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Abstract: Plasmonic metasurfaces have been widely used in biosensing to improve the interaction
between light and biomolecules through the effects of near-field confinement. When paired with
biofunctionalization, plasmonic metasurface sensing is considered as a viable strategy for improving
biomarker detection technologies. In this review, we enumerate the fundamental mechanism of
plasmonic metasurfaces sensing and present their detection in human tumors and COVID-19. The
advantages of rapid sampling, streamlined processes, high sensitivity, and easy accessibility are high-
lighted compared with traditional detection techniques. This review is looking forward to assisting
scientists in advancing research and developing a new generation of multifunctional biosensors.

Keywords: plasmonic metasurfaces; biosensing; cancer; COVID-19

1. Introduction

Since wood observed the plasmon phenomenon on the subwavelength metal grating in
1902, the development of plasmon has made rapid progress in the last hundred years [1–9].
Surface plasmon resonance (SPR) is a collective electronic oscillation phenomenon, which
could be classified into two main forms, as surface plasmon polarization (SPP) and localized
surface plasmon resonance (LSPR), by their different excitation ways [10]. SPP is commonly
produced by shining plane-polarized light onto a continuous metal surface, which can break
the diffraction limit and improve the ability to manipulate light on the sub-wavelength
scale, making it a promising candidate for the next generation of ultra-miniature integrated
photonic circuits and highly sensitive biosensors for information processing [11,12]. The
LSPR, on the other hand, is the collective oscillation of electrons at the interface of metal
nanoparticles (NPs) irradiated by the excited light of specific frequencies. Due to their
sensitivities to the refractive index of the molecular on the media surface, SPR has been
widely applied to monitor the molecular binding events on the surface of media [13,14]
and gradually became a popular technology in biological detection [15], food safety [16],
the medical field [17], and other areas [18]. Compared with the traditional methods of
biomedical detections, such as Enzyme-linked immunosorbent assay (ELISA), polymerase
chain reaction (PCR), and fluorescence probe-based detection, etc. [19–21], SPR has the
advantages of being label-free, having a high sensitivity, and real-time dynamic moni-
toring [22–24]. According to different excitation ways, the optical coupling mechanisms
of SPR biosensing can be further classified into three categories, namely, prism-based
coupling, plasmonic waveguide, and metasurfaces coupling [25–27]. The prism coupling
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detection is greatly dependent on the special apparatus, which consists of an intricate
optical and a microfluidic system. Hence, the special detection apparatus used in this
method enhances the cost and leads to a large volume, for which the application is hard to
be used prevalently. Based on the principle of SPP wave, plasmonic waveguides, especially
metal-insulator-metal (MIM) waveguides, which consist of a dielectric core and two metal
cladding layers have drawn more attention. Due to the strong localization of SPP modes,
they can provide acceptable propagation lengths and ease of manufacture over a very wide
wavelength range [28–32].

Plasmonic metasurfaces (nano pillars, bowties, capertures/engravings, nanoholes,
etc. [33,34]) are commonly produced by nanofabrication technology, which can be divided
into two basic methods bottom-up and top-down methods, according to their different man-
ufacture crafts. Briefly, the former is based on the conditions of a chemical reaction to change
the size and shape of the nanomaterials. The latter usually relies on the nanoimprinting
and lithography technologies, such as thermal nanoimprinting, ultraviolet nanoimprinting,
electron beam lithography (EBL), focused ion beam (FIB) lithography, deep silicon etching,
etc. [35]. The plasmonic metasurface is generally fabricated by the novel metals, which
have the characteristics of chemical inertness and bio-functional feasibility. Based on the
effects of near-field enhancement, it can be used for both labeled and label-free biosensing.
For labeled biosensing, plasmonic surface-enhanced detection techniques can be used to
improve the optical output of fluorescent measurements [36–38]. On the contrary, label-free
plasmonic biosensing has attracted more attention, which is feasible on the development of
environmentally-friendly portable instruments and demonstrates the potential for point-
of-care testing. Compared with the biosensing performance of the important dielectric
metasurface counterpart [39,40], plasmonic metasurface has a lower quality (Q) factor of
resonance, but their biomolecule sensitivity is usually much higher. This is attributed to
the greater near-field concentration and confinement, which is typically within the size
scope various biomolecules [10]. The metasurface-based coupling on the specific metal
nanostructure is easily detectable by a flexible and tiny device. Besides this, it also has
several notable merits compared to prism coupling: wider detection range, better sensing
linearity, and more diverse customization. As a result, biomolecular sensors based on
metasurfaces are projected to have a greater potential in the clinical diagnosis of a variety
of diseases, including malignancies and pandemics.

