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ABSTRACT The working environment of autonomous driving and robot navigation is so complex and
dynamic that a single type of sensor is insufficient for performing object detection. Thus, in many perception
schemes, the LiDAR-camera fusion strategy is preferred. However, the performance of a LiDAR-camera
fusion heavily relies on a set of accurately calibrated extrinsic parameters. We propose PSNet, an end-to-end
convolutional neural network (CNN) for calibration; this is the first calibration network to use parallel
subnetworks to obtain multiresolution features and fuse them adaptively to encourage robustness against
different initial error ranges. The method has three key characteristics: (i) Addition of a downsampling
block to improve suitability for sparse projected depth maps; (ii) Connection of the high-to-low resolution
convolution streams in parallel to obtain multiresolution features that are spatially more precise and contain
richer semantic information; (iii) Fusion of multiresolution streams by the multiscale feature aggregation
module. The network corrects errors from initial calibration to the ground truth online, rather than directly
obtaining the accurate parameters. We evaluated our model on the KITTI datasets and it outperformed other
CNN-based methods. In addition, extensive experiments evaluating the model with untrained and unfamiliar
datasets demonstrated that our method exhibited good generalization ability.

INDEX TERMS Calibration, deep learning, multiscale features, parallel subnetworks.

I. INTRODUCTION
Robust robotic environmental awareness is a central capa-
bility for autonomous driving and robot navigation, and all
sensors have their own inherent advantages and disadvan-
tages. For example, cameras easily suffer from underexposure
and overexposure due to sudden changes in light, but they
can provide high-resolution 2D information. In contrast, light
detection and ranging (LiDAR) sensors suffer in rainy and
foggy weather; however, they can yield sparse but highly
accurate 3D measurements. Thus, in many object detection
and tracking schemes, a LiDAR-camera fusion strategy is
preferred. The calibration of a LiDAR-camera is the basis for
the effective fusion of these two sensors.

Most existing calibration methods [1]–[8] are target-based,
which can achieve satisfactory accuracy with laborious man-
ual adjustments and complex environmental settings. How-
ever, when a vehicle is in operation, sensor vibrations and
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environmental changes can add uncontrollable deviations to
the extrinsic parameters. Therefore, to improve adaptability,
online calibration has a high value. Although there are a
series of approaches to tackle the online calibration challenge,
they always require extensive additional knowledge, such
as additional motion information [9], [10] or an educated
initial guess. Some researchers apply deep learning to solve
calibration problems. However, these methods directly learn
the low-resolution representations of the projected depth map
and corresponding image without considering the correlation
between the resolution and the initial error range. Moreover,
the feature extractionmodule of existingmethods [11]–[14] is
a ResNet-18, which is sufficient for handling many computer
vision tasks, but we want to learn richer representations from
sparse depth maps using a stronger backbone.

In this paper, we present PSNet, which monitors and cor-
rects calibration errors online to save human resources and
improve adaptability. The contributions of this study are sum-
marized as follows:
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(1) PSNet is a novel end-to-end approach for correcting
the transformation between LiDAR and camera, and it is
the first calibration network that connects the multiresolu-
tion convolution streams in parallel. It benefits from gener-
ated representations that are spatially more precise and have
richer semantic information, which can help improve per-
formance. According to the experimental results, our model
not only achieves state-of-the-art performance comparedwith
other convolutional neural network (CNN)-based methods
but also has good generalization with untrained and unfamil-
iar datasets.

(2) PSNet verifies the correlation between the resolution
and the initial error range. We used a novel architecture,
namely, the multiscale feature aggregation module, which
fused the multiresolution features adaptively to encourage
network robustness against different initial error ranges.

(3) Compared with 2D RGB images, projected depth maps
are sparse. In other words, some pixel values in the depth map
are equal to zero. Therefore, we modified the downsampling
block to make it more suitable for sparse projected depth
maps.

II. RELATED WORKS
Many roboticmethods can calibrate a LiDAR-camera system.
Generally, existing methods can be divided into three cate-
gories: target-based, targetless, and deep learning methods.

