
Citation: Huo, Z.; Wang, F.; Shen, H.;

Sun, X.; Zhang, J.; Li, Y.; Chu, H.

Optimal Compensation of MEMS

Gyroscope Noise Kalman Filter

Based on Conv-DAE and

MultiTCN-Attention Model in Static

Base Environment. Sensors 2022, 22,

7249. https://doi.org/10.3390/

s22197249

Academic Editors: M. Jamal Deen,

Subhas Mukhopadhyay, Yangquan

Chen, Simone Morais, Nunzio

Cennamo and Junseop Lee

Received: 19 July 2022

Accepted: 16 September 2022

Published: 24 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Optimal Compensation of MEMS Gyroscope Noise Kalman
Filter Based on Conv-DAE and MultiTCN-Attention Model in
Static Base Environment
Zimin Huo 1,2 , Fuchao Wang 3, Honghai Shen 3 , Xin Sun 1,2 , Jingzhong Zhang 4, Yaobin Li 1,2,*
and Hairong Chu 1,*

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics,

Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
4 Forest Protection Research Institute of Heilongjiang Province, Harbin 150040, China
* Correspondence: liyaobin@ciomp.ac.cn (Y.L.); chuhr@ciomp.ac.cn (H.C.)

Abstract: Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are
large, complex, nonlinear, and time varying. The traditional noise reduction and compensation
methods based on traditional models are not applicable. This paper proposes a noise reduction
method based on multi-layer combined deep learning for the MEMS gyroscope in the static base state.
In this method, the combined model of MEMS gyroscope is constructed by Convolutional Denoising
Auto-Encoder (Conv-DAE) and Multi-layer Temporal Convolutional Neural with the Attention
Mechanism (MultiTCN-Attention) model. Based on the robust data processing capability of deep
learning, the noise features are obtained from the past gyroscope data, and the parameter optimization
of the Kalman filter (KF) by the Particle Swarm Optimization algorithm (PSO) significantly improves
the filtering and noise reduction accuracy. The experimental results show that, compared with the
original data, the noise standard deviation of the filtering effect of the combined model proposed
in this paper decreases by 77.81% and 76.44% on the x and y axes, respectively; compared with
the existing MEMS gyroscope noise compensation method based on the Autoregressive Moving
Average with Kalman filter (ARMA-KF) model, the noise standard deviation of the filtering effect
of the combined model proposed in this paper decreases by 44.00% and 46.66% on the x and y axes,
respectively, reducing the noise impact by nearly three times.

Keywords: MEMS gyroscope; convolutional denoising autoencoder; temporal convolutional network;
attention mechanism; Particle Swarm Optimization algorithm; Kalman filter

1. Introduction

MEMS gyroscopes have the characteristics of small size, low power consumption,
low cost, and high-cost performance [1]. It is easier to act as an actuator or a key node of
inertial navigation in small institutions, such as in the drone remote sensing measurement
gimbals [2], aviation pods [3,4], navigation terminals [5,6], and other institutions, and it
plays an important role. High-precision MEMS gyroscopes can already meet the needs of
engineers for practical projects, so reducing the noise of MEMS gyroscopes and improving
measurement accuracy has become a hot issue.

Traditional gyroscope noise reduction methods include Kalman filter [7], Fast Fourier
Transform [8], Empirical Mode Decomposition [9], Wavelet Transform [10], Variational
Mode Decomposition [11], and Ensemble Empirical Mode Decomposition [12], etc. For
example, Liu, Fuchao [13] proposed an adaptive unscented Kalman filter algorithm by
analyzing the influence of the MEMS IMU noise statistical characteristics on the accuracy

Sensors 2022, 22, 7249. https://doi.org/10.3390/s22197249 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197249
https://doi.org/10.3390/s22197249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3472-6371
https://orcid.org/0000-0002-8085-9805
https://orcid.org/0000-0001-6778-3167
https://doi.org/10.3390/s22197249
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197249?type=check_update&version=3


Sensors 2022, 22, 7249 2 of 22

of the angular rate solution of a high-rotating projectile and verified that the algorithm
has better performance than the unscented Kalman filter algorithm with higher estimation
accuracy. Yingjie Hu [14] proposed a method combining wavelet denoising with time series
analysis, using wavelet denoising to deal with high-frequency noise, followed by time series
analysis combined with the Sage-Husa adaptive Kalman filter to remove low-frequency
noise. Siyuan Liang [15] proposed to use the compression characteristics of multi-scale
wavelet transform to compress the original signal of MEMS gyroscope, fuse the compressed
data according to the support degree, and then perform threshold processing on the
fused wavelet coefficients to improve the accuracy of MEMS inertial devices. The harsh
environment of actual engineering often limits traditional methods, so machine learning
represented by the neural network and support vector machine has also been derived to
filter MEMS gyroscopes [16]. Huiliang Cao [17] utilized three methods, radial basis function
neural network (RBF NN), genetic algorithm (GA)-based RBF NN, and GA-based RBF NN
with Kalman filter, to effectively compensate for the temperature energy-influenced drift of
MEMS vibrating gyroscopes. Rita Fontanella [18] used a back-propagation artificial neural
network as an improvement of polynomial fitting in order to solve the zero bias when the
polynomial was applied to temperature calibration of MEMS gyroscope, and the study
applied it to the Attitude and Heading Reference System model to improve its attitude
accuracy by 20%. Mitchell Webber [19] used a combination of support vector machine and
Kalman filtering to fuse the data of MEMS gyroscopes and accelerometers in wearable
devices to achieve noise reduction and recognition.

