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Beer spoilage bacteria have been a headache for major breweries. In order to rapidly identify spoilage

bacteria and improve the sensitivity and signal-to-noise ratio of bacterial SERS detection, the label-free

SERS technique was used as a starting point, and we found eight bacteria species that led to beer

spoilage. The impact of AgNP concentration and AgNP and bacterial binding time on the final results

were thoroughly investigated. To maximize the increase in the SERS signal, an aluminized chip was

created. We merged the t-SNE reduced dimensional analysis algorithm, and SVM, KNN, and LDA

machine learning algorithms to further investigate the effect of the approach on the final identification

rate. The results demonstrate that SERS spectra had an increased intensity and signal-to-noise ratio. The

machine learning classification accuracy rates were all above 90%, indicating that the bacteria were

correctly classified and identified.
Introduction

Beer has long been thought to be a safe drink. Beer is not an
optimal development habitat for many microbes due to the
presence of alcohol, bitter hop compounds, high carbon dioxide
concentrations, low pH, low dissolved oxygen, and very limited
levels of nutrients.1,2 Some microbes, though, can still grow in
it. The presence of these beer spoilage bacteria can result in
a reduction in beer quality as well as nancial losses for the
brewery. Most of the beer spoilage bacteria are lactic acid
bacteria,3 such as Levilactobacillus brevis, and they are exclu-
sively heterogeneous fermenters, resistant to hops, ideal for
a wide range of growth, capable of fermenting dextrin and
starch, and prone to overfermentation of the fermentation
broth.4 Lactiplantibacillus plantarum decreases the pH of beer,
causing the concentration of diethylstilbestrol to exceed the
normal limit, resulting in precipitation or hazy material and
a foul avor. As a result, identifying bacteria has become
a pressing issue that must be addressed promptly in the
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fermentation process. Traditional methods of bacterial identi-
cation, such as colorimetric methods,5,6 plate culture
methods,7 ow cytometry,8 polymerase chain reaction (PCR),9

and enzyme-linked immunosorbent assay (ELISA),10 have
accurate results but take 2–3 days to complete, which does not
meet the requirement for real-time detection of beer spoilage
bacteria in the beer brewing process. Bioassays with a shorter
analysis time and improved sensitivity must be developed.

The Raman spectroscopy technique is widely used for the
detection of various bacteria because of its advantages such as
fast detection speed and specicity of spectral peaks.11However,
as compared to uorescence and electrochemical approaches,
the Raman technique has limitations, such as a low spectrum
intensity. Furthermore, because of the complicated microbial
growth environment in the beer brewing process, the resulting
spectra frequently contain a high amount of uorescent back-
ground interference during Raman detection,12 which has
a signicant impact on the spectral resolution. As a result, the
key issue is to improve the sensitivity and spectrum intensity of
Raman spectra. Surface enhanced Raman spectroscopy (SERS)
has faster detection speed and spectral specicity, which can
provide stable and clear bacterial ngerprints in complex
sample environments with less uorescence background
interference.13 There are generally two types of bacterial SERS
detection methods: label-based methods and label-free
methods;14,15 although label-based methods have high sensi-
tivity and speed, the capture and labeling steps are dependent
on antibody or aptamer recognition. Moreover, antibodies
produced by immunized animals are expensive and poorly
reproducible.16 It is difficult to nd aptamers with high
This journal is © The Royal Society of Chemistry 2022
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cooperativity, and the binding period to the target bacteria is
long.17 Here, our study will focus on label-free methods.

Label-free methods are highly sensitive and require low-cost
metal nanoparticles (colloidal suspensions) making them ideal
for mass promotion.18 Furthermore, in situ produced silver
nanoparticles (AgNPs) can maintain close contact with bacterial
membranes,19,20 allowing for label-free detection at the single-
cell level regardless of bacterial taxonomic variety, growth
stage, physiological state, or culture conditions. Label-free SERS
detection of bacteria has received increasing attention in recent
years. Piyanan Chuesiang21 used commercial silver nano-
particles and investigated the effect of silver nanoparticles on
the SERS spectral identication results of E. coli and Salmonella
with different particle sizes and different coating agents.
Muhammad Kashif22 explored a variety of bacteria in the food
industry using a nanosilver synthesis method with sodium
citrate. The results were validated using the PCA + PLS-DA
algorithm, which nally allowed the classication of bacteria.
However, fewer reports have been published for beer spoilage
bacteria. The production of nanoparticles and the conditions of
binding nanoparticles and bacteria are most likely to be
neglected by researchers, resulting in a low signal-to-noise ratio
of the SERS spectra of bacteria obtained by most of them and
indirectly leading to a low nal identication rate.