A. TARGET-BASED METHODS
In target-based methods, to establish accurate 2D-3D point
correspondences, checkerboards [1]–[4] or certain targets
that have a specific appearance, e.g., polygonal planar
boards [5], planar targets that have circular holes [6], and
spherical targets [7], [8], are used for calibration. Regardless
of the nature of the targets, target-based approaches first
extract geometrical features between both data representa-
tions, then establish the 2D–3D correspondences. The cal-
ibration problem then becomes a pose estimation problem.
The accuracy of these methods is restricted by the number
of points provided by the targets and the resolution of the
LiDAR. As extra preparation is required, these algorithms are
time-consuming, laborious, and limited to offline use.

B. TARGETLESS METHODS
During live robot operation, the relative positioning of the
LiDAR and camera will inevitably drift due to environmental
changes or vibrations. The perception systems are the eyes
of the robots. Miscalibration between sensors will influence
the fusion of the LiDAR and camera, causing the perception
systems to provide an inaccurate and unstable perception of
the surrounding environment. Therefore, there is an urgent
need for online calibration methods, which could signifi-
cantly improve the adaptability of these robots.

Yuan et al. [15] did not use checkerboards but aligned
natural edge features between both data representations and
achieved high accuracy. The authors used the Canny algo-
rithm to extract 2D edges; for point cloud edge extraction,

they used RANSAC to extract planes and solved for the inter-
section of plane pairs. Zhu et al. [16] first projected LiDAR
points onto the image plane, and the pixel values were depth
and reflectivity values. Then, the authors extracted the 2D
edges from the depthmap andmatched these edges with those
obtained from the corresponding image. Pandey et al. [17]
used the mutual information of the camera image and point
clouds intensity map for calibration. Taylor et al. [18] mea-
sured the gradient orientation and built the gradient relation
between images and point clouds.

Furthermore, some methods [9], [10] use sensor motion to
estimate the extrinsic parameters. These motion-based meth-
ods attempt to find the transformation that best aligns the
motion tracks of the two sensors.

C. DEEP LEARNING METHODS
Due to the automatic feature engineering of deep neural
networks, extensive research has recently been conducted to
solve the calibration problem using deep neural networks.
Current deep learning methods take the projected depth
maps and corresponding RGB camera images as the input,
and by designing a CNN, the extrinsic parameters can be
obtained. Regnet [19] was the first deep CNN for LiDAR-
camera calibration; it packaged the conventional calibration
steps into a single CNN. CalibNet [11] introduced geometric
supervision, which included reducing the photometric error
and point cloud distance error. CMRNet [20] is an approach
for locating a camera in a LiDAR-Map, and it is the first
method to use the correlation layer of PWC-Net [21] to match
features acquired from two sensors to achieve 6-DoF extrinsic
calibration. CalibRCNN [12] used the constraint relationship
between successive frames for calibration, which improved
the accuracy, and CalibDNN [13] added geometric and trans-
formation supervisions to solve the calibration problem and
applied the method on a challenging dataset.

III. PROPOSED METHOD
We designed an end-to-end calibration model for a LiDAR-
camera system that is subject to the assumption: we know
the ground truth LiDAR-camera extrinsic parameters Tgt and
the camera calibration matrix K . Our method consists of
a data preprocessing process, a network for regressing the
predicted vectors, loss functions, and a calibration inference.
The workflow of our method is shown in Fig. 1.

A. DATA PREPROCESSING
In the proposed method, depth maps projected by LiDAR
point clouds with an initial and miscalibrated setup and cor-
responding RGB images are input to the network. As in
practical applications, the initial extrinsic parameters can
be approximately obtained via measurements or estimation.
However, during the training phase, to obtain a large training
dataset, we combined the random transformation parameters
1T and the ground truth extrinsic parameters Tgt to obtain
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FIGURE 1. Method workflow. First, the proposed method projects a LiDAR
point cloud onto the image plane with the initial extrinsic parameters
Tinit and intrinsic parameters K , and we obtain the miscalibrated depth
map. Then, it takes the miscalibrated depth map and RGB image as input
and outputs a 1 × 3 translation vector and a 1 × 4 rotation quaternion.
Finally, we use the regression and point cloud losses to guide the
learning process.

the initial parameters Tinit .