Cancer is one of the most crucial factors that affecting human life. Noninvasive imag-
ing, endoscopic, and ELISA are usually used in cancer detection [41–48]. However, all of
these approaches suffer from several certain limitations involving low sensitivity, incon-
venience, and risk of perniciousness, which limit its applicability in the prediagnosis and
prognosis of cancer. In the process of cancer detection, tumor markers play an important
role. According to the different biological structures, the markers can be divided into
protein markers and non-protein markers [49–55]. To detail the specific application of
metasurfaces on the tumor prediagnosis, the protein markers including Carcinoembryonic
Antigen sensing (CEA), Prostate-specific antigen (PSA), and other protein tumor indica-
tors, combing with the non-protein markers as exosomes, are illustrated in this review.
Compared with traditional detection techniques, the advantages of metasurfaces-based
detection in early screening and detection are highlighted.

Additionally, the potential application of metasurfaces sensing in the current pandemic
of COVID-19 is also introduced. Up to date, the conventional detection methods involving
ELISA and PCR are major techniques to diagnose the infection. However, the complicated
operation and long detective period are still major challenges for these methods, especially
when the sample number are huge. To improve the screening efficiency of the COVID-19
pandemic and enhance the responsiveness for other pandemics in the future, better and
faster diagnostic technologies are urgently needed. The metasurface-based biosensing
we have mentioned above is regarded as an interesting alternative approach, where the
feasibility in infectious detection has been widely demonstrated in many studies. Thereby,
this technology is a promising technique for the rapid diagnosis of viruses.
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To investigate the potential applications of metasurfaces sensing in detail, four sec-
tions have been illustrated in this review. In Section 1, we illuminate the physical basics
of plasmonic biosensing and demonstrate various typical applications of plasmonic meta-
surfaces on cancer and COVID-19 detection; the specific applications are summarized in
Figure 1. In Section 2, we discuss the principles of metasurfaces which are based on the SPR,
LSPR, and hybrid modes. In Section 3, we mainly focus on the application of plasmonic
metasurfaces sensors in cancer detection. In Section 4, we introduce the application of
continuous periodic metasurfaces and discrete self-assembled metasurfaces in COVID-19
detection. Finally, we discuss how plasmonic surface sensors could be used to detect cancer
and viruses.
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2. Principles of Metasurfaces Biosensing

The light-matter interaction through the evanescent field of SPR is a common mecha-
nism for biomedical analytes detection [56]. The metasurface sensors based on SPR and
LSPR are mainly based on the analysis of angle, wavelength, phase, and other plasmon
parameters [57–62]. Metasurfaces-based SPR refers to a kind of artificial meta-atoms (usu-
ally periodic) that are designed to manipulate the amplitude, phase, and polarization of
electromagnetic waves [63–68]. Compared with the traditional prism coupling-based SPR,
the detective facility for metasurfaces-based SPR is easier to be fabricated and the signal is
also more stable [69–71]. In terms of periodic arrays, the near-field and far-field coupling
is utilized to generate resonance with a high quality Q factor on the metasurfaces, and
the effect of the collective mode resonance significantly breaks the damping limit of a
single metal nanostructure in the dipole approximation. In the case of SPR, it is usually
impossible to excite the SPP directly at a perpendicular incidence because the wave vectors
do not match directly, whereas, for the periodic array structure (2D grating structure),
the diffraction wave will produce a tangential wave vector component provided by the
grating of lattice vector, while the waves are incident to the surface of a metal grating. The
excitation condition for SPP of periodic grating structure can be written as: [13]

λ =
a0√

m2 + n2

√
εmεd

εm + εd
. (1)
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where εm and εd are metal permittivity and dielectric permittivity, respectively; a0 is the
lattice constant; and m, n are the scattering orders. On the basis of the equation above
(Equation (1)), we can easily draw the positive correlations between the refractive index of
the environment changes and resonance wavelength, which is the exact physical mechanism
of periodic metasurfaces for biosensing.