At this stage, in order to further increase the production cost of the equipment and
improve the cost performance, designers often only use cost-effective MEMS gyroscopes
instead of the optical fiber gyroscopes as essential components. With the continuous
improvement of computer arithmetic power, attempts have been made to use deep learning
models with more robust fitting capabilities to denoise MEMS gyroscope signals [20–22].
Changhui Jiang [23] proposed an artificial intelligence method for denoising the output
signal of a MEMS IMU, where the signal was processed as a time series, and a long short-
term memory (LSTM) was used to filter the output signal of a MEMS gyroscope. Martin
Brossard [24] used convolutional neural networks to calculate gyro corrections based on
past gyro measurements as a way of filtering out undesirable errors in the original gyro
signal. Israr Ullah [25] used an artificial neural network-based learning module to estimate
the amount of error in the sensor readings and update the measurement covariance R in
the Kalman filter accordingly, resulting in a reduction in sensor noise of around 10%. It is
possible to use deep learning techniques to eliminate MEMS gyroscope noise. Although
the research on noise reduction of MEMS gyroscopes based on deep learning is just in its
infancy, existing research shows that the noise reduction of MEMS gyroscopes based on
deep learning is undoubtedly a new idea.

In order to further improve the measurement accuracy of MEMS gyroscopes, this
paper proposes an error compensation method based on the combination of Conv-DAE
and MultiTCN-Attention model, then using the Kalman filter, which has the particle swarm
optimization algorithm to dynamically adjust the predicted value of the combined network
to improve the performance of error compensation. The main contributions of this paper
are as follows:

(1) In the presence of corrupted sensor data, the feasibility of the convolutional denoising
autoencoder to recover and reconstruct the signal is verified.

(2) Explore pertinent input data step sizes and network topologies to compare the er-
ror compensation performance of multilayer temporal convolutional neural (TCN)
networks, their variants, and other recurrent neural network variants.

(3) The particle swarm optimization algorithm is used for parameter estimation when
designing the Kalman filter. This is compared with the ARMA-KF model to further
improve the filtering effect.

The rest of the paper is organized as follows: Section 2 introduces the convolutional
denoising autoencoder, the temporal convolutional network, the attention mechanism, the



Sensors 2022, 22, 7249 3 of 22

Kalman filter, the ARMA-KF model, and the PSO-KF model, and explains the methods
proposed in this paper. Section 3 presents the experiments, results, and comparisons. The
rest of the paper contains conclusions and references.

2. Methods

This section clarifies the methods and principles proposed in the article and provides
corresponding theoretical support for the subsequent experimental verification.

2.1. Data Reconstruction Based on Convolutional Denoising Auto-Encoder

The convolutional denoising autoencoder (Conv-DAE) model consists of an encoder
and a decoder; the encoder is responsible for quickly compressing the original signal
dimension and mapping it to a feature representation in low-dimensional feature space;
the decoder is responsible for reconstructing this feature representation and reducing it to
the original signal, the basic structure of which is shown in Figure 1 [26].

Sensors 2022, 22, 7249 3 of 23 
 

 

The rest of the paper is organized as follows: Section 2 introduces the convolutional 
denoising autoencoder, the temporal convolutional network, the attention mechanism, 
the Kalman filter, the ARMA-KF model, and the PSO-KF model, and explains the meth-
ods proposed in this paper. Section 3 presents the experiments, results, and compari-
sons. The rest of the paper contains conclusions and references. 

2. Methods 
This section clarifies the methods and principles proposed in the article and pro-

vides corresponding theoretical support for the subsequent experimental verification. 

2.1. Data Reconstruction Based on Convolutional Denoising Auto-Encoder 
The convolutional denoising autoencoder (Conv-DAE) model consists of an encod-

er and a decoder; the encoder is responsible for quickly compressing the original signal 
dimension and mapping it to a feature representation in low-dimensional feature space; 
the decoder is responsible for reconstructing this feature representation and reducing it 
to the original signal, the basic structure of which is shown in Figure 1 [26]. 

…

Original input x

corrupted x
…

…

…

…

…

Hidden feature h  Corrupted input x   Reconstructed data x′

Encoder Decoder

Reconstructed Error
 

Figure 1. The overall structure of a denoising autoencoder. 

The Conv-DAE model enables efficient and accurate feature extraction of the origi-
nal signal in feature space by minimizing the error between the noisy or corrupted orig-
inal signal and the reconstructed original signal [27]. Compared to conventional DAEs, 
Conv-DAE has the same basic structure of an encoder and decoder but replaces the fully 
connected layers with convolutional layers. As deep-structured convolutional neural 
networks (CNNs) are easy to train, Conv-DAE, as a particular type of CNN, can im-
prove the reconstruction capability by using deep structure [28,29]. 

The Conv-DAE model structure proposed in this paper is shown in Figure 2 below. 
The model has a symmetric structure of encoder and decoder, where the encoder con-
sists of two convolutional layers and two max-pooling layers, and the decoder consists 
of three transposed convolutional layers and two upsampling layers. Each convolutional 
layer in the encoder uses a 1 × 5 filter to extract the various feature vectors, and each 
transposed convolutional layer in the decoder also uses a 1 × 5 filter to reduce and ag-
gregate the feature vectors. Details of the structure are shown in Table 1. 

Figure 1. The overall structure of a denoising autoencoder.

The Conv-DAE model enables efficient and accurate feature extraction of the original
signal in feature space by minimizing the error between the noisy or corrupted original sig-
nal and the reconstructed original signal [27]. Compared to conventional DAEs, Conv-DAE
has the same basic structure of an encoder and decoder but replaces the fully connected lay-
ers with convolutional layers. As deep-structured convolutional neural networks (CNNs)
are easy to train, Conv-DAE, as a particular type of CNN, can improve the reconstruction
capability by using deep structure [28,29].

The Conv-DAE model structure proposed in this paper is shown in Figure 2 below.
The model has a symmetric structure of encoder and decoder, where the encoder consists
of two convolutional layers and two max-pooling layers, and the decoder consists of three
transposed convolutional layers and two upsampling layers. Each convolutional layer in
the encoder uses a 1 × 5 filter to extract the various feature vectors, and each transposed
convolutional layer in the decoder also uses a 1 × 5 filter to reduce and aggregate the
feature vectors. Details of the structure are shown in Table 1.