Tinit = 1T × Tgt (1)

To obtain the miscalibrated depth maps, first, we trans-
formed each 3D LiDAR point [x, y, z] in a point cloud from
the LiDAR coordinate system to the camera coordinate sys-
tem with the initial extrinsic calibration parameters Tinit .

x ′

y′

z′

1

 = Tinit ×


x
y
z
1

 , (2)

where [x ′, y′, z′, 1] and [x, y, z, 1] represent the homogeneous
coordinates of a point in the camera coordinate and LiDAR
coordinate systems, respectively. It is worth noting that using
the initial and miscalibrated parameters results in the homo-
geneous coordinate of a point being inconsistent with its
actual location in the camera coordinate system. We refer
to the points with incorrect coordinate values in the camera
coordinate system as miscalibrated point clouds.

Each 3D point
[
x ′, y′, z′

]
in a miscalibrated point cloud

was projected onto the image plane [u, v, zc], named a mis-
calibrated depth image with intrinsic parameters K , where
zc is the pixel value and also the depth value of the camera
coordinate. If there were no LiDAR points projected on the
pixel, the pixel value was zero.

zc

uv
1

 = K ×


x ′

y′

z′

1

 (3)

B. NETWORK ARCHITECTURE
1) FEATURE EXTRACTION NETWORK
There were two separate branches of feature extraction from
the RGB image and the depth map. Inspired by HRNet [22],
our backbone network preserves high-resolution representa-
tions and connects multiple resolutions in parallel. As shown

in Fig. 2, first, we encoded the input image as multiresolu-
tion representations. Then, we connected the multiresolution
streams parallelly to exchange information between them.

FIGURE 2. Feature extraction network.

We acquired the output representations, which are the
sum of the transformed multiresolution representations,
as follows:

f or = F1r (f i1)+ F2r (f
i
2)+ F3r (f

i
3)+ F4r (f

i
4)

r = 1, 2, 3, 4, (4)

where Fir is the transform function. If r < i, Fir upsamples
the input features through bilinear upsampling followed by a
1 × 1 convolution to align the number of channels. If r = i,
Fir is an identity matrix. Finally, if r > i, Fir represents (r-i)
downsampling blocks used to extract richer feature represen-
tations for each modality individually, especially for sparse
depth images. The downsampling block not only reduces res-
olution but also increases the width, which is good for feature
extraction. This design was modified from ParNet [23], and
we added 2D max-pooling followed by a 1 × 1 convolution,
which could retain more details for the depth images in which
there were many pixels with a value of zero.

We found this block to increase performance (Table 5).
The downsampling block structure is illustrated in Fig. 3.
The proposed method has a key advantage, namely, the
multiresolution representations extracted from the backbone
are semantically stronger than in prior methods [11]–[13].
Furthermore, the high-resolution representations are spatially
accurate.

2) MULTISCALE FEATURE AGGREGATION MODULE
During vehicle operation, due to various factors such as aging
and loosening, or vibrations during aggressive driving, the
miscalibration ranges of the extrinsic parameters are uncer-
tain. There is a method [24] to study the correlation between
resolution and object size. The authors propose a feature
fusion module, which is essentially an attention module,
to combine the advantages of different resolution features.
Similarly, we study the correlation between resolution and
miscalibration range. Intuitively, as for a small miscalibration
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FIGURE 3. Downsampling block.

range, because details are preserved better in high-resolution
features, a high-resolution model can build a more accu-
rate correlation between images and depth maps. Therefore,
a high-resolution model works better for a small mis-
calibration range, whereas a low-resolution model per-
forms better for a large miscalibration range, as the
low-resolution representations are semantically stronger.
In Table 6, we experimentally verified this intuition. Thus,
fusing the multiresolution features encouraged network
robustness against miscalibration ranges.