Inspired by the above results, to identify beer spoilage
bacteria and increase the sensitivity and signal-to-noise ratio of
bacterial SERS detection, a label-free SERS approach was used.
We collected eight species of bacteria associated with beer
spoilage, looked at the impact of the AgNP concentration and
AgNP binding time with bacteria on the nal results, and made
aluminized chips to boost the SERS signal evenmore. To further
investigate the effect of the method suggested in this study on
the nal identication rate, we integrated it with the t-SNE
method for downscaling analysis and used SVM, KNN, and
LDA machine learning algorithms for analysis and prediction.
The results of the experiments reveal that the method not only
produces SERS spectra with a higher intensity and signal-to-
noise ratio but also successfully classies and identies beer
spoilage bacteria.

Materials and methods
Materials and instruments

Hydroxylamine hydrochloride (NH2OH$HCl), sodium
hydroxide (NaOH), silver nitrate (AgNO3), potassium chloride
(KCl), and rhodamine 6G (R6G), were purchased from Sigma-
Aldrich Corporation. Glass slides (26 mm × 76 mm × 1 mm),
centrifuge tubes (10 mL), disposable lters (0.22 mm), and
syringes were purchased from Millipore Company. A Milli-Q
pure water system, METTLER TOLEDO-T electronic analytical
balance, SH SCIENTIFIC IS-A29 constant temperature shaking
incubator, Thermo Scientic Megafuge 8R refrigerated centri-
fuge, SCILOGEX SCI-VS vortexer, Zetasizer nanoparticle particle
size potentiometer, Malvern PANalytical and SHIMADU-UV2550
UV-vis absorption spectrometer were used. Raman spectra were
collected using a Raman spectrometer (Hooke Instruments
Ltd., P300). The beer spoilage bacteria utilized in the
This journal is © The Royal Society of Chemistry 2022
experiment, such as Levilactobacillus brevis, Lentilactobacillus
buchneri, Lactiplantibacillus plantarum, Lactobacillus reuteri,
Lactiplantibacillus pentosus, Lactobacillus helveticus, Lactoba-
cillus acidophilus, and Limosilactobacillus fermentum, were iso-
lated and identied from genuine samples by Jiangnan
University's National Engineering Research Center for Cereal
Fermentation and Food Biomanufacturing.23

AgNP fabrication and characterization

The enhanced Leopold and LendI technique24 was used to
manufacture AgNPs. To generate a 10 mL (0.01 mM) silver
nitrate solution, 1 mL silver nitrate solution (0.1 mM) was
diluted with 9 mL deionized water. Aer that, 100 mL of
deionized water was mixed thoroughly with 11.6 mg of
hydroxylamine hydrochloride (0.17 mM) and 3.3 mL of sodium
hydroxide solution (0.1 M). Finally, the prepared silver nitrate
solution was mixed three times with the reducing agent,
shaking each injection for 5 s. The gray-green AgNPs were
generated almost instantaneously, and then reacted on a shaker
at 200 rpm for 30 min to allow complete reaction of the
substrate. Aer the reaction is nished, it was placed in a 4 °C
refrigerator for 30 min to crystallize the unreacted dissolved
materials and assure the purity of the AgNPs. Then it was
ltered through a 0.22 mm Millipore lter membrane, sealed,
and kept refrigerated at 4 °C to keep it away from light. This
method was used to obtain AgNPs@normal (the concentration
of AgNPs was obtained as 0.88 mM). This process produces AgNP
sol that can be kept for about a month. AgNPs in a modest
quantity for optical characterization, a sample was obtained
and placed in the transmission electron microscope (TEM),
ultraviolet-visible absorption spectrometer, and Zetasizer
nanoparticle size potentiometer. The aggregation of AgNP sol
can be aided by KCl, NaCl, and other salt solutions.25 When
combining silver nitrate solution and a reducing agent to make
AgNP sol, we add 0.3 mL of KCl solution (0.03 mM) to make the
resulting solution AgNPs@KCl.