Sensors 2022, 22, 7249 4 of 22Sensors 2022, 22, 7249 4 of 23 
 

 

Input corrupted data

Conv1D(1×5)@8+Relu

1 8 8 16

1

MaxPooling(1×2) Conv1D(1×5)@16
+Relu

MaxPooling(1×2)

Conv1D_Trans(1×5)@16
+Relu

Conv1D_Trans(1×5)@1

Output reconstructed data

Encoder

Decoder

16

168 168

UpSampling1D(1×2)
Conv1D_Trans(1×5)@8

+Relu
UpSampling1D(1×2)

 
Figure 2. The detailed structure of the denoising autoencoder used in the experiment. 

Table 1. Details of Conv-DAE model. 

Layer Kernel Number  Kernel Size Stride Activation Function Output Size Padding 
Conv1D 8 5 1 Relu 20 × 8 Same 

MaxPooling — 2 — — 10 × 8 — 
Conv1D 16 5 1 Relu 10 × 16 Same 

MaxPooling — 2 — — 5 × 16 — 
Conv1D_Trans 16 5 1 Relu 5 × 16 Same 
UpSampling1D — 2 — — 10 × 16 — 
Conv1D_Trans 8 5 1 Relu 10 × 8 Same 
UpSampling1D — 2 — — 20 × 8 — 
Conv1D_Trans 1 5 1 — 20 × 1 Same 

The convolutional layer, the max-pooling layer, the transposed convolutional layer, 
and the upsampling layer are the main structures for feature extraction in the Conv-DAE 
model proposed in this paper, with the following operational equations: 

1

j

l l l l
j ij i j

i M
x f x bω −

∈

 
= ∗ +  

 
  (1)

( ) max (2 1), (2 )k k k
j j jx n x n x n = −   (2)

In Equation (1), l
jx  is the current convolutional layer output features, 1l

ix −  is the 
previous layer output features, ( )f ⋅  function is the activation function, l

ijω  is the current 
convolutional layer convolutional kernel, ∗  denotes convolution, jM  is the connection 
between l

jx  and output features of previous layer, and l
jb  is the current convolutional 

layer corresponding bias. In Equation (2), ( )k
jx n  is the jth convolutional kernel of the kth 

layer, n is the edge length of the convolutional kernel size, and max is the maximum 
function. In addition, the transposed convolutional layer in the decoder can be regarded 
as the inverse process of the convolutional layer in the encoder [30]. 

2.2. Model Prediction Based on Temporal Convolutional Networks and Attention Mechanisms 
2.2.1. Deep Neural Networks with Temporal Convolutional Neural Layers 

The temporal convolutional network (TCN) [31] is primarily a temporal model 
based on convolutional neural networks. Unlike standard convolutional neural net-
works, TCN employs causal convolution for processing time series data and uses dilated 
convolution to cope with the long-distance dependency problem common in time series 
models. The basic structure of a temporal convolutional network consists of causal con-
volution, dilated convolution, and residual connections, as shown in Figure 3. 

Figure 2. The detailed structure of the denoising autoencoder used in the experiment.

Table 1. Details of Conv-DAE model.

Layer Kernel Number Kernel Size Stride Activation Function Output Size Padding

Conv1D 8 5 1 Relu 20 × 8 Same
MaxPooling — 2 — — 10 × 8 —

Conv1D 16 5 1 Relu 10 × 16 Same
MaxPooling — 2 — — 5 × 16 —

Conv1D_Trans 16 5 1 Relu 5 × 16 Same
UpSampling1D — 2 — — 10 × 16 —
Conv1D_Trans 8 5 1 Relu 10 × 8 Same
UpSampling1D — 2 — — 20 × 8 —
Conv1D_Trans 1 5 1 — 20 × 1 Same

The convolutional layer, the max-pooling layer, the transposed convolutional layer,
and the upsampling layer are the main structures for feature extraction in the Conv-DAE
model proposed in this paper, with the following operational equations:

xl
j = f

 ∑
i∈Mj

ωl
ij ∗ xl−1

i + bl
j

 (1)

xk
j (n) = max

[
xk

j (2n− 1), xk
j (2n)

]
(2)

In Equation (1), xl
j is the current convolutional layer output features, xl−1

i is the

previous layer output features, f (·) function is the activation function, ωl
ij is the current

convolutional layer convolutional kernel, ∗ denotes convolution, Mj is the connection
between xl

j and output features of previous layer, and bl
j is the current convolutional layer

corresponding bias. In Equation (2), xk
j (n) is the jth convolutional kernel of the kth layer, n

is the edge length of the convolutional kernel size, and max is the maximum function. In
addition, the transposed convolutional layer in the decoder can be regarded as the inverse
process of the convolutional layer in the encoder [30].

2.2. Model Prediction Based on Temporal Convolutional Networks and Attention Mechanisms
2.2.1. Deep Neural Networks with Temporal Convolutional Neural Layers

The temporal convolutional network (TCN) [31] is primarily a temporal model based
on convolutional neural networks. Unlike standard convolutional neural networks, TCN
employs causal convolution for processing time series data and uses dilated convolution
to cope with the long-distance dependency problem common in time series models. The
basic structure of a temporal convolutional network consists of causal convolution, dilated
convolution, and residual connections, as shown in Figure 3.



Sensors 2022, 22, 7249 5 of 22Sensors 2022, 22, 7249 5 of 23 
 

 

  x0      x1      x2      x3                           ······                           ······                         xt−3  xt−2  xt−1    xt 

L Residual Blocks……

…… ……

Skips

Hidden

Input

Hidden

d=1

d=2

softmax

Output

Hidden

d=4

Temporal Convolutional Network

Input

+

1*1 Convolution
(alternative)

ReLU

Dropout

Weight Normalization

Dilated Causal Convolution

Weight Normalization

ReLU

Dropout

Dilated Causal Convolution

Residual block (k, d)

 
Figure 3. Basic structure of temporal convolutional networks. 