In Fig. 4, this module consists of multiresolution rep-
resentations acquired from the feature extraction network
for each modality. Inspired by [24], to enable the network
to adaptively control the flow of information from multi-
ple branches with different feature scales, we proposed an
automatic adjustment operation, namely, multiscale feature
aggregation among multiple resolution branches.

First, we concatenated the feature maps along the channel
dimension in each level to fuse the information from both
modalities. Then we recalibrated the channel importance in
each branch. Specifically, as Fig. 4 states, we downsampled
the high-resolution concatenated features to the same resolu-
tion through stride-2 3 × 3 convolutions and fused features
via an element-wise summation. Next, we performed global
average pooling to obtain attention weights a. Further a is
fed to a multi-layer perceptron (MLP) which consists of a
fully connected (FC) layer with 2C

r output channels (r is the
channel compression ratio), four parallel FC layers with 2C
output channels, and Softmax function. Lastly, we multiplied
the different scale features and their corresponding attention
vectors to obtain the recalibrated features.

To incorporate multiscale information into the feature at a
given single resolution, we borrowed the cross feature-level
fusion block [24] to dynamically adjust the weights of differ-
ent resolution feature branches.

FIGURE 4. Multiscale feature aggregation module. C1/4 and L1/4
represent high-resolution features extracted from two separate branches
of feature extraction network, respectively.

3) GLOBAL AGGREGATION
As the accurate calibration is built on a strong feature
learning ability, that is, obtaining fused features from the
multiscale feature aggregation module, we input them into
DenseNet [25] for further feature learning. Thereafter,
we used an FC layer and two branches with stacked FC layers
to obtain a 1 × 3 translation vector and a 1 × 4 rotation
quaternion.

C. LOSS FUNCTION
Regarding the loss function, we used LCCNet [14] as a ref-
erence. During training, we used two types of loss functions:
regression loss LT and point cloud distance loss Lp.

1) REGRESSION LOSS
After obtaining the predicted translation vector tpred ,
we inspected the predicted translation vector tpred and the
translation part of random transformation parameters 1T ,
that is, 1t . We used the smooth L1 loss to represent the
translation loss. The translation loss function is as follows:

Lt =
1
3

∑
r∈(x,y,z)

Smooth L1(1tr−tpred__r ), (5)

where the smooth L1 loss is as follows:

SmoothL1 =

{
0.5x2 |x| < 1
|x| − 0.5 x < −1 or x > 1.

(6)
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Regarding the rotation loss, as in [26], we set the angular
distance as the difference between quaternions.

LR = Da(qgt − qpred ) (7)

The total regression loss combined the above two loss
functions as defined below:

LT = ktLt + kqLR. (8)

2) POINT CLOUD DISTANCE LOSS
We used the same point cloud distance loss [14], as defined
below:

Lp =
1
N

∑N

i=1

∥∥∥T−1pred ×1T × Pi − Pi
∥∥∥
2
. (9)

D. CALIBRATION INFERENCE
The network corrects errors from initial calibration Tinit to
the ground truth Tgt online, rather than directly obtaining the
accurate parameters. Therefore, we combined the predicted
parameters and the initial calibration parameters to obtain the
calibrated parameters:

T̂LC = T−1pred × Tinit . (10)

IV. EXPERIMENTS AND DISCUSSION
A. DATASET PREPARATION
We used different sequences in the KITTI dataset [27] that
were acquired in various scenes with different calibration
parameters. Some existing learning-based methods use dif-
ferent training and testing datasets. For a fair comparison,
we used three different experimental setups as follows.

