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Abstract: A partitionable adaptive multilayer diffractive optical neural network is constructed to
address setup issues in multilayer diffractive optical neural network systems and the difficulty
of flexibly changing the number of layers and input data size. When the diffractive devices are
partitioned properly, a multilayer diffractive optical neural network can be constructed quickly and
flexibly without readjusting the optical path, and the number of optical devices, which increases
linearly with the number of network layers, can be avoided while preventing the energy loss during
propagation where the beam energy decays exponentially with the number of layers. This architecture
can be extended to construct distinct optical neural networks for different diffraction devices in
various spectral bands. The accuracy values of 89.1% and 81.0% are experimentally evaluated for
MNIST database and MNIST fashion database and show that the classification performance of the
proposed optical neural network reaches state-of-the-art levels.

Keywords: optical neural network; diffraction; optical computing

1. Introduction

Deep learning is a machine learning method that predicts data by simulating multi-
layer artificial neural networks. Deep learning is widely used in various fields, including
medicine [1,2], communication [3,4], security [5,6], computer vision [7], and the military.
With the rapidly increasing demands for artificial neural network applications, the compu-
tation and performance requirements have increased dramatically, and the development
of existing neural networks has faced challenges due to bottlenecks in the development
of traditional silicon-based chips in the following two aspects. On the one hand, the von
Neumann architecture has difficulty satisfying the needs of large-scale neural network
computing; on the other hand, silicon-based chips have difficulty satisfying the needs of
large-scale neural network computing due to power consumption and heat issues, which
limit the clock frequency; thus, it is difficult to enhance the performance of single-core sys-
tems and the computing power efficiency ratio. At present, according to the low complexity
and high data volume characteristics of neural network computations, several commercial
companies [8] have increased the number of computing cores in silicon-based chips to meet
the considerable computational demands of large-scale neural networks; however, this
method does not fundamentally address the bottleneck problem faced by silicon-based
chips in neural network computations, and the increase in the number of cores is not linear
with improvements in computational performance; therefore, bypassing silicon-based chips
and instead using optical computing to build artificial neural networks has become a new
focus in neural network research.

The use of optical systems to implement Fourier transform, correlation and convo-
lution operations has long been valued by researchers [9] because optical computing has
the advantages of low power consumption, high parallelism, and fast speeds, and can
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thus satisfy the needs of massive data processing. In recent years, as a result of the de-
velopment of optoelectronic devices, optical computing research is no longer limited to
the computation of Fourier transforms [10] and has been applied to the construction of
artificial neural networks. The diffractive optical neural network (D2NN) was proposed by
Ozcan et al. [11–14]. Based on the error back-propagation method, D2NN uses computer
training to obtain the phase distribution of each diffractive optics element layer. During the
training process, each pixel of the diffractive optics element layer is a neuron, and the
computer optimizes the phase of each pixel of the diffractive optics element layer by con-
straining the light field distribution after passing through the diffractive optics element
layer. After training, the phase of each pixel in the diffractive optics layer is printed as a
phase mask by a 3D printer. The input to the diffractive optical neural network is achieved
by shining a terahertz light source onto an aluminum foil etched with the input image
information. The network output is scanned point by point in the output plane by a single
pixel detector. D2NNs working in the terahertz band demonstrated high parallelism in
optical computing, but because of the terahertz wavelength, the size of D2NNs is limited,
making their processing and application more difficult. Chen et al. [15] experimentally
verified the D2NN operating in the visible band and proposed a revised formula for neuron
size and wavelength for the visible band. The phase mask for the visible band in Chen’s
experiments was fabricated by etching a quartz substrate, and the output of the diffractive
optical neural network was captured directly by a CCD detector for the light intensity
distribution in the output plane. The application of D2NN to visible wavelengths reduces
the size of diffractive optical neural networks and makes the application of diffractive
optical neural networks further a reality, but the lack of nonlinear activation functions
compared to conventional electrical neural networks limits the performance of optical
diffractive neural networks. To implement the nonlinear activation function in optical
neural networks, Zou et al. [16] used the nonlinear optical properties of two-dimensional
magneto-optical traps to implement optical activation functions. Li et al. [17] used the
response of optoelectronic imaging devices to implement the activation function in an
optical neural networks. In addition, Zhou et al. [18] used a four-step phase-shifted digital
holography technique to collect the middle-layer light field in real time during training
and fed the light field back into the network during training to correct errors between the
actual optical path and the simulation model, improving the robustness of the model and
reducing the difficulty of optical experiments. Furthermore, they implemented deep neural
networks and recurrent neural networks [19] and used photodetectors to collect the light
field, as well as multiple spatial light modulators for transmission.