(a) Causal Convolution 
Causal convolution is a fundamental architecture of temporal convolutional net-

works, and Figure 3 shows the structure of a causal convolution stack. For a one-
dimensional time series input 0 1( , , , , , )t TX x x x x= … … , the output ty  of time t depends 
only on the current time tx  and partial past time input (i.e., 1 2 3, , , ,t t t tx x x x− − −  ), not any 
future input (i.e., 1 2 3, , , ,t t t Tx x x x+ + +  ). Therefore, the output information of the temporal 
convolutional network is only affected by the past input information, avoiding the 
“leakage” that never came in the past. In addition, causal convolution is susceptible to 
the limitations of the receptive field, i.e., the output can only be predicted by receiving 
information from a shorter history size [32]. 
(b) Dilated Convolution 

The traditional convolution operation process involves convolving the sequence 
once and then pooling it to reduce the sequence’s size and expand the receptive field’s 
size. One of its main disadvantages is that some sequence information will be lost dur-
ing the pooling process. In contrast, dilated convolutions feature no pooling process but 
gradually increase the perceptual length through a series of dilated convolutions, so that 
the output of each convolution contains rich information for long-term tracking [33]. 
Therefore, dilated convolutions can be well applied to long information-dependent 
problems of sequences, such as speech and signal processing, weather forecasting, etc. 
For a one-dimensional time series input 0 1( , , , , , )t TX x x x x= … …  and a filter 

:{0,1,2, , 1}m… − , the ( )H ⋅  of the sequence element T of the dilated convolution opera-
tion is defined as follows: 

( ) ( )( ) ( )
1

0

m

d T d i
i

H T X T i x
−

− ⋅
=

= ∗ = ⋅   (3)

where m denotes the filter size, d denotes the dilation factor, ∗  denotes convolution, and 
T d i− ⋅  denotes the past direction. 

The dilation operation can be thought of as introducing a fixed step between every 
two adjacent filters. Each layer consists of a set of dilated convolutions with rate parame-
ters ld , a non-linear activation ( )nlf ⋅ , and a residual connection combining the input 
and convolution signals of the layer. ld  represents increasing the number of consecutive 
layers within the block, calculated by 2l

ld = . The convolution operation only works be-

Figure 3. Basic structure of temporal convolutional networks.

(a) Causal Convolution

Causal convolution is a fundamental architecture of temporal convolutional networks,
and Figure 3 shows the structure of a causal convolution stack. For a one-dimensional
time series input X = (x0, x1, . . . , xt, . . . , xT), the output yt of time t depends only on the
current time xt and partial past time input (i.e., xt−1, xt−2, xt−3, . . . , xt), not any future input
(i.e., xt+1, xt+2, xt+3, . . . , xT). Therefore, the output information of the temporal convolu-
tional network is only affected by the past input information, avoiding the “leakage” that
never came in the past. In addition, causal convolution is susceptible to the limitations of
the receptive field, i.e., the output can only be predicted by receiving information from a
shorter history size [32].

(b) Dilated Convolution

The traditional convolution operation process involves convolving the sequence once
and then pooling it to reduce the sequence’s size and expand the receptive field’s size.
One of its main disadvantages is that some sequence information will be lost during the
pooling process. In contrast, dilated convolutions feature no pooling process but gradually
increase the perceptual length through a series of dilated convolutions, so that the output of
each convolution contains rich information for long-term tracking [33]. Therefore, dilated
convolutions can be well applied to long information-dependent problems of sequences,
such as speech and signal processing, weather forecasting, etc. For a one-dimensional time
series input X = (x0, x1, . . . , xt, . . . , xT) and a filter F : {0, 1, 2, . . . , m− 1}, the H(·) of the
sequence element T of the dilated convolution operation is defined as follows:

H(T) = (X ∗d F )(T) =
m−1

∑
i=0
F (i)·xT−d·i (3)

where m denotes the filter size, d denotes the dilation factor, ∗ denotes convolution, and
T − d · i denotes the past direction.

The dilation operation can be thought of as introducing a fixed step between every two
adjacent filters. Each layer consists of a set of dilated convolutions with rate parameters dl , a
non-linear activation fnl(·), and a residual connection combining the input and convolution
signals of the layer. dl represents increasing the number of consecutive layers within
the block, calculated by dl = 2l . The convolution operation only works between two
timestamps t and t− dl . Specifically, the filters can be parameterized by a weight matrix



Sensors 2022, 22, 7249 6 of 22

W = [W0, W1], and a bias vector b, where Wi ∈ RFw×Fw , b ∈ RFw , and Fw represent the
number of filters.Z̃(j,l)

t and Z(j,l)
t are the results of the null convolution and the addition of

the residual join at time series t, respectively, denoted as

Z̃(j,l)
t = fnl

(
W0Z̃(j,l−1)

t−dl
+ W1Z̃(j,l−1)

t

)
(4)

Z(j,l)
t = Z(j,l−1)

t + VZ̃(j,l)
t + e (5)

where V ∈ RFw×Fw denotes the weight matrix, and e ∈ RFw denotes the bias vector of
residual connections [34].

(c) Residual Connections

Residual connections have proven to be an effective method to train deep networks,
which allow the network to pass information across layers [31,33]. In addition, the receptive
field size of TCN can be enlarged by changing the number of hidden layers in residual
connections, and the problem of vanishing gradients in the process of training neural
networks can be avoided.