In addition to the continuous periodic metasurfaces arrays, some self-assembly (a
kind of array with random distribution, which still possesses a certain periodic trend in
statistics) metastructures, and other hybrid modes also play an important role in the LSPR
domain. LSPR can enhance the electromagnetic field to change its absorption, reflection,
and transmission properties for detecting biomolecules [72]. The resonance effect of LSPR
can be regarded as a metal spherical nanoparticle with a radius of a (a� λ) under the action
of an electromagnetic field. By solving the Laplace equation with a boundary condition,
combing with metal Drude mode formula, then ignoring the damping effect, the resonance
frequency wl of LSPR can be defined as [73]:

wl = wP

[
l

εd(l + 1) + l

] 1
2

(2)

where εd and wp are the permittivity of environment and plasma frequency, respectively,
and l is the angular momentum of the resonant mode. This is similar to the sensing mecha-
nism of the SPR. The variation of background permittivity εd will lead to the spectral shift
∆w (correspondingly ∆λ for wavelength) of LSPR, which is the basic sensing mechanism.

For either SPR or LSPR, bulk refractive index sensitivity (S), the figure of merit (FOM),
and limit of detection (LOD) are very important elements to metasurface-based sensor
performance. S is an important parameter determined by the environmental refractive
index changes, derived from the molecular interaction on the surface of metastructures.
Thus, it is used to evaluate the sensing capability of an optical sensor. The correspondence
between S and n can be described according to Equation (3): [68]

s =
dA
dn

(3)

where A denotes the measured physical parameters (wavelength, angle, or spectral inten-
sity), and n is the refractive index. Deuterium lamps, halogen lamps, or their combined
light sources, paired with optical fibers and spectrometers, are commonly utilized for plas-
monic sensors. Changes in the wavelength, angle, and intensity of the spectrum are usually
caused by changes in the refractive index n of the analyte. The sensitivity of plasmon
sensors can range from 50 nm/RIU (refractive index unit) to 30,000 nm/RIU (refractive
index unit) depending on structural design and material selection [74].

FOM is another important parameter that is utilized to define the sensor’s ability to
respond to changes of small refractive index. For plasmonic plane metal structures, FOM is
usually not high due to intrinsic losses, but for the metastructures, the intrinsic losses can
be reduced by using different materials and structures. The relationship between FOM and
S can be defined as [75]:

FOM =
S

FWHM
(4)

where FWHM represents the full width at half maximum of resonance spectra.
LOD is the third sensing parameter, which is mainly determined by sensitivity and

noise level. The relationship between LOD and S can be written as [73,75]:

LOD = m
σblank

S
(5)

where m is a numerical factor, and σblank is the standard deviation of the blank measures.
The LOD is mainly determined by sensitivity and noise level, so it can be improved with
low noise detectors and light sources.
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3. Tumor Marker Screening Based on Plasmonic Metasurfaces

The biosensor based on the SPR is an emerging platform for disease biomarkers
detection. Comparing with the ELISA etc., the approach can provide a non-invasive,
real-time, label-free, and rapid detection of cancer markers. To gain a precise screening,
the selection of suitable cancer biomarkers is very important. According to the general
classification of the biological properties of biomarkers, this section focuses on the detailed
screening and detection of protein biomarkers, which are widely used in clinical practice,
involving CEA sensing, PSA, and exosomes (Figure 2).
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tion of periodic nanorods. (b) The linear fitting relationship between wavelength dip shift migration
and CEA concentration. (c) Scanning electron microscope (SEM) image of exosomes captured by func-
tionalized nanohole arrays. (d) Comparison of exosome detection sensitivity between nanohole chip
and ELISA. Reprinted (a,b) with permission from Reference [76]. Reprinted (c,d) with permission
from Reference [77].