Although there have been many excellent research studies on diffractive optical neural
networks [10–14,16–20], the application of these research results in engineering remains
difficult. The experiments of Chen et al. [15] require precise alignment of multiple quartz
phase masks, and the experiments of Zhou et al. [18] require precise measurement of the
optical field using a four-step phase shift method. In addition, the modulation rate of the
optical modulation device and the acquisition rate of the photodetector device limit the
practical applications of optical neural networks; therefore, existing diffraction optical neu-
ral networks should be improved. For example, the robustness of the mechanical mounting
error in the optical neural network can be improved to reduce the accuracy requirement of
mounting the optical neural network, thus reducing the impact of temperature changes or
vibrations on the system in practical application environments. Moreover, parallel input
and output methods can be used to increase the computational speed of optical neural
networks, which is limited due to the insufficient refresh rate of existing photoelectric
modulation devices.

Furthermore, the optical neural network should use a reasonable optical design to
adaptively adjust to the size of the input and output data, thus improving the computational
efficiency and speed.

In this paper, we propose partitioning a multilayer optical neural network in planar
space optical modulation device and photodetector device.
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This method addresses the shortcomings of previous multilayer diffractive optical
neural networks, which face difficulties in flexibly changing the number of layers in the
network and the size of the input data. This system can improve the computational
efficiency of the diffractive optical neural network while reducing the number of optical
devices and the difficulty in aligning the optical path. In addition, holograms are introduced
to assist in calibrating the positions of the phase plate and output plane, and the nonlinear
characteristics of the photodetector are used to realize a nonlinear activation function in
the optical neural network.

2. Principle and Analysis
2.1. Optical Neural Network Based on Fresnel–Kirchhoff Diffraction

The model of the conventional digital fully connected neural network layer is shown
in Figure 1b, where {xn−1

0 , xn−1
1 , . . . , xn−1

k } are the input layer data, {xn
0 , xn

1 , . . . , xn
i } are the

output layer data, and {wn
0 , wn

1 , . . . , wn
j } are the hidden layer weight values. Thus, the fully

connected neural network layer can be written as:
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Figure 1. (a) Propagation model of the diffractive neural network layer. (b) Single fully connected
layer in the digital neural network model.

The output xn of a simple neural network layer is the sum of the products of the input
data xn−1 and the corresponding weight values wn. In the field of optics, according to
Huygens’ principle, Fresnel–Kirchhoff diffraction can be expressed as subwaves being
emitted from each point of the wavefront; these subwaves interfere with each other and
superimpose to form a new wavefront [21]. The calculation of the Fresnel–Kirchhoff
diffraction for the discrete case is shown in Figure 1a. Layern−th is the phase plane,
and the phase distribution in the Layern−th phase plane can be denoted as ϕn(xn, yn, zn).
The transmittance is Tn(xn, yn, zn). The wavefront wn−1(xn−1, yn−1, zn−1) after the wave-
front wn−1(xn−1, yn−1, zn−1) from the point source in the Layer(n−1)−th plane passes through
the Layern

n−th(xn, yn, zn) phase plane is:

wn = Tn exp (jϕn)t(wn−1) (2)
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1
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T ∈ (0, 1), ϕ ∈ [0, 2π]
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where λ is the wavelength, θ is the angle between~r and the normal vector~z of the Layer(n−1)-th

plane, and ri is the optical path of the light ray passing from point (xn−1, yn−1, zn−1) in the
Layer(n−1)-th plane to point (xn, yn, zn) in the Layern-th plane.

The optical model shown in Figure 1a is a model of the optical neural network layer,
where the wavefront wn−1(xn−1, yn−1, zn−1) in the Layer(n−1)-th plane is the input data of
the neural network layer, the phase distribution ϕn(xn, yn, zn) in the Layern-th phase plane
is the weight value of the hidden layer, and the wavefront wn+1(xn+1, yn+1, zn+1) in the
Layer(n+1)-th plane is the output data of the neural network layer.

A digital neural network model usually includes multiple network layers to enhance
the expression ability of the model, and the corresponding diffractive optical neural network
can realize a deep neural network with n layers of n diffractive optical systems in series.
According to Equation (2), the n-layer deep network composed of n diffractive optical
systems in series can be described by the following formula:

wn = Fn(w0, T, ϕ) (3)

Fn = f (wn−1, Tn, ϕn)

= f ( f (wn−2, Tn−1, ϕn−1), Tn, ϕn)

= f ( f (. . . f (w0, T1, ϕ1), . . . ), Tn, ϕn)

f (w0, T1, ϕ1) = T1 ϕ1 1
jλ ∑

i
w0

i
exp jkr0

i
r0

i
K(θ)

E(ϕ) = ((wn) ∗ ·wn − G)2

min
ϕ

E(ϕ), s · t T ∈ (0, 1), ϕ ∈ [0, 2π]

where Fn is the transfer function of the n-layer diffractive optical neural network composed
of n diffractive optical systems in series, f is the transfer function of the diffractive optical
system, and G is the expected output optical field of a diffractive optical system with an
input optical field of w0. Corresponding to the digital neural network model, w0 is the
input of the model, wn is the output of the model, and T and ϕ are the weights of the model.