One branch of the residual block performs the transformation operation G(·) on the
input X(h−1), and a branch is added to perform a straightforward transform to keep the
number of feature maps in parallel with the existing branches. The output X(h) of the hth
residual block can be expressed as:

X(h) = δ
(

G
(

X(h−1)
)
+ X(h−1)

)
(6)

where δ(·) indicates the activation operation. G(·) is a series of transformation operations.
As shown in the right half of Figure 3, the residual connection structure includes dilated
causal convolutional layers, weightnorm layers, activation layers, and dropout layers.
Among them, the dilated causal convolution layer is composed of the aforementioned
causal convolution and dilated convolution, which is used to extract hidden features from
the input; the weightnorm layer is used to improve the training speed by limiting the weight
range; the activation layer adopts a good convergence Rectified Linear Unit (ReLU); and the
dropout layer is used for regularization to solve the overfitting problem of deep networks.

Therefore, in contrast to long short-term memory and the gated recurrent neural
network, (1) TCN can perform convolution in parallel due to its parallelism; (2) TCN can
adjust the receptive field size by the number of layers, dilation factor, and filter size, which
allows us to control the memory size of the model for different domain requirements;
(3) in the depth direction of the network, since TCN uses residual connections when the
input length is very long, the gradient in TCN will have more robust stability. Based on
the above characteristics, the temporal convolutional network can effectively avoid the
gradient disappearance or gradient explosion problem of the recurrent neural networks.

2.2.2. Attention Mechanism

The attention mechanism is a simulation of the human brain’s form of assigning
attention, and its essence is to change the weight of features in the hidden layer [35]. The
attention mechanism can reasonably filter out a small number of critical features from a
large number of features and assign more weight to them, reducing the weight of non-
key features to highlight the impact of critical features. Fusing attentional mechanisms
with temporal convolutional networks can highlight key features and improve prediction
accuracy. The structural principle of the attentional mechanism is shown in Figure 4.



Sensors 2022, 22, 7249 7 of 22Sensors 2022, 22, 7249 7 of 23 
 

 

……
 x0      x1      x2      x3      x4                        xt−4   xt−3   xt−2   xt−1   xt 

……
 h0      h1      h2      h3      h4                     ht−4   ht−3   ht−2   ht−1  ht 

a0 a1 a2 a3 a4 an−4 an−3 an−2 an−1 an

Input

Output ……
 y0      y1      y2      y3      y4                        yt−4   yt−3   yt−2   yt−1  yt 

Permute Layer

Multiply Layer

Densen Layer

Permute Layer

Attention

Attention Mechanism

 
Figure 4. Attention mechanism structure diagram. 

Where [ ]( )0,tx t n∈  is the input to the deep neural network, [ ]( )0,th t n∈  corre-
sponds to the hidden layer output obtained by passing each input through the deep 
neural network, [ ]( )0,ta t n∈  is the attention weight of the attention mechanism on the 

hidden layer output of the deep neural network, and [ ]( )0,ty t n∈  is the output value of 
the attention mechanism introduced. The calculation formula of the weight coefficient of 
the attention mechanism can be expressed as: 

( )tanht te u wh b= +  (7)

( )

0

exp t
t t

j
j

e
a

e
=

=


 
(8)

0

n

t t t
t

y a h
=

=   (9)

where te  represents the attention weight determined by the output layer vector th  of the 
deep neural network at time t, u and w are the weight coefficients; b is the bias coeffi-
cient, and ty  is the output of the attention layer at time t. The attention mechanism au-
tomatically calculates the corresponding weight assignments for the in-depth features 
and merges them into a new vector. The input to this layer is the output vector of the 
deep neural network, the Permute layer rearranges the dimensions of the input accord-
ing to a given pattern, and the Multiply layer completes the output of the attention with 
the output of the deep neural network by multiplying the output bit by bit, achieving a 
dynamic weighting process for the hidden layer units, and thus highlighting the impact 
of critical features on the final result [36]. 

2.3. Multi-Layer Deep Learning Network Combination Model 
In order to further improve the prediction performance of the MultiTCN-Attention 

model, this article proposes a method based on the combination of convolutional de-
noising autoencoder and MultiTCN-Attention model. After data reconstruction is car-
ried out through the convolutional denoising autoencoder model, the output result is 
used as the input of the MultiTCN-Attention model for prediction processing. The spe-
cific structure and parameter configuration of the convolutional noise reduction autoen-
coder model are described in Section 2.1 of this paper. When the MEMS gyroscope is 
sampled for a long time, due to the limitation of the communication between the MEMS 
gyroscope and the host computer equipment, packet loss will occur. Therefore, in order 
to imitate the appearance of this phenomenon, 5% of the original MEMS gyroscope data 

Figure 4. Attention mechanism structure diagram.

Where xt(t ∈ [0, n]) is the input to the deep neural network, ht(t ∈ [0, n]) corresponds
to the hidden layer output obtained by passing each input through the deep neural network,
at(t ∈ [0, n]) is the attention weight of the attention mechanism on the hidden layer output
of the deep neural network, and yt(t ∈ [0, n]) is the output value of the attention mechanism
introduced. The calculation formula of the weight coefficient of the attention mechanism
can be expressed as:

et = utanh(wht + b) (7)

at =
exp(et)

t
∑

j=0
ej

(8)

yt =
n

∑
t=0

atht (9)

where et represents the attention weight determined by the output layer vector ht of the
deep neural network at time t, u and w are the weight coefficients; b is the bias coefficient,
and yt is the output of the attention layer at time t. The attention mechanism automatically
calculates the corresponding weight assignments for the in-depth features and merges
them into a new vector. The input to this layer is the output vector of the deep neural
network, the Permute layer rearranges the dimensions of the input according to a given
pattern, and the Multiply layer completes the output of the attention with the output of the
deep neural network by multiplying the output bit by bit, achieving a dynamic weighting
process for the hidden layer units, and thus highlighting the impact of critical features on
the final result [36].

