images with cloud and
fog, we test the SSRD method on ITCVD and DLR 3K datasets which have no cloud and
fog image to illustrate the necessity of the cloud simulation method proposed.

The ITCVD and DLR 3K datasets lack the relevant parameters and cannot calculate the
split size by the method described in Section 2.1. To fit the design of the SSRD model, we
calculated the median size (sm) of each image in the dataset, and then substituting k = sm
into Equation (5). After cropping the image according to the calculated value, we resize
them to the input size (608× 608) of the model. Finally, we can get a dataset with a uniform
target scale.

The simulation results of cloud and fog are calculated for each image in this experiment
and they are shown in Table 4.

Table 4. Cloud simulation performance (SSRD-base).

Dataset Train (Cloud) Test (Cloud) Precision Recall F1 AP@0.5 AP@0.5:0.95

ITCVD × × 63.64% 75.73% 0.6916 73.78% 35.34%
ITCVD ×

√
57.34% 54.34% 0.5580 53.32% 20.45%

ITCVD
√ √

62.55% 70.27% 0.6619 71.32% 33.72%

DLR 3K × × 72.56% 84.34% 0.7801 78.89% 43.23%
DLR 3K ×

√
64.32% 59.23% 0.6167 60.08% 35.08%

DLR 3K
√ √

70.32% 78.89% 0.7436 75.23% 41.87%

It can be seen that when the training dataset lacks cloud and fog images, the model
has poor performance under foggy conditions.

Adding a proper proportion of the simulation images with cloud and fog during the
training will enhance the robustness of the model. The result reflects the importance of
cloud and fog simulation. The ITCVD and DLR 3K datasets lack a complex meteorological
environment, it is difficult to adapt to the detection tasks in real complex environments; this
also provides a theoretical basis for adding complex weather images to the RO-ARS dataset.

Finally, we analyze the results obtained by training the model with different strategies
and the results are shown in Table 5. Since the size of the picture segmentation depends on
the relevant parameters, the number of blocks obtained is not all the same, the detection
frame rate of the block will be more reliable.

The proposed model achieves a high level of detection speed and detection accuracy.
The following conclusions can be verified through the experimental data of Table 5:

First, comparing SSRD-base and SSRD-base (No GR block), the precision has increased
by 5.03%, F1 has increased by 0.0644, AP@0.5 has increased by 6.33%, and AP@0.5:0.95 has
increased by 3.63%; this proves the effectiveness of the GR block we proposed. Comparing
SSRD-base and SSRD-base (No up-sample), the up-sample block increases the AP@0.5
by 3.19%, AP@0.5:0.95 by 2.38%. Experiments show that the proposed up-sample block
is beneficial.

Second, the small targets in complex backgrounds are difficult to detect by traditional
methods (HOG + SVM). Compared with other neural networks, better results are achieved
by our algorithm. The precision of the YOLO and SSD models is insufficient, and there are a
large number of false detection in the results, while the detection speed of the Faster-RCNN
model is slow, which is difficult to meet the requirements of practical applications.

Finally, we show some detection results of our proposed method on different datasets
(ITCVD, DLR 3K, RO-ARS), as shown in Figure 12.
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Table 5. Comparison of different network methods on RO-ARS (Rotating bounding boxes).

Method Backbone Epoch Precision Recall F1 AP@0.5 AP@0.5:0.95 Time (Blocks)

HOG + SVM / / 6.52% 21.19% 0.0997 / / 1.3 fps
SSD300 VGG16 / 25.55% 47.34% 0.3318 24.46% 12.45% 45.5 fps

Faster-RCNN ResNet / 39.18% 57.36% 0.4656 39.21% 16.34% 7.2 fps
YOLOv3 Darknet53 / 21.18% 68.65% 0.3237 53.34% 20.34% 51.3 fps
YOLOv4 CSPDarknet53 / 39.72% 79.25% 0.5291 65.31% 25.38% 56.4 fps