2.2. Multilayer Diffractive Optical Neural Network with Partitioned Multiplexing

A typical all-optical diffraction neural network model is shown in Figure 2a, where
the optical field information of the input plane Input is the input layer data, the optical
field information of the output plane Output is the output layer data, a diffraction layer
with multiple phase plates is the hidden layer, and the phase delay of the wavefront
passing through the phase plates is the weight value of the hidden layer. Although the
all-optical diffraction neural network shown in Figure 2a can be implemented as a deep
neural network by simply increasing the number of diffraction layers without increasing
the power consumption of the system, it is challenging to flexibly change the number of
phase plates in an optical system. To address the challenge of flexibly changing the structure
and number of layers in an optical diffraction neural network, we propose a hybrid optical
neural network. Figure 2b shows a hybrid optical diffraction neural network with four
hidden layers and the computation process of this hybrid network. The layers of the hybrid
optical neural network with nonlinear activation functions follow the process shown in
Figure 2b. First, the computation of the current layer is used to obtain the output of the
current layer, which is used as the input of the next layer; then, the weights of the phase
plane are updated as the weights of the next layer. The computation of the next layer in
the network follows the same process. The data input to the optical hybrid neural network
layer is realized by an amplitude-only spatial light modulator (SLM 1), the phase plane of
the diffraction layer is realized by a phase-only spatial light modulator (SLM 2), and the
data output is obtained by CMOS acquisition of the intensity distribution of the light field.
The nonlinear activation function is realized by using a photoelectric conversion device to
acquire the light field intensity distribution in the output plane after the diffraction layer.
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The process of the nonlinear activation function is as follows: the photodetector acquires
the light field intensity distribution after the diffraction layer, passes the data through the
nonlinear activation function, and then transmits the data to the amplitude-only spatial
light modulator.

free‐space propagation

Input Output

Phase Mask 1~4

Hidden LayersInput Layers Output Layers(a)

free‐space propagation free‐space propagation

free‐space propagation free‐space propagation
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CMOS data send to SLM 1
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M1

M2

M3

M4

(d)

Figure 2. (a) Typical diffractive optical neural network architecture. (b) Four-layer optical neural
network implemented by a single optical hybrid neural network layer unit. (c) Diffractive optical
neural network composed of multiple optoelectronic hybrid neural network layers (In0: input data
of the network, PhaseMarkn: weights of the nth layer, Outn: output of the network). (d) Four-layer
diffractive optical neural network implemented by partitioning the optoelectronic hybrid neural
network layers.

Figure 2c shows a multilayer neural network model composed of multiple photoelec-
tric hybrid optical diffraction neural network layers. The white box Layer1 in the figure
is the optical diffraction neural network layer, In0 is the input surface, PhaseMask1 is the
phase surface, and Out1 is the output surface. The diffractive optical system composed of n
optical diffractive neural network layers in series is an n-layer deep optical neural network
that can be described by Equation (3).

In this formula, the input w0 is the light field at the input surface In0 of the 1st network
layer Layer1, the weight ϕ1 is the phase at the phase plane PhaseMask1 of the 1st network
layer Layer1, and w1 is the light field at the output surface Out1 of the 1st layer Layer1.

The weight ϕn is the phase at the PhaseMaskn phase plane in the n-th network layer
Layern. The output wn of the network is the light field intensity at the output surface Outn
of the n-th network layer Layern.

Although the optical neural network shown in Figure 2c improves the computational
efficiency by computing multiple network layers in a pipeline with several optoelectronic
hybrid neural network layers, the system complexity also increases.

Thus, the optical adjustment accuracy of the multiple network layers should be
ensured, as a large number of optoelectronic components may lead to an increase in
power consumption.