3.1. CEA Sensing

CEA is a cell membrane glycoprotein expressed by normal mucocytes. The normal
content of CEA in adults’ bloodstream is approximate 2.5 ng/mL, while the content in
tumor patients usually surges to 100 ng/mL or more. The elevation of CEA in serum com-
monly indicates the possibility of colorectal cancer, gastric cancer, breast cancer, lung cancer,
and ovarian cancer [78]. Therefore, as a conventional broad-spectrum tumor marker, CEA
detection has been widely studied in the SPR field. Zhu et al. have produced a cyclical hard
gold nanohole array by using nanoimprint and oxygen plasma etching technology [79].
Combining with the soft nano-imprinting lithography, microfluidics, antibody function-
alization, and mobile optical spectroscopy, they established a cost-effective plasmonic
metasurfaces immune sensing platform, which realized the portable detection of CEA. By
plotting the changes of wavelength dip on the event of CEA binding, the shift of wavelength
dip against different CEA concentrations will decrease or increase linearly in a special
range. The real CEA content in the serum of cancer patients was utilized to assess the
detection, and the result demonstrated a high accuracy with a very small error, referring to
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the real content. The sensitivity is up to 490.2 nm/RIU, and the limit of detection (LOD) was
5 ng/mL, four times lower than the threshold of 20 ng/mL of CEA detection. Based on the
gold nanohole array in the visible light regime, they achieved stability and high-sensitivity
detection by using the microfluidic technology, then provided a new solution for portable
medical and real-time diagnosis [79]. The manufacturing process of the hard substrate is
complex, which is inconvenient to the application of the smart devices. To simplify the
process, Zhu et al. further designed a flexible periodical nanopillar. By coating the gold
film with the polycarbonate substrate IPS (Polycarbonate), the sensitivity and LOD of the
bio-functional IPS were boosted to 454.4 nm/RIU and 5 ng/mL, respectively; illustrations
are shown in Figure 2a,b. In addition, the manufacturing steps and cost are also reduced.
This technology is suitable for large-scale production and commercialization and shows
the potential for clinical and future applications in flexible wearable devices [76].

3.2. PSA Sensing

PSA is a glycoprotein mainly secreted by the prostate cells. However, it is also a
tumor marker, usually utilized for carcinoma diagnosis. The diagnostic gray of PSA is
4.0–10 ng/mL, and when the concentration is higher than 10 ng/mL in serum, the risk
of prostate cancer is increased [80]. Therefore, the accurate quantization of PSA levels is
very important for the early diagnosis of cancer [81,82]. Khan et al. provided an idea for
monitoring other biological interactions by virtue of DNA aptamers. Due to the advantages
of strong versatility, resistance to degeneration, and substrate recovery [83], the DNA
aptamer-functionalized gold nanodisk array achieved a bulk sensitivity of 113 nm/RIU
based on LSPR extinction spectroscopy, and the LOD is as low as 1.49 ng/mL with the
dynamic range from 1.7 to 20.4 ng/mL in PSA detection [83] as shown in Figure 3a,b. For
realizing miniaturization and integration, Lin et al. utilized a kind of reusable gold nanodisk
arrays as a nanoprobe at the fiber end used by the Electron Beam Lithography (EBL) and
metal peel technology, achieving 100 FG/mL (3 fM) LOD for the free F-PSA [84]; Couture
et al. designed a periodic hexagonal nanohole array through lithography technology on a
4-inch glass wafer. In comparison to single channel measurements with nanohole arrays
fabricated with nanosphere lithography, the nanohole array sensors greatly enhanced
the signal-to-noise ratio of the plasmonic signal and precision of the measurements with
the multiwell plate system for achieving a low antibody detection range. Due to the
small molecular weight (28 kDa) [85], PSA usually requires a secondary antibody for the
amplification of the plasmonic signal. By using sandwich determination, the LOD of the
proposed sensor was lowered to 0.1 nM [86].
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Figure 3. Different nanostructures and PSA sensing performance. (a) Biorecognition process of PSA
based on gold nano disks. (b) The distribution of the electric field intensity at resonance around gold
nanodisk array by FDTD simulation. (c) Scanning electron microscope (SEM) image (side view) of
aluminum nanopyramid array. (d) Reflectance spectra for detecting CA199 based on the anti-CA199
modified Al nanopyramid array by specific interaction in different solutions; Reprinted (a,b) with
permission from Reference [83]. Reprinted (c,d) with permission from Reference [87].

3.3. Other Protein Tumor Markers Sensing

Despite of the CEA and PSA, other tumor markers including Tumor necrosis factor-
alpha (TNF-α), carbohydrate antigen (CA199), and alpha-fetoprotein (AFP) were studied
by the biosensing performed on either different material or shaped metasurfaces. For
example, Jin et al. designed a gold nanometer mushroom array. Based on the interaction
between the Wood anomaly and local surface plasmon, the refractive index sensor with
quality factor is up to 108, which approaches the upper limit of the theoretical prediction
of a standard PSPR sensor. The array achieves the bulk sensitivity of 1015 nm/RIU and
was also validated by alpha-fetoprotein detection. Furthermore, the observed LOD reaches
15 ng/mL [88].