Fabrication of aluminized glass slides

Before the Raman test, the glass slides were treated with
anhydrous ethanol and deionized water ultrasonication for
5 min to remove organic matter and impurities from the glass
surface and then blown dry with nitrogen. Subsequently, an
aluminum lm was laid at on the surface of the slides by
vacuum vapor deposition and they were then stored in a refrig-
erator at 4 °C aer cooling.

Pretreatment of bacteria

To demonstrate the bacterial pretreatment procedure, this
article uses Lactiplantibacillus plantarum as an example. The
Lactobacillus strains were placed in a 250 mL culture ask with
100 mL inactivated de Man Rogosa Sharpe (MRS) medium (pH
6.2) and incubated for 64 h at 37 °C at 200 rpm in a rotary
shaker. The Lactobacillus strains were washed with deionized
water aer cultivating them to remove the culture media. 50 mL
of bacterial solution was taken in 1 mL deionized water, mixed
with a vortexer, centrifuged in a centrifuge (4 °C, 8000 rpm, 5
Anal. Methods, 2022, 14, 5056–5064 | 5057
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min), and the supernatant was removed, and the process was
repeated three times with 1 mL deionized water. Aer cleaning,
1 mL of deionized water was added, vortexed, and stored at 4 °C
for subsequent use.

Preparation of AgNPs & bacteria

To explain the synthesis process of AgNPs and bacteria, this
article uses farmed Lactobacillus strains as an example. First,
a vortexer is used to equally shake the cleansed bacteria and
AgNPs@KCl. Then 30 mL was placed in a tube, followed by the
equivalent quantity of 30 mL of AgNPs. AgNPs@KCl was promptly
added to the centrifuge tube, stirred uniformly with a vortexer,
and then placed in a constant temperature shaker for incubation
at 37 °C and 200 rpm. Imaging and Raman measurements were
carried out on metal slides using a 100× objective lens.

SERS enhanced verication

Aer the fabrication of AgNPs, the enhancement effect was rst
veried. 100 mL diluted rhodamine 6G (1 × 10−8 M) was mixed
with 100 mL of AgNPs@normal (AgNPs@KCl) colloidal solution
for 5 min, and then 5 mL of the above samples was dropped onto
the treated aluminum-plated slides for SERS signal detection
with a laser power of 0.1 mW and integration time of 0.1 s
(Fig. 1(b)).

The effect of the AgNP concentration on the enhancement
effect

10 mL of the produced AgNPs@KCl was taken by injecting
deionized water to obtain a AgNP colloid aer different
Fig. 1 (a) The overall flow chart of the experimental test. (b) The optical p
and the SERS hot spot diagram is also shown in the figure.

5058 | Anal. Methods, 2022, 14, 5056–5064
concentration gradient dilutions. Then 10 mL of AgNPs@KCl
was taken with the centrifuge, and centrifuged for 5 min at 10
000 rpm; aer centrifugation, half of the supernatant was
extracted and mixed well using a vortexer to obtain different
concentrations of AgNP solution aer gradient concentration.
Different concentrations of AgNPs and bacteria were mixed and
placed under a 100× objective lens with a laser power of 3 mW
and integration time of 2 s to test the SERS spectrum signal.
Effect of reaction time on the results

A 5 mL sample of AgNPs@KCl & bacteria was shaken at 200 rpm
at 37 °C in a shaker. The SERS spectrum signal was evaluated at
each time slot by placing 5 mL of the sample on an aluminum-
plated slide according to the response time and placing them
under a 100× objective lens with a laser power of 3 mW and
integration time of 2 s.
Identication of various Lactobacillus strains

20 mL of each of the various beer spoilage bacteria (Levilacto-
bacillus brevis, Lactiplantibacillus plantarum, etc.) and
AgNPs@KCl was taken aer treatment, mixed with a 1 : 1 ratio,
and incubated at 37 °C for 4 h on a constant temperature
shaker; 5 mL of each of these samples was dropped on an
aluminum-plated slide, and SERS detection was performed
under a 100× objective lens, with a test laser power of 1 mW and
integration time of 2 s, and 100 spectra were collected for each
species of bacteria. The results were obtained and then vali-
dated using the t-distributed stochastic neighbor embedding (t-
SNE) downscaling analysis algorithm,26 and support vector
ath diagram of the SERS test, in which aluminized glass slides are used,

This journal is © The Royal Society of Chemistry 2022
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Fig. 3 Comparison diagram of the rhodamine signal strength (the
black line is the comparison curve with KCl added and the red line is
the comparison curve without KCl added).
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machines (SVM),27 K-nearest neighbor (KNN),28 and linear
discriminant analysis (LDA)29 machine learning algorithms for
predictive analysis of the results.