1) KITTI-ODOMETRY DATASET
The KITTI-Odometry dataset [28] consists primarily of the
sequences ‘‘2011_09_30’’ and ‘‘2011_10_03’’, which are
further divided into 21 smaller sequences (00-02,04-21).
In addition, it includes a small sequence (03) which consists
of 801 frames of the sequence ‘‘2011_09_26’’. Compared
with the total size (43,552 frames) of the Odometry dataset,
we can assume that the sequence ‘‘2011_09_26’’ is not in
the KITTI-Odometry dataset. The images and point clouds
in each small sequence were paired based on the timestamp
synchronization of the camera and the LiDAR. We only used
the left images and point clouds from the small sequence
00 as the testing dataset, and the small sequences from 01 to
21 as the training datasets. The KITTI dataset provided the
extrinsic parameters in each sequence using the method of [1]
and we applied them as the ground truth Tgt .

2) KITTI-RAW SEQUENCE ‘‘2011_09_26’’
We used all drives (except 0005 and 0070) for training and
the 0005 and 0070 drives as the testing set.

We added a random transformation 1T to miscalibrate
the point clouds. For the above two datasets, the deviation
range of miscalibration was set to±10◦ rotation and±0.25 m
translation of any axis.

3) PARTS OF THE KITTI-ODOMETRY DATASET
To compare our method with CMRNet [20], which is an end-
to-end method with an iteration scheme, we used the same
training and testing dataset setup. We set sequences 03-09
as the training dataset (total of 11,697 frames) and sequence
00 as the testing dataset (4,541 frames).

The maximum deviation range for the first iteration was
[±2 m, ±10◦] and for the second and third iterations were
[±1 m, ±2◦] and [±0.6 m, ±2◦], respectively.
As the image dimension in the KITTI dataset was dif-

ferent, we downsampled the original and depth images
to 512 × 256 through bilinear interpolation.

B. EVALUATION METRICS
To analyze the experimental results and fairly compare them
with other learning-based methods, we used [14] as a refer-
ence. For the translation, the absolute translation error was
expressed as follows:

Et =
∣∣tpred − tgt ∣∣ . (11)

We calculated the absolute translation error in the
X-, Y-, and Z-directions as EX ,EY , and EZ , respectively, and
the mean value as t .

For the rotation, we transformed the rotation matrix to
Euler angles and computed the angle errors of roll, pitch, yaw,
and the mean value R.
In addition, we applied the localization error mentioned

in [20]: the median and mean translation errors and standard
deviation for the translation component and the correspond-
ing rotation errors for the rotation component.

C. TRAINING DETAILS
We built the network with the Pytorch library. During train-
ing, we used the Adam optimizer and set the initial learn-
ing rate to 1e−4. In addition, we halved the learning rate
after 20, 50, and 70 epochs. We trained the PSNet on an
Nvidia RTX2080Ti GPU with batch size 16. For the KITTI-
Odometry dataset and KITTI-raw sequence ‘‘2011_09_26,’’
the training epoch of the model was set to 50. The training
epoch of the model on parts of the KITTI-Odometry dataset
was set to 100.

D. RESULTS AND DISCUSSION
We evaluated the calibration performance of PSNet on the
testing dataset described in Section IV.A.

1) TESTING ON THE KITTI-RAW SEQUENCE ‘‘2011_09_26’’
AND KITTI-ODOMETRY DATASET
The calibration results are shown in Table 1. CalibNet, Cal-
ibDNN, and CalibRCNN were all set with an initial off-
range of (±0.25 m, ±10◦). Dealing with the miscalibration
range, CalibDNN and CalibRCNN were simple with a sin-
gle model and single iteration, whereas CalibNet used two
separate models for the rotation and translation calibration.
Their experimental datasets were different; to compare the
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FIGURE 5. Examples of PSNet predictions.

performance of PSNet with these methods, we designed two
sets of experiments with two datasets according to the exper-
imental setting of each method. For CalibNet and CalibDNN,
their approach was evaluated on the KITTI-raw sequence
‘‘2011_09_26,’’ and CalibDNN outperformed CalibNet.