TNF-α is an inflammation-related protein, which plays an important role in disease
diagnosis and prediction. Monteiro et al. used a gold nanohole array by transmitted
light intensity monitoring to achieve a sensitivity of 4000–5300 IU/RIU and a LOD of
17 pg/mL [89]. Aluminum has an advantage over the classic noble metal induction process
because of its natural abundances, low cost, ease of processing and large-scale manufactur-
ing, and ease of processing with a range of technologies, including complementary metal
oxide semiconductor process. However, aluminum’s plasmonic mode is limited by its UV-
green wavelength, poor refractive index, facile surface oxidation, and structure dependence,
which hinder the application of aluminum in plasmonic biosensing. Zhou et al. achieved a
rapid detection of tumor marker CA199 via a uniform quasi-three-dimensional aluminum
nanocone array, which could generate the tunable UV-visible-near-infrared plasmons by
changing the incident angle and achieving a LOD of 29 ng/mL in the air [87]. More interest-
ingly, In the immunodetection of the bovine serum protein (BSA) protein antibody, Zhu et al.
synthesized nanoimprint printing, oxygen plasma etching, metal film deposition, oxygen
plasma passivation, and other processes to prepare 2-inch aluminum nanocrystals on a
flexible polymer substrate with a detection limit of 1 pg/mL. The sensitivity of aluminum-
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based metasurfaces is two orders of magnitude higher than that of gold metasurfaces
with the same structure, demonstrating improved biomolecular immunodetection ability
and clinical application potential [90]. Differing from the conventional detection in the
visible band, the THz metamaterial has a precise and tunable vibration frequency, which is
consistent with the vibration frequency of some important tumor marker molecules, but
its water absorption phenomenon is a major obstacle that hinders the micro-detection of
tumor marker antigen antibodies. Geng et al. and co-workers suggested overcoming the
issue of water absorption and gained a 14.2 GHz resonance displacement (0.02524 ug/mL)
in tumor marker AFP detection by using a metal nano-cracked ring resonator and Poly-
dimethylsiloxane (PDMS) microchannel [91]. Furthermore, by refining the metamaterial’s
structure and lowering the matrix’s dielectric constant, the sensitivity of specific cancer
biomarkers can be boosted even more. This method has strong application potential for the
special recognition of early cancer molecules.

3.4. Tumor-Derived Exosome Sensing

Exosomes are a kind of extracellular microvesicle secreted by miscellaneous cells in
whole human organism and widely exist in blood, urine, saliva, and even breast milk [92].
Due to its ability to transport the molecular contents from the originated cells to the targeted
cell, exosome is also notorious for the role of an accomplice in tumor progress. The abnormal
increase of exosomes is always found in those patients who suffer from a malignant tumor.
Thereby, exosomes are regarded as a potential biomarker in cancer diagnosis. In the
absence of biopsy, the capture of exosomes containing molecular information from their
parent tumor cells can be used as a novel means to predict and diagnose cancer [93].
However, traditional methods of exosome detection based on ultracentrifugation, western
blotting, and ELISA require complicated sample handling and professional experiment
operation [94], which limit the detection to realize miniaturization and portability. Recently,
the modulated metasurfaces-based detection provides a new idea for fast and portable
detection of exosomes. Lee et al. proposed a nanoplasmonic exosomal sensing (nPLEX)
technique based on periodic nanohole arrays; the illustration is shown in Figure 2c,d. The
nanohole structures greatly improve the detection sensitivity on exosomes by limiting the
surface electromagnetic field and enhancing the evanescent field referring to the exosome
size ranges [77,95,96]. By employing a complementary metal-oxide-semiconductor (CMOS)
apparatus, the binding of exosomes to the nanohole surface could be easily reflected by
the phase difference or intensity variation, which is induced by the shift of the plasmon
resonance signal. The nPLEX array with 36 sensing units can synchronously support
12 potential exosome markers detection in parallel, achieving the LOD of approximately
3000 exosomes (670 aM) in 30 min. Furthermore, the nPLEX platform can be enhanced
further by the secondary labeling of Au nanoparticles. The nPLEX chip can be scaled up
to improve throughput in clinical applications for high-throughput clinical diagnosis of
pancreatic malignancy by multi-marker extracellular vesicle, EV [95,96].