Validation analysis of fermentation-contaminated beer

Samples of uncontaminated beer were extracted from the
fermentation process. Two beer spoilage bacteria, Levilactoba-
cillus brevis, and Lactiplantibacillus plantarum were added to
simulate the actual contaminated beer bacterial environment.
Aer incubation in a 37 °C incubator for 1 day, single-cell
Raman spectra were collected following the normal SERS
assay procedure for beer spoilage bacteria. The acquired spectra
were then input to build the best spoilage strain classication
model, and we could output the class and predicted score of
single cells.

Results and discussion
Characterization of AgNPs

The results of AgNPs' optical characterization are displayed in
the following Fig. 2: the TEM plots (Fig. 2(a)), can be used to
more clearly determine the nanoparticles' diameter, which is in
the range of 40–70 nm. This conclusion can also be veried
from the DLS (dynamic light scattering) plots (Fig. 2(d)), where
the diameter of the nanoparticles are seen to be around 60 nm
Fig. 2 Optical characterization of silver nanoparticles. (a) The TEM dia
particles, (c) the zeta potential diagram of AgNP particles, and (d) the DL

This journal is © The Royal Society of Chemistry 2022
in the DLS curves. From Fig. 2(b), it can be seen that the AgNPs
and bacterial binding bimodal peaks are obvious and the AgNP
particles are of good quality. The ZETA potential in Fig. 2(c) is
18.07z, which is due to the addition of KCl during the fabrica-
tion of AgNPs increasing its aggregation.
gram of AgNP particles, (b) the UV-vis absorption spectrum of AgNP
S diagram of AgNP particles.

Anal. Methods, 2022, 14, 5056–5064 | 5059
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Fig. 4 The variation of the signal-to-noise ratio of SERS spectrum with AgNP concentration, (a) the box diagram of signal-to-noise ratio
variation, and (b) the linear correlation diagram of concentration 0.22 to 1.76 mM.
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Enhanced validation of AgNPs

AgNPs@normal and AgNPs@KCl were mixed with rhodamine
6G respectively, and the test results are shown in Fig. 3. We can
observe that when AgNPs@KCl is combined with KCl, the
enhancing impact is about 5 times larger than that when
AgNPs@normal is used alone. It is because salt ions can
increase AgNP aggregation and improve the enhancing effect.30

In the following AgNPs and bacteria studies, we employed
AgNPs@KCl.
The effect of the AgNP concentration on the enhancement
effect

The test results for the mixture of AgNPs@KCl and bacteria at
different concentrations are shown in the box diagram in
Fig. 4(a). As can be seen, as the concentration of AgNPs@KCl in
the region of 0.22–1.76 mM grows, so does the signal-to-noise
ratio of the Raman signal. However, there is some activity
inhibition of bacteria by AgNPs,31 so with a concentration of
Fig. 5 (a) Box diagram of the relationship between the signal-to-noise r
curve the between signal-to-noise ratio and incubation time in the first

5060 | Anal. Methods, 2022, 14, 5056–5064
AgNPs above 1.76 mM, the activity of bacteria is affected. This
eventually leads to a decrease in the spectral signal-to-noise
ratio. It can be seen in Fig. 4(b) that the increase of the
signal-to-noise ratio between the concentration 0.22–1.76 mM is
linear, with acceptable linearity. We utilized 1.76 mM concen-
trated AgNPs in the following studies.
Effect of reaction time on the results

AgNPs@KCl and bacteria were mixed and tested according to
different reaction times to form a box plot as in Fig. 5(a). The
signal-to-noise ratio of Raman spectra grew dramatically in the
rst 4 h as the binding time between bacteria and AgNPs
increased, and stayed at a higher level beyond that period.
However, when the reaction time increased, the signal-to-noise
ratio of Raman spectra fell aer 10 h. There are two reasons for
the low spectral signal-to-noise ratio, one is the oxidation of
AgNPs by contact with air in the sample and thus loss of
enhanced activity,32 and the other is the inhibitory effect of
AgNPs on bacterial activity, which kills and dissolves bacteria
atio and time of AgNPs and bacteria co incubation and (b) correlation
4 h.