The proposed multilayer optical diffraction neural network model is shown in Figure 2d.
This model uses one amplitude-only spatial light modulator (SLM 1), one phase-only spatial
light modulator (SLM 2), and one photodetector (CMOS) to realize parallel pipeline com-
putations in the multilayer optical diffraction neural network. The model in Figure 2d im-
plements pipeline computations in a four-layer optical diffraction neural network. The four
regions In0,1,2,3 in SLM 1 are the input planes of the 1st through 4th network layers, w0,1,2,3

in
are the optical fields at the input planes In0,1,2,3, and the four regions M1,1,2,3 in SLM 2 are
the optical fields at the input planes M1,1,2,3. The four regions M1,2,3,4 are the phase planes
of the 1st through 4th network layers, and ϕ0,1,2,3 are the phases of the phase planes M0,1,2,3.
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The four regions Out1,2,3,4 are the output planes of the 1st through 4th network layers,
and w1,2,3,4

Out are the optical fields at the output surface Out1,2,3,4. The 4-layer diffraction
neural network model shown in Figure 2d can be calculated with Equation (4).

w4
Out = t2(exp(jϕ4)t1(w3

in))T (4)

w3
Out = t2(exp(jϕ3)t1(w2

in))T

w2
Out = t2(exp(jϕ2)t1(w1

in))T

w1
Out = t2(exp(jϕ1)t1(w0

in))T

wi
in = ReLU(wi

Out
∗ · wi

Out), i = 1, 2, 3

t1(w) =
1
jλ

n

∑
i

wi
exp jkr1

i
r1

i
K(θ)

t2(w) =
1
jλ

n

∑
i

wi
exp jkr2

i
r2

i
K(θ)

E(ϕ) = (w4
Out
∗ · w4

Out − G)2

min
ϕ

E(ϕ), s · t ϕ ∈ [0, 2π]

where t1(w) is the diffraction equation of the wavefront w from the plane region at SLM
1 to the plane region at SLM 2, r1

i is the optical path of the secondary wave wi from
the wavefront w at the plane region at SLM 1 to the plane region at SLM 2, t2(w) is the
diffraction equation of the wavefront w from the plane region at SLM 2 to the plane region
at the CMOS photodetector, and r2

i is the optical path of the secondary wave wi from the
wavefront w at the plane region at SLM 2 to the plane region at the CMOS photodetector.
w0

in is the input data to the diffractive optical neural network, and G is the input data label
corresponding to the optical field distribution. T is transmittance of the optical systems.
ReLU is the nonlinear activation function, which is obtained according to the CMOS optical
conversion characteristics and can be written as Equation (5):

ReLU(x) =





Max, x > Max
x, Max > x > Min
0, x < Min

(5)

where Max is the maximum unsaturated light intensity detectable by CMOS and Min is
the activation threshold of the ReLU activation function. Min is greater than the minimum
light intensity detectable by CMOS.

3. Experiments

The optical experimental verification system of the proposed partitionable optoelec-
tronic hybrid diffraction optical neural network is shown in Figure 3. The system uses a
532 nm polarized coherent laser source (Changchun New Industries Optoelectronics MGL-
III-532-100 mW). The expanded laser is adjusted to an S-polarized beam by a half-wave
plate (Daheng GCL-060633), and the beam is incident on an amplitude-only spatial light
modulator, which we denote as SLM 1 (UPOLabs HDSLM80R). SLM 2 (UPOLabs HD-
SLM80R Plus) is a phase-only spatial light modulator that is used to load the phase plane
weights. The CMOS photodetector (Daheng MER2-2000-19U3M-L) acquires the intensity
distribution of the light field modulated by the phase mask in the output plane. SLMs 1 and
2 have a resolution of 1920× 1200 pixels, with a pixel size of 8 µm, and the SLMs operate in
8 bit mode. The CMOS resolution is 5496× 3672 pixels, with a pixel size of 2.4 µm, and the
image element sampling depths are 8 bits and 12 bits. The training computer configuration
is as follows: the CPU is an Intel Core i7 10700, the GPU is a NVIDIA RTX 3090 ×2 with
64 G of RAM, Windows 11, Python 3.8, and TensorFlow 2.6 with CUDA 11.3.
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Laser 532nm

LensHWPPBS

SLM 1 PBS NBS SLM 2

CMOS

(a)

(b)

(c)

(e)(d)

1280um(160pixels)

(f) (g)

Figure 3. PBS: polarizing beamsplitter cube; NBS: nonpolarizing beamsplitter cube; SLM: spatial light
modulator (amplitude/phase); HWP: half-wave plate. (a) Input of SLM 1, (b) phase mask of SLM 2,
(c) CMOS capture, (d) hologram pattern for alignment, (e) phase mask of hologram for alignment,
(f) input to the neural network, and (g) output of the neural network.