Based on nanohole arrays, Shao et al. measured different populations of circulating
amyloid β (Aβ) proteins—exosome-bound vs. unbound—directly from blood. The local
optical deposits and double-layer plasma nanostructures for in-situ enzyme conversion
were used to achieve high sensitivity. More interestingly, the multi-channel population
analysis achieves high sensitivity (about 200 exosomes) and can attain the co-localization of
multiple targets in exosomes. This shows the important role of exosomes in the diagnosis of
Alzheimer’s [97]. Illustrations are shown in Figure 4a–c. Liu et al. designed an integrated
microfluidic device of nanoporous gold (Au) with modified membrane nanoclusters to
capture antibodies. The second antibody-coupled gold nanorod probe was loaded under
a dark field microscope to identify and quantify the specificity of lung cancer. Exosomes
can be used to isolate and detect on-site lung cancer-specific exosomes collected from the
patient’s urine. Due to resonance Rayleigh scattering, the complex produces a significant
scattering wavelength shift and increases the scattering intensity, which enables the ultra-
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sensitive detection of exosomes with a LOD less than 1000 particles/mL [98], as shown in
Figure 4d,e.
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Figure 4. Performance of different nanostructures and sensing performance for exosomes. (a) Exo-
somes associate with Aβ proteins. The Aβ protein, the main component of amyloid plaques found
in AD brain pathology, is released into the extracellular space. Exosomes are nano-scale outer cell
membrane vesicles secreted by mammalian cells. Exosomes bind to the released Aβ protein through
their surface glycoproteins and glycolipids (b) The APEX platform was used to measure exosomal-
bound Aβ in blood samples of Alzheimer’s disease (AD), mild cognitive impairment (MCI), and no
cognitive impairment (NCI) control groups. The blood measurement results are correlated with the
corresponding PET imaging of cerebral amyloid plaque deposition. (c) A representative schematic di-
agram of the change transmission spectrum with APEX magnification. The APEX platform monitors
the specific exosome binding (before) and the subsequent amplification spectrum (after) transmission
spectrum shift (∆λ). a.u arbitrary unit. (d) Schematic illustration of in-situ detection of exosome
(e) Correlation of AuNC-Exosome-AuR signal ratio against to exosome concentration. Reprinted
(a,c) with permission from Reference [97]. Reprinted (d,e) with permission from Reference [98].

In addition to the conventional two-dimensional nanohole arrays, Pang et al. studied
and compared two-dimensional nanoholes, quasi-three-dimensional nanohole arrays, and
3D photonic crystal structures. Due to the hybrid coupling of LSPR and Fabry–Perot cavity
modes, the quasi-three-dimensional hole structure was stronger. The electromagnetic field
is relative to the two-dimensional nanopore. In the comparison of these three structures, it
is found that the 3D photonic crystal structure based on plasmonics and photonic crystal
modes has a higher sensitivity, reaching 1376 nm RIU−1. Peak shift increased to 102 nm
as exosome concentration increased to 1 × 1011 particles per mL. It shows the potential of
3D photonic crystal structure in the process of exosome detection [99]. Performances of
various nanostructured arrays for cancer detection are summarized in Table 1.
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Table 1. Performances of tumor markers based on metasurfaces.

Metastructure Analytes Bulk Sensitivity LOD Reference

Nanohole CEA 490.2 nm/RIU 5 ng/mL [79]
Nanopillar CEA 454.4 nm/RIU 5 ng/mL [76]
Nanocup CEA 800 ∆T%/RIU 10 ng/mL [100]
Nanodisk PSA 113 nm/RIU 1.49 ng/mL [83]
Nonohole PSA / 0.1 nM [86]
Nanohole CD24 / 0.18 ng/µL [77]

Nanopyramid CA199 819 nm/RIU 29 ng/mL [87]
Nanomushroom AFP 1015 nm/RIU 15 ng/mL [88]
Nanosplit-ring AFP / 0.02524 µg/mL [91]

Nanohole TNF-α 4000–5300 IU/RIU 17 pg/mL [89]
Nanohole Aβ / 200 exosomes [97]

Nanoporosity CD-63 / 1 particle/µL [98]
Nanohole Exosomes 1736 nm/RIU / [99]
Nanopillar CEA / 5 ng/mL [40]
Nanodisk PSA / 1.6 ng/mL [101]