This journal is © The Royal Society of Chemistry 2022
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Fig. 6 (a) 2D classification diagram of identification of different bacteria, (b) SERS spectrum of Lactobacillus pentosus, (c) list diagram of
identification of different bacteria, and (b1) normal bacterial Raman spectrum.

Table 1 SERS spectral peaks of Lactobacillus pentosus and their
attribution

Raman shi (cm−1) Peak position attribution

652 d(COO–)
730 Adenine and polysaccharide
860 C–C telescopic vibration
1078 Carbohydrate d(CC, CO, and –COH)
1227 Amide III, adenine, and DNA
1324 n(NH2), adenine, and DNA
1600 Amide II, n(CN), and g(NH)
1670 Amide I
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aer the prolonged reaction. Therefore, the duration of the later
test was set between 4 and 10 h. As shown in the signal-to-noise
ratio-time correlation curve of Fig. 5(b), the linearity in the rst
4 h is very strong.

Identication of various Lactobacillus strains

AgNPs@KCl at a concentration of 1.76 mM and different beer
spoilage bacteria were mixed and incubated for 4 h and then
tested. In the test, we tested the bacterial MAPPING heat map,
and the SERS hotspots were visible when the AgNPs adhered to
the bacterial surface (Fig. 1(b)). The following are the results of
all bacterial tests: in this study eight beer spoilage bacteria were
cultured by brewing. Fig. 6(b1) shows the Raman spectra of
Lactiplantibacillus pentosus without SERS enhancement, and it
can be seen that the spectra have strong uorescence interfer-
ence, which makes identication impossible. In contrast, the
SERS-enhanced Raman spectra of Lactiplantibacillus pentosus in
Fig. 6(b) have distinct peaks at 652, 730, 860, 1078, 1227, 1324,
1600, and 1670 cm−1, which greatly enhance the identication
rate. Table 1 shows the individual peak positions and their peak
attribution. The changes in peak locations of different bacteria
between 1000 and 1400 cm−1 beams are seen in the enumera-
tion plot (Fig. 6(c)). Aer downscaling the SERS spectrum data
of eight species of beer spoilage bacteria using the t-SNE tech-
nique, it can be seen that the distribution of each type of spectra
This journal is © The Royal Society of Chemistry 2022
is quite concentrated. The spectral data (in Fig. 6(a)) show clear
discrepancies. We used a machine learning technique to build
a spectral classication model to examine the enhancing
impact of SERS and the degree of difference between the eight
categories of spectra. The SVM algorithm was used for the
prediction analysis of eight bacteria. The SVM prediction
confusion matrix was obtained using a 5-fold cross-validation
method33 (Fig. 7(a)). From the matrix, it can be seen that the
identication accuracy of the eight beer spoilage bacteria is
high all above 92%. Then the identication accuracy is veried
Anal. Methods, 2022, 14, 5056–5064 | 5061
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Fig. 7 (a) The SVM confusion matrix results. (b) The KNN confusion matrix results. (c) The LDA confusion matrix results. (d) Comparison of SVM,
KNN and LDA.
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using KNN and LDA algorithms (KNN and LDA prediction
confusion matrix is obtained (Fig. 7(b and c))). From Fig. 7(d), it
can be seen that the three machine learning algorithms have
similar accuracy rates of about 90%, and all of them can identify
eight beer spoilage bacteria well. The SVM algorithm identied
a mean value of 93.43% similar to that of the KNN algorithm,
93.21%, and better than that of the LDA algorithm, 89.93%. The
results indicate that beer spoilage bacteria can be well identied
using all three machine learning algorithms, and the SVM and
KNN algorithms have some recognition accuracy advantages
over LDA.
Test spectral stability analysis