3.1. Experimental Design and Setup

To ensure that the neuron nodes in the optical neural network are linked correctly,
the positions of the main optical surfaces in the optical system shown in Figure 3 need
to be determined. In this paper, holograms are used as a reference to align the spatial
light modulators (SLM 1 and SLM 2) with CMOS. According to Equation (2), the phase
distribution ϕ in the SLM 2 phase plane can be calculated by using the USAF-1951 resolution
test pattern as the wavefronts wn−1 and wn in the SLM 1 input plane and the CMOS
output plane. The effects of the input plane, phase plane, and output plane positions
on the output wavefront wn are analyzed with the beam propagation method [22] and
numerical simulations. The distance settings of the input, phase, and output planes are
shown in Figure 4a. Figure 4c shows the numerical simulation results of the effect of the
displacement of the input plane on the wavefront of the output plane, and the step size in
the displacement calculation is 0.01 mm. Figure 4d shows the numerical simulation results
of the effect of the output plane displacement on the wavefront of the output plane, and the
step size in the displacement calculation is 0.01 mm. Figure 4b shows the experimental
results of the effect on the wavefront of the output plane in the optical axis direction when
the output plane displacement is ±1 mm or ±2 mm. When the observation plane is shifted
in the optical axis direction, the quality of the diffraction image is reduced, which leads to
incorrect links in the output of the neuron nodes in the diffraction optical neural network.
The holographic template that was designed for the experimental alignment of the optical
diffraction neural network target classification device is shown in Figure 3e, and the pattern
of the holographic mask in the output plane is shown in Figure 3d.
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△z△z1

Input Plane(SLM 1) Phase Mask(SLM 2) Output Plane(CMOS)

L1 = 182mm L2 = 150mm

△z = −2mm △z = −1mm △z = 0mm △z = +1mm △z = +2mm

(a)

(b)

360um

(c)

(d)

Figure 4. The effect of distance on the hologram pattern. (a) Experimental setup to determine the effect
of the distance on the hologram pattern. (b) The effect of the hologram pattern with displacements
of ±1 mm or ±2 mm in the optical axis direction. (c) The effect of the input plane displacement on
the hologram pattern in the output plane. (d) The effect of the output plane displacement on the
hologram pattern in the output plane.

3.2. Robustness between Network Layers

The implementation of multilayer networks in blocks in a plane requires that the
interference between blocks in different network layers be analyzed. Due to the inde-
pendence of light propagation, there is no interlayer interference in the free propagation
process; thus, the analysis of the interference between blocks in different network layers
needs to consider only the distribution and energy of the first-order diffraction between
different blocks in the same plane. As shown in Figure 5, there are two parallel planes, x1
and x2, in the direction of optical axis z, and there is a rectangular hole aperture of size
D in plane x1. R1 is the zero-order diffraction half-width, and |R2 − R1| is the distance
between the zero-order diffraction pattern and the first-order diffraction pattern. Figure 5a
shows the zero-order and first-order diffraction patterns acquired by CMOS. The bright
diffraction pattern on the left is the zero-order diffraction pattern, and the dark pattern on
the right is the first-order diffraction pattern. The distance between the phase mask and
the CMOS detector is 150 mm, the pixel size of the phase template is 8 um, and the laser
wavelength is 532 nm. Thus, according to Equation (6), the distance between the zero-order
and first-order diffraction patterns is approximately 9.98 mm, which is consistent with the
experimental results.
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|l2 − l3| = λ/2 (6)

R1 ≈
λLz

D
LZ, R1 >> D, λ

According to Equation (6), to prevent first-order diffraction interference between
blocks in different network layers, multiple regions in the zero-order diffraction range can
be divided into blocks in the different network layers. Figure 5c–f shows the experimental
result of dividing multiple regions in the zero-order diffraction range into blocks in the
different network layers. The activation threshold (Min) of the function Equation (5)
is set to be larger than the energy of the first-order diffraction pattern. As shown in
Figure 5b, the first-order diffraction interference is prevented by reducing the CMOS
exposure time. In addition to preventing first-order diffraction interference, the division of
different network layer into blocks should consider the connectivity between neurons in the
input plane, phase plane and output plane. The connectivity between neurons in the phase
and output planes can be determined based on the distance LZ between the diffraction
and output planes, the neuron size D in the phase and output planes, and the wavelength
λ of the light source. When the neurons in the phase and output planes of the network
layer are fully connected, the size of the phase and output planes R can be calculated with
Equation (7):

Rmax =
λLz

D
LZ, R >> D, λ (7)
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l3
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P
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0
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′
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Figure 5. First- and second-order diffraction patterns.