2.3. Multi-Layer Deep Learning Network Combination Model

In order to further improve the prediction performance of the MultiTCN-Attention
model, this article proposes a method based on the combination of convolutional denoising
autoencoder and MultiTCN-Attention model. After data reconstruction is carried out
through the convolutional denoising autoencoder model, the output result is used as the
input of the MultiTCN-Attention model for prediction processing. The specific structure
and parameter configuration of the convolutional noise reduction autoencoder model
are described in Section 2.1 of this paper. When the MEMS gyroscope is sampled for a
long time, due to the limitation of the communication between the MEMS gyroscope and
the host computer equipment, packet loss will occur. Therefore, in order to imitate the
appearance of this phenomenon, 5% of the original MEMS gyroscope data are randomly
damaged and reset, as the input data of the convolutional denoising autoencoder and the
original data are compared. The data reconstruction operation is performed, as shown in
Figure 5. The reconstructed data output by the convolutional denoising autoencoder is
used as the input to the next model.



Sensors 2022, 22, 7249 8 of 22

Sensors 2022, 22, 7249 8 of 23 
 

 

are randomly damaged and reset, as the input data of the convolutional denoising auto-
encoder and the original data are compared. The data reconstruction operation is per-
formed, as shown in Figure 5. The reconstructed data output by the convolutional de-
noising autoencoder is used as the input to the next model. 

Raw Signals Dataset of MEMS Gyro

The Corrupted Dataset

Start

Data PreprocessingData
Processing

Construct of Conv-DAE Network Structure and 
training parameters configuration

Forward propagation and back propagation with 
small batches

Output: Reconstructed Data

Conv-DAE 
Training

Construct of Multi-TCN and Attention 
Mechanism Structure and training 

parameters configuration

TCN Layer

TCN Layer

……

TCN Layer

Attention Layer

Output: Processed Data

Muti-TCN and 
Attention 

Meschanism 
Training

Dense Layer

 
Figure 5. Multi-layer deep learning network combination model structure diagram. 

The MultiTCN-Attention model was chosen to build multi-layer TCN, and the ad-
dition of an attention mechanism layer made the multi-layer TCN more focused on what 
was beneficial to the outcome. The output layer was a fully connected layer that accept-
ed the output vector from the attention mechanism weighted processing and processed 
it into the predicted value of the MEMS gyroscope. The detailed parameter configura-
tion of the MultiTCN-Attention model is described in a later section. As can be seen, the 
input vector starts at the input layer and it is processed by several TCN layers before en-
tering the attention mechanism, which calculates the attention weight vector based on 
the current input vector and merges the two to obtain a new vector, which is fed into the 
fully connected layer to output the predicted value. 

2.4. Particle Swarm Optimization Algorithm for Optimal Kalman Filter and Others 
The Kalman filter is a recursive filter (autoregressive filter) capable of estimating 

the state of a dynamic system from a series of incomplete and noise-containing meas-
urements by considering the joint distribution at each time based on the values of each 
measurement at different times, thus producing an estimate of the unknown variables 
[37]. Kalman filtering mainly includes two parts: the prediction process and the update 
process. It is assumed that the state-space model of the system (state equation and 
measurement equation) is as follows: 

/ 1 1 1 1k k k k k kx x B w− − − −= Φ +  (10)

k k k ky H x v= +  (11)

where kx  is the system state vector, / 1k k−Φ  is the system state transition matrix, 1kB −  is 
the system noise driving matrix, and 1kw −  is the state excitation noise or system noise; ky  
is the measurement vector, kH  is the measurement matrix, and kv  is the measurement 
noise. Moreover, assume that ,k kw v  are Gaussian white noise sequences with zero mean, 
and the two white noises are uncorrelated with each other, satisfying: 

Figure 5. Multi-layer deep learning network combination model structure diagram.

The MultiTCN-Attention model was chosen to build multi-layer TCN, and the addition
of an attention mechanism layer made the multi-layer TCN more focused on what was
beneficial to the outcome. The output layer was a fully connected layer that accepted the
output vector from the attention mechanism weighted processing and processed it into
the predicted value of the MEMS gyroscope. The detailed parameter configuration of
the MultiTCN-Attention model is described in a later section. As can be seen, the input
vector starts at the input layer and it is processed by several TCN layers before entering the
attention mechanism, which calculates the attention weight vector based on the current
input vector and merges the two to obtain a new vector, which is fed into the fully connected
layer to output the predicted value.

2.4. Particle Swarm Optimization Algorithm for Optimal Kalman Filter and Others

The Kalman filter is a recursive filter (autoregressive filter) capable of estimating the
state of a dynamic system from a series of incomplete and noise-containing measurements
by considering the joint distribution at each time based on the values of each measurement
at different times, thus producing an estimate of the unknown variables [37]. Kalman
filtering mainly includes two parts: the prediction process and the update process. It
is assumed that the state-space model of the system (state equation and measurement
equation) is as follows:

xk = Φk/k−1xk−1 + Bk−1wk−1 (10)

yk = Hkxk + vk (11)

where xk is the system state vector, Φk/k−1 is the system state transition matrix, Bk−1 is the
system noise driving matrix, and wk−1 is the state excitation noise or system noise; yk is
the measurement vector, Hk is the measurement matrix, and vk is the measurement noise.
Moreover, assume that wk, vk are Gaussian white noise sequences with zero mean, and the
two white noises are uncorrelated with each other, satisfying:

E[wk] = 0,
E[vk] = 0,

E[wjvT
k ] = 0,

E[wjwT
k ] = Qkδjk

E[vjvT
k ] = Rkδjk (Qk > 0, Rk > 0) (12)

In the prediction process, the current system state vector is predicted from the previous
moment’s system state vector such that:

x̂k/k−1 = Φk/k−1 x̂k−1 (13)



Sensors 2022, 22, 7249 9 of 22

Pk/k−1 = Φk/k−1Pk−1ΦT
k/k−1 + Bk−1Qk−1BT

k−1 (14)

where x̂k/k−1 is the predicted value of the system state vector, and Pk/k−1 is the predicted
covariance matrix of the system state vector.