4. COVID-19 Sensing Based on Plasmonic Metastructures

Since the beginning of the COVID-19 pandemic, infectious disease has brought a huge
health threat to the whole world [102]. The rapid screening and insulation of the infectious
person from the healthy population is still a major means of pandemic control. Many re-
views have introduced the development of COVID-19 and its detection methods [103–119].
Nucleic acid amplification and serological testing are two common methods of COVID-19
detection [120–125]. Nucleic acid detection based on two steps of operations consists of
reverse transcription-polymerase chain reaction (RT-PCR) and real-time fluorescence quan-
tify PCR (Q-PCR) is still a gold standard for the infection screening [126–129]. However,
this method has the disadvantages of long period detection time, is expensive, and requires
professional operation [115]. Serological test including ELISA and later flow assay (LFA)
is another common detection method of pathogen infection, which can rapidly identify
an infectious individual who has the immune response [130–136]. Similar to nucleic acid
detection, either ELISA or LFA also suffer numerous complicated operations, including an-
tibody coating, blotting, longtime incubation, scrubbing, and chemical reaction, which limit
its application to POC [134]. Due to the unavoidable disadvantages that exist in nucleic
acid detection and serological tests, a rapid detection method with real-time, unlabeled,
and miniaturization is urgently needed [137–139]. The metasurfaces-based SPR detection
is expected to be an alternative but more promising approach, which could achieve a
real-time, unlabeled, and rapid detection on COVID-19.

4.1. Detection Based on Metasurfaces

Recently, some researchers have developed diversified detection of SARS-CoV-2 based
on SPR technology [140,141], as shown in Figure 5a–d. Liu et al. used gold discrete nanocup
arrays to detect the novel coronavirus spike protein and gained a LOD of 370 vp/mL with
a decent detective range from 0 to 107 based on a label-free LSPR biosensor with an
extraordinary optical transmission (EOT) effect. Results are illustrated in Figure 5a,b. In
addition, gold nanoparticles are used to enhance the sensitivity of the sensor, quantify the
low concentration analysis in a solution with limited diffusion conditions, and amplify the
optical signal to shorten the detection time. Similar fast and sensitive detection capabilities
were demonstrated using low-cost handheld optical devices controlled by a smartphone
application (APP) program. The LOD of SARS-CoV-2 pseudo viruses in hand-held systems
was about 4000 virus particles within 15 min [140]. Yanik et al. developed a kind of
plasmonic nanohole arrays, in which the antibody of the spike protein of SARS-CoV-2 was
initially immobilized on the surface. By capturing the spike protein, the whole viruses
were suspended into the nanohole arrays of grating, and directly resulted in the oscillator
redshift of the resonant frequency, when the grating coupling of the incident light on the
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surface. On the basis of this, small (vesicular stomatitis virus and pseudo Ebola-virus) and
large (vaccinia virus) enveloped viruses can be non-destructively detected [142].
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4.2. Detection Based on Self-Assembled Metastructures

Self-assembled metastructures are another nascent metasurfaces, which are also able
to be used for virus detection. Funari et al. manufactured gold nanospikes metasurfaces
based on electrodeposition technology combined with optical probes to form an optical
microfluidic sensing platform. Based on the changes in the local environmental refractive
index caused by the interaction between the SARS-COV-2 spike protein and the antibody
in the diluted human serum, the shift of the LSPR resonance peak was detected, and a
detection concentration of 0.08 ng/mL was achieved. The diagnostic platform demon-
strates the potential to complement existing serological assays and improve COVID-19
diagnosis; the results are shown in Figure 5c,d [141]. Furthermore, a significantly higher
sensitivity (picomolar) was achieved by Qiu et al. By combining the hybrid effect of plasma
photothermal and LSPR, they enhanced the LOD of virus sequences to 0.22 pM, providing
a new idea for the detection of COVID-19 [143,144]. On the other hand, the self-assembling
nanoparticles made by noble metal are also used to amplify optical signals in the biosensing
process. Das et al. gained a LOD of the spike of SARS-COV-2 to 111.11 deg/RIU by using a
gold nanorod nanoparticle with a Kretschmann prism configuration [145]; Parikshit et al.
proposed the LSPR colorimetric sensor composed of gold nanoparticles. The assay is based
on the specific targeting and binding ability of antisense oligonucleotides to the N gene
of the SARS-CoV-2 virus genome. By immobilizing the antisense oligonucleotides to gold
nanoparticles, the SPR signal derived from binding events was significantly enhanced. In
the presence of SARS-CoV-2 target RNA sequence, the AuNP at the closure of ASOs (anti-
sense oligonucleotides) modified by mercaptan was selectively aggregated, which induces
a redshift of about 40 nm in its absorption of SPP spectrum. Based on this method, positive
cases infected by SARS-CoV-2 were diagnosed within 10 min [146]. Ahmadivand et al.
designed a ring plasma cell sensor to detect the S protein. The assay illustrates an excellent