3.3. Classification Experiments and Results

The classification performance of the proposed partitionable and efficient multilayer
diffractive optical neural network is validated with the Fashion-MNIST dataset [23] and the
MNIST dataset [24]. The training set contains approximately 50,000 images, and the
test set contains approximately 10,000 images. The network architecture of the four-
layer network is shown in Figure 2d; the input plane, phase plane, and output plane
in the fully connected layer all have sizes of 512× 512, and the neuron size is 8× 8 um.
The network training process is shown in Figure 6a. The network classification output
ŷ = {A0, A1, A2, A3, A4, A5, A6, A7, A8, A9} is the mean value of the light intensity in the
ten regions in the output layer, and the ten cyan regions A0,1,...,9 in Figure 6b indicate the
divisions used in the classification experiments in this paper, where A0,1,...,9 corresponds
to ten different categories of outputs, and the correspondence is shown in Figure 7 for the
output layer Layer 4 Out.
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IOut:

Backgroud
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Ak = mean(IOut(x, y)), IOut(x, y) ∈ Ak,k∈0,1,2,...,9

ŷ = {A0, A1, A2, A3, A4, A5, A6, A7, A8, A9}
loss1 = |ŷ − y|2

loss2 = |Backgroud−ŷ|
|ŷ|

loss = loss1loss2
loss1+loss2

initialization φ = {φ1, φ2, φ3, φ4}

random training sample x, y

w0 = x
w1 = t2(exp(jφ

1)t1(w
0))

. . .
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∑n
i wi

exp jkr1i
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loss(ŷ, y)

φ = φ− η ∂loss
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end?
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(a)

(b)

Figure 6. Training process and loss function. (a) Flow chart of ONN training. (b) Loss function.
(A0,...,9: The mean value of the light intensity in the cyan part of the picture; background: The mean
value of the light intensity in the gray part of the picture).
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Figure 7. MNIST dataset and Fashion-MNIST dataset classifier.

The loss function of the optical neural network in this paper is shown in Figure 7b.
The smaller the value of Loss1, the better the classification rate of the network. Loss2 is the
loss of the quality in the output layer of the classification network, which is designed to
prevent stray light spots in the output layer. Figure 7a shows the data collected by SLM 1 at
the input plane and the light field intensity distribution collected by CMOS at the output
plane for the MNIST dataset classification experiment. Figure 7b shows the data collected
by SLM 1 at the input plane and the light field intensity distribution collected by CMOS at
the output plane for the Fashion-MNIST dataset classification experiment.

Table 1 shows the classification accuracies of our proposed partitionable diffractive
optical neural network compared with the state-of-the-art diffractive optical neural network.
Figure 8a shows the confusion matrix of the simulation results for the MNIST test set.
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The test set includes 10 categories, with approximately 1000 images per category, and the
classification accuracy is 93%. Figure 8b shows the confusion matrix of the results of
the optical experiments on the MNIST test set. The dataset has 100 images per category,
and the classification accuracy is 89.1%. Figure 8c shows the confusion matrix of the
simulation results for the Fashion-MNIST test set. The test set includes 10 categories,
with approximately 1000 images per category, and the classification accuracy is 82.9%.
Figure 8d shows the confusion matrix of the results of the optical experiments on the
Fashion-MNIST test set. The data include 1000 randomly selected images from the Fashion-
MNIST test set, with approximately 100 images for each category, and the classification
accuracy is 81.7%.

Table 1. Accuracies of the MNIST and Fashion-MNIST dataset classifiers.

Method Digital
Simulation

Optical
Experiment Taining Time Layers

MNIST

purposed 93% (10,000) 89.1% (1000) 4 h 4

D2NN (Thz) [11] 91.7% (10,000) 88% (50) 8 h 5

D2NN (632 nm) [15] 91.57% (10,000) 84% (50) 20 h 5

Fashion

purposed 83.9% (10,000) 81.7% (1000) 4 h 4

D2NN (Thz) [11] 81.1% (10,000) 90% (50) 8 h 5

D2NN (632 nm) [15] - - - -
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Figure 8. Confusion matrix of the MNIST [24] and Fashion-MNIST [23] test set classification results.
(a) Digital simulation of the MNIST test set classification results. (b) Optical experiment of the MNIST
test set classification results. (c) Digital simulation of the Fashion-MNIST test set classification results.
(d) Optical experiment of Fashion-MNIST test set classification results.

4. Discussion
4.1. Estimation of the Computational Speed of Multi-Layer Networks

To apply the proposed method, the output of the first partition of the CMOS sensor
must be used as the input of the second partition of SLM1. Similarly, the output of the
second partition of the CMOS sensor must be used as the input of the third partition
of SLM1, and so on; therefore, we use a partitionable multilayer optical neural network
refreshing strategy as shown in sequence diagram Figure 9a. Each cycle of the data
update in each network layer of the partitionable multilayer optical neural network was
programmed and triggered by software commands, with the output synchronization TTL
signal of SLM 1 being used to trigger the exposure of the CMOS sensor and the readout
TTL signal of the CMOS sensor being used to trigger the data update of SLM 1.