Spectrum stability is the cornerstone of further data processing.
This study employs Levilactobacillus brevis as an example to
validate spectral stability. The spectra were collected 15 times in
a row under test conditions of 1 mW laser power and 2 s inte-
gration time. Finally, the spectral enumeration was constructed
as shown in Fig. 8(a). The Raman spectral peak positions did
not wander over the 15 times of continuous sampling testing,
and the overall spectral stability was good. It demonstrates that
the experimental results of this work are reliable.
5062 | Anal. Methods, 2022, 14, 5056–5064
Validation analysis of fermentation-contaminated beer

SERS detection of contaminated beer bacteria in a simulated
environment. Three bacteria were selected from the 100×
objective eld to test the SERS spectra and the spectral features
were compared with the database of eight beer spoilage bacteria
built by the SVMmachine learning algorithm (Fig. 8(b), the SVM
algorithm was chosen because it has the best identication
results among the three algorithms). It can be seen from
Fig. 8(c–e) that the algorithm has a good ability to distinguish
the SERS spectra of different bacteria. Among them, Fig. 8(c and
d) show a good recognition accuracy (both around 90%). In
contrast, Fig. 8(e) shows a poor recognition rate of 61%, because
this bacterium is distinguished from the other 8 beer spoilage
bacteria and its SERS spectrum information is not included in
the database. Moreover, from its bacterial morphology, the
bacterium was spherical in shape and was not Lactobacillus. The
experimental results were validated using plate scribe culture
and the subsequent results showed that Lactiplantibacillus
plantarum, and Levilactobacillus brevis two beer spoilage
bacteria were indeed present in this sample. The validation
results indicated that SERS spectroscopy of the beer spoilage
bacteria using an aluminized chip combined with AgNP wrap-
ping, followed by machine learning algorithms allowed for
This journal is © The Royal Society of Chemistry 2022
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Fig. 8 (a) Spectrum stability test chart. (b) 100× objective imaging of tested bacteria. (b1) Contaminated beer. (c) Comparison of the spectral
differences between testing bacteria and Lactiplantibacillus plantarum. (d) Comparison of the spectral differences between testing bacteria and
Levilactobacillus brevis. (e) Comparison of the spectral differences between testing bacteria and Lactobacillus acidophilus.
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rapid identication and analysis of the bacteria. This has
signicant implications for the rapid identication of beer
spoilage bacteria.
Conclusion

In conclusion, to improve the sensitivity and signal-to-noise
ratio of bacterial SERS detection and to accomplish quick
identication of spoilage bacteria using the label-free SERS
technique as a starting point, we collected eight species of beer
spoilage bacteria. The test substrate was an aluminized chip,
and the effects of AgNP concentration, AgNPs, and bacterial
action time on the results were explored. Finally, by combining
the t-SNE reduced dimensional analysis algorithm, SVM, KNN,
and LDA machine learning algorithms, the inuence of the
approach on the nal recognition rate was investigated further.
When KCl is introduced to the AgNP manufacturing process,
the AgNP concentration is 1.76 mM, and the reaction time with
bacteria is 4 h; the experimental ndings show that a high
signal-to-noise ratio spectrum may be obtained. Furthermore,
with an accuracy of roughly 90%, all three machine learning
algorithms performed well in identifying beer spoilage bacteria.
With a mean value of 93.43%, SVM has the highest accuracy of
the group. Finally, two beer spoilage bacteria were chosen and
added to uncontaminated beer for a mixed culture to conrm
This journal is © The Royal Society of Chemistry 2022
the method's viability. A comparison of the SERS spectrum's
similarity to those in the database was performed in the end,
and the results demonstrated that SERS spectra of known
spoilage bacteria could be accurately identied. The stability
and repeatability of the spectra are good. The downside is that
germs outside the database cannot be accurately detected,
necessitating constant database expansion.

Overall, the current work has enormous potential for
advancement. An aluminized chip was employed to further
boost the signal strength aer the specics of the investigation
into the examination of many components of SERS-enhanced
bacteria were examined. The accuracy of machine learning
detection of beer spoilage bacteria was further enhanced by the
strong suppression of uorescence interference of the bacteria
and the acquisition of SERS spectra of bacteria with signi-
cantly higher signal-to-noise ratios than that in other studies.
The technology can indeed identify the target spoilage bacteria
from simulated samples, according to the nal validation
studies. This is useful for the rapid detection of beer spoilage
bacteria during the brewing process.
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