Sensors 2022, 22, 133 12 of 19

sensitivity with an extreme LOD of 4.2 fM by antibody-AuNP complex. It is also worth
mentioning that the transmission spectrum of the meta-sensor enables the movement of a
polarized beam that excites the etheric Hertz frequency, which confers a promising applica-
tion in the point of care (POC) filed [147]. Cheong et al. developed a compact nano PCR
system that enables SARS-CoV-2 RNA to be detected by a portable device. Rapid thermal
cycling (via plasma heating of magneto-plasma nanoparticles) and in situ fluorescence
detection was enabled after the magnetic removal of nanoparticles. By using this approach,
three samples can be measured simultaneously within 17 min, and the LOD was as low as
3.2 gene/uL [148]. Gao et al. combined three modes of colorimetry, SERS, and fluorescence
detection to detect the RNA of the COVID-19 virus, achieving a LOD of 160 fM after 40 min
of incubation [149]. The typical sensing performance of metasurfaces devices for COVID-19
is summarized in Table 2.

Table 2. Performance of COVID-19 based on metasurfaces.

Metastructure Analytes LOD Reference

Nanospike S protein 0.08 ng/mL [141]
Nanocup S protein 370 vp/mL [140]

Nanoisland SARS-CoV-2 0.22 pM [143,144]
Nanorod S protein 111.11 deg/RIU [145]

Nanoparticle N gene 0.18 ng/uL [146]
Toroidal metasurface/nanoparticle S protein 4.2 fM [147]

Nanohole S protein / [142]
Nanoparticle RNA 160 fM [149]
Nanoparticle RNA 3.2 gene/uL [148]

5. Conclusions and Future Trend

In this paper, we briefly review the applications of plasmonic metasurfaces in biosens-
ing. We discuss the physical sensing mechanisms of the metasurface, focusing on recent
applications of cancer detection and COVID-19 detection.

As for the future development of plasmonic metasurface sensing, we believe that
there is still a great part room for improvement of either detection devices or plasmon
materialization and commercialization. At present, plasmonic-based disease detection is
limited to serum, which needed a complicated preprocessing in the professional laboratory
before detection. However, in order to achieve the POCT, by capturing and manipulating
light on the chip, and manipulating discrete chemical samples on micron and sub-micron
scale chip structures to enhance the function of the chip chemical platform, it may further
promote the development of plasmon miniaturization [150–156] and more accessible sample
involving whole blood, or even involving sweat, saliva, and urine may be a better choice.
This will also bring a greater challenge to portable medical applications in health diagnoses.
With the rapid development of optical technology, in terms of devices with complicated
functions, small-scale and high-integration density is expected to be more flexible and
wearable [157], and plasmonic biosensing can be used in wearable devices to detect those
complicated samples in real-time.

The Biacore series of commercialized plasmonic biosensors (such as the American
General Electric Company’s Biacore 8K series) are based on flat metal film and uses the
SPP effect activated by evanescent waves. It is mainly used to analyze the binding kinetics
and affinity tests of biomolecules. The commercialization of plasmon metasurfaces instant
detection equipment still needs a certain process. There are no mature instruments in the
market. In the future, it may be necessary to solve the problem of large-scale manufacturing
of plasmon chips while maintaining cost control and promoting the commercialization
process well.

On the other hand, metamaterial is another approach to improving detection efficiency
and lowering the commercial cost, so the development of novel materials and structural
design will boost detection technology [158–162]. Conventional noble metals are commonly
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used in plasmonic sensing; however, an inherent feature of optical loss is that it is hard
to be overcome. TiN is a novel material which has been recently used in plasmonic study
due to its stable chemical property and free carrier concentration close to that of gold.
The nonlinear optical response based on free carriers provides a wide spectral response
range. More intriguingly, TiN has one order of magnitude better stability than gold and
other noble metal plasmon materials. Furthermore, TiN is a low cost and easily available
material, which confers its promising commercial application in plasmonic biosensing.
Apart from the material selection, the structural design of the medium is also an alternative
optimization scheme for plasmonic biosensing [163,164]. The required metastructure
is reversely developed in conjunction with artificial intelligence to achieve molecular
customized sensing during biosensing and make efficient use of the electromagnetic field’s
improved hot spot [165–168].
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