The specific details of the computational time consumption of our experimental diffrac-
tive optical neural network are shown in Figure 9a. The sequence diagram of four consecu-
tive input images of the four-layer diffractive optical neural network is shown in Figure 9a.
All partitions of SLM 1 are updated with data synchronously, where tSLM is the response
time of SLM 1. When CMOS receives the synchronous trigger signal from SLM 1 to trigger
all partitions on CMOS start to expose at the same time, the exposure time is tExposure,
in our experiment 100 µs ≤ tExposure ≤ 400 µs. tCMOS is the time required for CMOS to
acquire a frame, and tLayer is the time for the diffractive optical neural network layer to
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refresh the data once. t is the computational delay of the diffractive optical neural network.
In our experiments tSLM = 16.7 ms, tCMOS = 46.3 ms, tLayer = tSLM + tCMOS = 63 ms,
t = 4 ∗ tLayer = 252 ms.

SLM 1
Partition 1 

CMOS
Partition 1

SLM 1
Partition 2 

SLM 1
Partition 3 

SLM 1
Partition 4 

CMOS
Partition 2

CMOS
Partition 3

CMOS
Partition 4

CMOS
Exposure

SLM 1
Update

CMOS
Trigger 
Out

SLM 1
Synch Out

tLayer tSLM tExposure tCMOS

t

Laser 532nm

LensHWPPBS

SLM 1 PBS NBS SLM 2

NBS SLM 3

CMOS 1

NBSSLM 4

CMOS 2

NBS SLM 6

CMOS 4

NBSSLM 5

CMOS 3 CMOS 5

(a) (b)

Figure 9. (a) Sequence diagram of partitionable multilayer (four layer) diffractive optical neural
network. (b) Partitionable diffractive optical neural network config with higher number of layers.

For diffractive optical neural networks with higher number of layers, our proposed
diffractive optical neural network structure should be suitably extended to avoid excessive
network computation delay. If the optical path structure as shown in Figure 3 is still used,
the computational delay of the N-layer network is tLayer × N, and a larger spatial light
modulator and CMOS detector need to be replaced when N ≥ 4 to achieve more partitions.
The optical path structure of the diffractive optical neural network with 1 to 20 layers
tunable is shown in Figure 9b. When the number of network layers for diffractive optical
neural network calculation is 20, SLM 2 loads the network weights of layer 1 + i× 5, SLM
3 loads the network weights of layer 2 + i× 5, SLM 4 loads the network weights of layer
3 + i× 5, SLM 5 loads the network weights of layer 4 + i× 5, and SLM 6 loads the network
weights of layer 5 + i× 5. CMOS 1-4 is turned off, and CMOS 5 is enabled. The input of
the network is input from the first partition of SLM 1, which is output to the first partition
of the CMOS 5 detector through the first partition of SLM 2-6 to complete the calculation of
the network at layers 1 to 5. The output of the first partition of the CMOS 5 detector is used
as input to the second partition of SLM 1, which is output to the second partition of the
CMOS 5 detector through the second partition of SLM 2-6 in turn. The second partition of
SLM 1 is used as input to the second partition of SLM 1. Similarly, the data of the second
partition of CMOS 5 detector are used as the input of the third partition of SLM 1, and so
on. The computation delay of the network at this point is t = (tCMOS + tSLM)× 4.

4.2. Limits of Partitionable Multilayer Diffractive Optical Neural Network

Partitioning on spatial light modulators and CMOS detectors to implement multilayer
diffractive optical neural networks requires concern for the size of the partition. We tested
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diffractive optical neural networks with phase mask of different resolutions and phase mask
of different pixel sizes by simulation experiments. Table 2 shows the training classification
accuracy and testing classification accuracy of our simulated four-layer diffractive optical
neural network for MNIST dataset with different resolution and different pixel size of
phase mask. According to the results in Table 2, the classification accuracy of the network
does not increase linearly with the number of phase plate pixels, and the pixels size of
the phase mask also affects the classification performance of the diffractive optical neural
network.Classification accuracy of MNIST dataset for partitionable diffractive optical neural
networks with different resolutions and pixel sizes of phase mask. This can be explained by
our experiments in Section 3.2, using the parameters of the phase mask in our experiments
as an example: the pixel size is D = 8 µm and the resolution of phase mask is 512× 512.
The size of the phase mask is 4.096 mm× 4.096 mm; the distance from the phase mask to
the CMOS sensor is 150 mm, and according to Equation (7), it can be calculated that more
than 70% of the energy emitted from the 8 µm× 8 µm sized point source on the phase mask
is concentrated in the area with a diameter of 9.97 mm. However, according to Rayleigh’s
criterion, the resolution limit of the optical aperture of 4.096 mm× 4.096 mm at a distance
of 150 mm is 1.22λ ∗ f /D = 16.8 µm, λ = 532 nm, f = 150 mm, D = 4.096 mm ∗