Compared with CalibDNN, PSNet achieved a mean abso-
lute error for translation prediction of 0.030 m (x, y, z: 0.044,
0.015, 0.032 m), which was superior to CalibDNN and Cal-
ibNet, and a rotation prediction of 0.22◦ (roll, pitch, yaw:
0.17◦, 0.29◦, 0.20◦), which was also acceptable. It is worth
noting that we comprehensively considered several errors
after calibration. By analyzing the test results on KITTI-raw
sequence ‘‘2011_09_26,’’ we found that the roll and yaw
angle errors achieved by PSNet were worse than those of
other methods listed in Table 1; however, the mean R value
was similar to that of CalibDNN and the absolute translation
errors in Y, Z were noticeably smaller than those of the other
methods. Therefore, we concluded that PSNet outperforms
CalibDNN and CalibNet.

For CalibRCNN, the approach was evaluated with the
KITTI-Odometry dataset. It obtained a mean absolute error
for translation prediction of 0.053 m (x, y, z: 0.062, 0.043,
0.054 m), and its rotation error was 0.42◦ (roll, pitch, yaw:
0.19◦, 0.64◦, 0.44◦), whereas our method achieved a mean
error of 0.031 m (x, y, z: 0.038, 0.028, 0.026 m) in trans-
lation and 0.15◦ (roll, pitch, yaw: 0.06◦, 0.26◦, 0.12◦) in
rotation. This shows that our results were better than those
of CalibRCNN.

To the best of our knowledge, PSNet performs better than
existing CNN-based calibration methods with a single model
and single iteration.

Fig. 5 shows some examples of PSNet predictions. The first
column represents LiDAR point cloud projections onto the
image plane with the initial extrinsic parameters. The second

TABLE 1. Calibration results and comparison with other methods.

column represents LiDAR point cloud projections onto the
image plane with the ground truth extrinsic parameters, and
the last column shows the corresponding calibrated results.
As is apparent, the calibrated depth image is consistent with
the ground truth. Although the initial depth maps shown in
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Fig. 5 are low quality, our method still achieved accurate
calibration results.

2) TESTING ON PARTS OF THE KITTI-ODOMETRY DATASET
It is worth noting that CMRNet used the iterative approach
to improve the accuracy of the final localization; different
CNNs were trained by considering descending error ranges
for both the translation and rotation components of the initial
pose. In CMRNet, the values of different calibration deviation
ranges were clearly stated.

TABLE 2. Iterative pose refinement.

TABLE 3. Comparison results using parts of the KITTI-odometry dataset.

The maximum deviation range for the first iteration was
[±2 m, ± 10◦] and for the second and third iterations were
[±1 m, ± 2◦] and [±0.6 m, ± 2◦], respectively. The RGB
images and corresponding point clouds input the maximum
deviation range network, and then we regarded the prediction
as T0, and calibrated the miscalibrated point clouds with T0.
The RGB images and corresponding new calibrated point
clouds were input to the next network to predict a new trans-
formation T1. In this case, the process to obtain the calibrated
extrinsic calibration matrix is expressed as:

TLC = (T0 × T1 × T2)−1 × Tinit . (12)

Table 2 shows the median localization errors for the three
iterations. In Table 3, we provide a comparison between
PSNet and CMRNet. The results indicate that PSNet outper-
formed CMRNet.

3) CALIBRATION ON UNTRAINED DATASETS
As stated in Section IV, different sequences were acquired
in various scenes with different calibration parameters. The
small sequences, which all belong to one sequence, have
the same extrinsic and camera calibration parameters. The
KITTI-Odometry dataset mainly consisted of sequences

‘‘2011_09_30’’ and ‘‘2011_10_03’’ and a small (801 frames)
part of sequence ‘‘2011_09_26.’’ Inspired by CalibRCNN,
to test whether our method had good generalization abil-
ity, we trained a model on the KITTI-Odometry dataset
and evaluated its performance on the KITTI-raw sequence
‘‘2011_09_26,’’ which had unfamiliar scenes.

We observed that the mean errors for translation and
rotation tested on KITTI-raw sequence ‘‘2011_09_26’’ were
0.042 m and 0.19◦, respectively, which were slightly larger
due to different scenarios and initial calibration parameters.
The experimental results show that our method exhibited a
much better generalization ability than CalibRCNN.

TABLE 4. Calibration results on untrained datasets and comparison with
other methods.