YOLOv5s CSPDarknet53
100 27.18% 77.52% 0.4025 58.54% 21.18% 71.4 fps
200 34.28% 80.96% 0.4817 68.99% 27.20%

YOLOv5m CSPDarknet53
100 26.44% 81.96% 0.3998 64.11% 24.67% 62.1 fps
200 36.82% 79.68% 0.5036 68.56% 28.36%

YOLOv5-base CSPDarknet53
100 32.23% 77.53% 0.4555 55.37% 23.09% 48.5 fps
200 40.11% 73.21% 0.5182 60.33% 23.54%

YOLOv5x CSPDarknet53

40 17.68% 81.31% 0.2904 53.34% 20.02%

30.7 fps100 17.54% 81.06% 0.2883 26.67% 10.28%
150 26.35% 78.66% 0.3948 40.10% 16.11%
200 33.29% 77.59% 0.4659 48.25% 20.09%

SSRD-base
(No up-sample & GR block) CSPDarknet53

100 40.06% 75.12% 0.5225 62.92% 23.63% 61.5 fps
200 44.54% 76.50% 0.5630 65.70% 26.39%

SSRD-base
(No up-sample) CSPDarknet53

100 42.23% 75.69% 0.5421 65.22% 26.60% 57.8 fps
200 56.74% 72.74% 0.6375 69.04% 29.31%

SSRD-base
(No GR block) CSPDarknet53

100 48.68% 71.67% 0.5798 65.77% 26.93% 54.9 fps
200 57.49% 64.48% 0.6078 65.90% 28.06%

SSRD-base
(ours) CSPDarknet53

100 51.76% 76.80% 0.6184 68.29% 30.57% 49.6 fps
200 62.52% 72.70% 0.6722 72.23% 31.69%

SSRD-tiny
(ours) CSPDarknet53

100 41.44% 76.24% 0.5369 65.36% 25.42% 92.6 fps
200 51.62% 76.43% 0.6152 70.30% 27.78%
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4. Discussion

In this work, we propose a new type of remote sensing vehicle dataset RO-ARS,
which not only considers the angular distribution of the rotating bounding box, but also
the diversity of the meteorological environment is considered; moreover, we use affine
transformation to enhance the robustness of the model and design a cloud simulation
method to increase the proportion of the images with cloud and fog; we also analyze the
vehicle detection characteristics of aerial remote sensing images, and design an adaptive
high-resolution image cropping scheme to improve the detection speed.

Inspired by the impressive performance of YOLOv5 in target detection, we propose
a vehicle detection model suitable for aerial remote sensing images in a complex urban
background. The experimental results demonstrate that the SSRD method we proposed can
achieve the highest scores on AP@0.5 (72.23%), AP@0.5:0.95 (31.69%) and F1-score (0.6722)
with real-time detection speed (49.6 fps). In this work, we propose a GR block and conduct
a quantitative evaluation through the ablation experiments, which proves that the GR block
has excellent performance in improving the precision and reducing the false detection.

In Section 3, we analyze the relationship between the depth of the network and de-
tection ability. The shallow neural network has a higher recall and frame, but the poor
precision makes it difficult to show better performance on AP and F1. YOLOv5x with a
deeper network shows a poor effect on small targets, which proves that increasing the net-
work depth cannot solve the problem of vehicle detection in aerial remote sensing images.

5. Conclusions

The model proposed in this paper provides a feasible solution for vehicle detection
in aerial remote sensing. Experiments show that the proposed model has excellent perfor-
mance. The image segmentation method and cloud simulation method have a positive
significance for target recognition; however, the types of cloud simulations are still not
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abundant. To enhance the practicality of the model, improving the detection speed is still
an important research direction.

In the future, we will further improve our research topics in several aspects, such as
feature extraction and fusion, the diversification of cloud simulation and model compres-
sion. Using unsupervised or weakly supervised models to reduce the model’s dependence
on datasets is also one of the important design directions.
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