In the update process of the Kalman filter, the current system state vector is updated
with the measurement vector such that:

Kk = Pk/k−1HT
k

(
HkPk/k−1HT

k + Rk

)−1
(15)

x̂k = x̂k/k−1 + Kk(yk − Hk x̂k/k−1) (16)

Pk = Pk/k−1 − Kk HkPk/k−1 (17)

where Kk is the Kalman filter gain matrix, and Pk is the updated covariance matrix of the
system state vector.

2.4.1. Kalman Filter Based on ARMA Model

The Autoregressive Moving Average (ARMA) model is obtained by regressing the
dependent variable on its lagged values as well as the present and lagged values of the
random error term [38]. Moreover, it is one of the standard methods used in time series
analysis. The ARMA model can be expressed as follows:

xk =
p

∑
i=1

ϕixk−i +
q

∑
j=1

θjεk−j+εk (18)

εk ∼W
(

0, σ2
)

(19)

That is, the autoregressive moving average model ARMA (p, q). p and q are the accep-
tance orders of the autoregressive (AR) and moving average (MA) models, respectively. In
addition, p is also expressed as the number of lags in the time series data itself used, and q
represents the number of forecast error lags used in the forecast model. They are determined
by the nature of the time series data itself. xk is the observed time series data; εk represents
a discrete white noise sequence with mean 0 and variance σ2. ϕi < 1(i = 1, 2, . . . , p) is the
autoregressive coefficient, and θj < 1(j = 1, 2, . . . , q) is the moving average coefficient.

The steps for designing the Kalman filter using the ARMA model are as follows [39–41]:
(1) data pre-processing, including the removal of wild values, removal of constant compo-
nents and extraction of trend terms, and data testing; (2) determination of the model type
based on the autocorrelation function and partial autocorrelation function; (3) determina-
tion of the order based on the Akaike Information Criterion; and (4) adaptive testing of the
designed model.

2.4.2. Particle Swarm Optimization Algorithm for Optimal Kalman Filter

In order to further improve the accuracy of the Kalman filter, in addition to using the
traditional ARMA time series modeling, this paper chooses to optimize the parameters of
the Kalman filter using the particle swarm optimization algorithm. Particle swarm opti-
mization has attracted more researchers because of its flexibility and robustness, especially
for problems in dynamic environments. PSO is a swarm-based stochastic optimization
technique inspired by social behaviors such as bird flocking or fish flocking [42].

As shown in Figure 6a, suppose a flock of birds is randomly searching for food.
Additionally, suppose a piece of food that is known to be in a particular area, but none of
the birds know exactly where it is. However, they can use their own experience (optimal
individual choice) and group experience (optimal global choice) to predict how far away
the current location is from the food to find the location of the food quickly [43]. This bird
predation mechanism inspires the particle swarm optimization algorithm, so the basis of
PSO is the group sharing of information.



Sensors 2022, 22, 7249 10 of 22

Sensors 2022, 22, 7249 10 of 23 
 

 

2.4.2. Particle Swarm Optimization Algorithm for Optimal Kalman Filter 
In order to further improve the accuracy of the Kalman filter, in addition to using 

the traditional ARMA time series modeling, this paper chooses to optimize the parame-
ters of the Kalman filter using the particle swarm optimization algorithm. Particle 
swarm optimization has attracted more researchers because of its flexibility and robust-
ness, especially for problems in dynamic environments. PSO is a swarm-based stochastic 
optimization technique inspired by social behaviors such as bird flocking or fish flocking 
[42]. 

As shown in Figure 6a, suppose a flock of birds is randomly searching for food. 
Additionally, suppose a piece of food that is known to be in a particular area, but none 
of the birds know exactly where it is. However, they can use their own experience (op-
timal individual choice) and group experience (optimal global choice) to predict how far 
away the current location is from the food to find the location of the food quickly [43]. 
This bird predation mechanism inspires the particle swarm optimization algorithm, so 
the basis of PSO is the group sharing of information. 

Optimal
Group 
Result

Start

Initialize The Particle Swarm Optimization 
Algorithm and Parameter Settings

T=1

Calculate the Objective Function Value

Update Individual Optimum(Pbest) and 
Group Optimum(Gbest)

Determine Whether 
the Convergence Criterion is 

Satisfied

Update the Velocity and Position 
Vectors of Each Particle

T=T+1

Output the Optimal Result 
and the Number of Iterations

End

 
(a) (b) 

Figure 6. Particle swarm optimization algorithm: (a) the basic principle diagram of PSO; (b) basic 
flow chart of PSO. 

The particle swarm optimization algorithm consists of a large swarm of particles in 
which n particles fly in the D-dimensional space. Each particle maintains the particle po-
sition ix , the direction and speed of particle movement iv , and the searched optimal po-
sition fitness value ip  in the D-dimensional space, which can be expressed as: 

( )
( )

( )

1 2 3

1 2 3

1 2 3

, , , ,
, , , ,
, , , ,

i i i i iD

i i i i iD

i i i i iD

x x x x x
v v v v v

p p p p p

=
 =
 =





 (20)

The improvement of the flying speed, position, and weight of particle i can be ad-
justed according to Equations (21)–(23). 

( ) ( )1
1 2

k k k k
id id ib ib gb ibv v c rand p x c rand p xω+ = + − + −  (21)

1k k k
ib ib ibx x v+ = +  (22)

( )max max min
max

iter
iter

ω ω ω ω= − −  (23)

Figure 6. Particle swarm optimization algorithm: (a) the basic principle diagram of PSO; (b) basic
flow chart of PSO.