E. ABLATION STUDY
Our proposed calibration network consisted of two main
stages: a backbone with a downsampling block and a mul-
tiscale feature aggregation module. To test the effectiveness
of these modules, we designed an ablation study to prove our
design choice on the KITTI-Odometry dataset.

1) DOWNSAMPLING BLOCK
We designed an ablation study to compare the effects of
the backbone with or without the downsampling blocks.
The backbone with the downsampling blocks used them
to obtain the low-resolution representations, whereas the
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TABLE 5. Downsampling block ablation experiment on KITTI-odometry
dataset and comparison with ResNet-18.

backbone without the downsampling blocks directly obtained
the low-resolution representations through stride-2 3× 3 con-
volutions. The results are provided in Table 5. We found
that the backbone with the downsampling blocks performed
better.

At the same time, most existing methods used ResNet-18
as their feature extraction network, whose number of param-
eters is similar to our method. Therefore, we designed a
comparison experiment with ResNet-18. The results show
that our feature extraction network outperforms ResNet-18.

2) MULTISCALE FEATURE AGGREGATION MODULE
We prepared an ablation study to test the effectiveness of
our multiscale feature aggregation module. First, we stud-
ied how the representation resolution affects the calibration
performance on different miscalibration ranges. To elucidate
the experimental effect, we chose the translation and rotation
ranges of [±1.5 m, ±20◦], [±0.3 m, ±15◦], and [±0.1 m,
±1◦]. On each miscalibration range, we trained two differ-
ent resolution networks (1/4, 1/32 size); and the results are
shown in Table 6. We observed that a high-resolution model
works better for a small miscalibration range, whereas a low-
resolution model performs better for a large miscalibration
range. Specifically, for the off-range of [±1.5 m, ±20◦],
we found that the absolute translation errors of the three
models were similar; however, the rotation errors of a
low-resolution model were noticeably smaller than those
of a high-resolution model. Therefore, we believe a low-
resolution model performs better for a large miscalibration
range. Similarly, for the off-range of [±0.1m,±1◦], we found

that the absolute rotation errors of a high-resolution model
were noticeably smaller than those a low-resolution model.
Furthermore, we also observed that a model employing the
multiscale feature aggregation module was robust against dif-
ferent initial error ranges due to the incorporation of multires-
olution information in the fused features. At the same time,
the runtime of the calibration process was 18 ms for an iter-
ation on a single Nvidia RTX2080Ti GPU, which indicates
that, although we used our multiscale feature aggregation
module, the model still fulfilled real-time requirements.

TABLE 6. Multiscale feature aggregation module ablation experiment On
KITTI-odometry dataset.

V. CONCLUSION
In this study, we proposed a novel end-to-end calibration net-
work for a 3D LiDAR and 2D camera system. The proposed
network mainly consists of three key characteristics: (i) The
addition of a downsampling block to increase suitability for
sparse projected depth maps; (ii) The connection of the high-
to-low resolution convolution streams in parallel to obtain
multiresolution features that are spatially more precise and
have richer semantic information; (iii) The fusion of the
multiresolution streams by the multiscale feature aggregation
module. We experimentally verified this intuition, namely,
that a high-resolution model performs better for small mis-
calibration ranges, whereas a low-resolution model performs
better for large miscalibration ranges. These methods could
be aided by employing the iterative refinement approach con-
sidering descending error ranges to improve the calibration
accuracy. The runtime of the calibration process was 18 ms
for an iteration on a single Nvidia RTX2080Ti GPU, which
meets real-time requirements.

We designed extensive experiments on different datasets
to demonstrate the state-of-the-art performance of the
proposed methods. Compared with existing single-model
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single-iteration methods, the performance of our model
was state-of-the-art. Compared with existing state-of-the-
art methods with iteration refinement approaches and clear
different calibration deviation range values, we achieved a
competitive result. The results on untrained datasets showed
that PSNet has good generalization ability. We plan to further
improve its performance and apply CNNs to find the trans-
formation between LiDAR and stereo cameras.
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