√
2; more

than 70% of the energy is concentrated in the circle of radius 8.4 µm, the activated pixel
size range is 16.8 µm∼8.4 µm. As shown in Table 2, the phase mask resolution of 256× 256
for a pixel size of 16 µm and the phase mask resolution of 512× 512 or 1024× 1024 for a
pixel size of 8 µm satisfies our calculation results and the data in the table also show a high
classification accuracy in training and testing.

Table 2. Classification accuracy of partitionable diffractive optical neural networks with different
resolutions and pixel sizes of phase mask.

Mask Size Pixel Size Epoch Train Test Train (Nonlinear) Test (Nonlinear)

64 × 64 8 µm 100 19.2± 0.5% 19.0± 0.1% 11.2± 0.5% 11.0± 0.5%
64 × 64 16 µm 100 58.0± 0.5% 57.4± 0.5% 52.5± 0.5% 52.0± 0.5%
64 × 64 24 µm 100 64.5± 0.5% 64.5± 0.5% 65.5± 0.5% 64.8± 0.5%
64 × 64 32 µm 100 69.8± 0.5% 69.0± 0.5% 70.7± 0.5% 70.5± 0.5%

128 × 128 8 µm 100 58.5± 0.5% 58.0± 0.5% 49.8± 0.5% 49.3± 0.5%
128 × 128 16 µm 100 78.2± 0.5% 76.1± 0.5% 74.2± 0.5% 76.5± 0.5%
128 × 128 24 µm 100 81.6± 0.5% 80.4± 0.5% 84.1± 0.5% 85.1± 0.5%
128 × 128 32 µm 100 78.3± 0.5% 77.1± 0.5% 85.1± 0.5% 85.5± 0.5%
256 × 256 8 µm 100 75.6± 0.5% 75.5± 0.5% 74.5± 0.5% 74.4± 0.5%
256 × 256 16 µm 100 86.9± 0.5% 86.5± 0.5% 90.2± 0.5% 90.1± 0.5%
256 × 256 24 µm 100 81.1± 0.5% 81.5± 0.5% 88.1± 0.5% 88.0± 0.5%
256 × 256 32 µm 100 78.2± 0.5% 78.1± 0.5% 78.2± 0.5% 78.0± 0.5%
512 × 512 8 µm 100 87.6± 0.5% 87.2± 0.5% 92.3± 0.5% 92.0± 0.5%
512 × 512 16 µm 100 84.3± 0.5% 84.0± 0.5% 89.5± 0.5% 89.2± 0.5%
512 × 512 24 µm 100 76.8± 0.5% 76.0± 0.5% 76.1± 0.5% 75.7± 0.5%
512 × 512 32 µm 100 75.9± 0.5% 68.0± 0.5% 65.5± 0.5% 64.5± 0.5%

1024 × 1024 8 µm 100 87.5± 0.5% 86.2± 0.5% 92.0± 0.5% 90.8± 0.5%
1024 × 1024 16 µm 100 76.5± 0.5% 74.5± 0.5% 78.0± 0.5% 76.5± 0.5%
1024 × 1024 24 µm 100 63.0± 0.5% 62.0± 0.5% 61.0± 0.5% 60.2± 0.5%
1024 × 1024 32 µm 100 47.0± 0.5% 45.0± 0.5% 48.0± 0.5% 46.5± 0.5%

5. Conclusions

In this paper, we propose a partitionable and efficient multilayer diffractive optical
neural network architecture. This model addresses a disadvantage of the D2NN network,
in which it is difficult to flexibly change the number of layers and the scale of the input
data, by partitioning the optical diffractive devices in a multilayer network. The greatest
advantage of partitioned multiplexing is that this method can improve the utilization of
diffractive devices and the computational efficiency of the whole network while reducing
the number of optical devices and the difficulty of assembling and adjusting the optical
system. In addition to the above advantages, the network model achieves a classification
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performance similar to mainstream diffractive optical neural networks. Because the frame-
work is not limited to the visible spectrum and can easily be extended to other spectra, this
system has great application value.
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