The particle swarm optimization algorithm consists of a large swarm of particles
in which n particles fly in the D-dimensional space. Each particle maintains the particle
position xi, the direction and speed of particle movement vi, and the searched optimal
position fitness value pi in the D-dimensional space, which can be expressed as:

xi = (xi1, xi2, xi3, . . . , xiD)
vi = (vi1, vi2, vi3, . . . , viD)
pi = (pi1, pi2, pi3, . . . , piD)

(20)

The improvement of the flying speed, position, and weight of particle i can be adjusted
according to Equations (21)–(23).

vk+1
id = ωvk

id + c1rand
(

pib − xk
ib

)
+ c2rand

(
pgb − xk

ib

)
(21)

xk+1
ib = xk

ib + vk
ib (22)

ω = ωmax − (ωmax −ωmin)
iter

itermax
(23)

In the formula, d and k represent the dimension and the number of iterations, respec-
tively; b represents the bth generation. pib represents the best position of particle i, pgb
represents the current best position; c1 and c2 represent the individual learning factor and
group learning factor, respectively; rand(·) is used to obtain random values in the range of
[0, 1]. ω is the inertia weight used to balance the global search ability and local search ability,
which can be updated iteratively by using Equation (23); ωmax, ωmin are the maximum and
minimum inertia weights, respectively; iter, itermax are the current and maximum number
of iterations, respectively.

As shown in Figure 7, when optimizing the four parameters Qk, Rk, Φ, Hk of the
Kalman filter using the particle swarm optimization algorithm, according to the Formula
(16) in the update process of the Kalman filter, avoiding premature convergence of the
optimization seeking process to be able to obtain the optimal global solution, the actual
variance of the innovation is selected here as the objective function, with its value minimized
as the objective for optimization. The specific PSO process is shown in Figure 6b. Define
the objective function as shown in Equations (24) and (25):

h = ŷk/k−1(ŷk/k−1)
T (24)



Sensors 2022, 22, 7249 11 of 22

ŷk/k−1 = yk − Hk x̂k/k−1 (25)

Sensors 2022, 22, 7249 11 of 23 
 

 

In the formula, d and k represent the dimension and the number of iterations, re-
spectively; b represents the bth generation. ibp  represents the best position of particle i, 

gbp  represents the current best position; 1c  and 2c  represent the individual learning fac-
tor and group learning factor, respectively; ( )rand ⋅  is used to obtain random values in 
the range of [ ]0,1 . ω  is the inertia weight used to balance the global search ability and 
local search ability, which can be updated iteratively by using Equation (23); max min,ω ω
are the maximum and minimum inertia weights, respectively; max,iter iter  are the current 
and maximum number of iterations, respectively. 

As shown in Figure 7, when optimizing the four parameters , , ,k k kQ R HΦ  of the 
Kalman filter using the particle swarm optimization algorithm, according to the Formula 
(16) in the update process of the Kalman filter, avoiding premature convergence of the 
optimization seeking process to be able to obtain the optimal global solution, the actual 
variance of the innovation is selected here as the objective function, with its value mini-
mized as the objective for optimization. The specific PSO process is shown in Figure 6b. 
Define the objective function as shown in Equations (24) and (25): 

( )/ 1 / 1ˆ ˆ T
k k k kh y y− −=  (24)

/ 1 / 1ˆ ˆk k k k k ky y H x− −= −  (25)

Among them, h is the actual variance of the state information, and / 1ˆk ky −  is the in-
novation sequence generated by the Kalman filter [44]. 

Input: Combined 
Model Data Kalman Filter Calculate the Objective 

Function

ku

, , ,k k kQ R HΦ

ˆky

Particle Swarm 
Optimization Algorithm

( ), , ,k k kh Q R HΦ

ˆ opty

( ), , ,k k kh Q R HΦ

, , ,  at presentk k kQ R HΦcorrected , , ,k k kQ R HΦ

 
Figure 7. Structure of Kalman filter based on particle swarm optimization. 

3. Validation of the Proposed Method 
In this section, the method proposed in the article was tested, the corresponding 

experimental design and result analysis were given, and the method’s validity was veri-
fied. 

3.1. Acquisition of Test Data 
This article used the STIM300 IMU (Safran Sensing Technologies, Horten, Norway) 

as the measured object, composed of a three-axis MEMS gyroscope, a three-axis MEMS 
accelerometer, and a three-axis MEMS inclinometer. The physical drawing and gyro-
scope specifications of the STIM300 are shown in Figure 8a and Table 2, respectively. 
The STIM300 was fixed to a high-precision static base stage, as shown in Figure 8b. The 
data acquisition flow of the STIM300 is shown in Figure 8c. The data from the STIM300 
were sent to the xPC via the RS422 communication interface at a baud rate of 921,600 
bps. xPC decoded the gyroscope data and sent them to the host computer via the net-
work cable. The STIM300 gyroscope was powered up firstly and then preheated for 20 
min at room temperature. Lastly, static test experiments were performed. 

Figure 7. Structure of Kalman filter based on particle swarm optimization.

Among them, h is the actual variance of the state information, and ŷk/k−1 is the
innovation sequence generated by the Kalman filter [44].

3. Validation of the Proposed Method

In this section, the method proposed in the article was tested, the corresponding
experimental design and result analysis were given, and the method’s validity was verified.

3.1. Acquisition of Test Data

This article used the STIM300 IMU (Safran Sensing Technologies, Horten, Norway)
as the measured object, composed of a three-axis MEMS gyroscope, a three-axis MEMS
accelerometer, and a three-axis MEMS inclinometer. The physical drawing and gyroscope
specifications of the STIM300 are shown in Figure 8a and Table 2, respectively. The STIM300
was fixed to a high-precision static base stage, as shown in Figure 8b. The data acquisition
flow of the STIM300 is shown in Figure 8c. The data from the STIM300 were sent to the
xPC via the RS422 communication interface at a baud rate of 921,600 bps. xPC decoded the
gyroscope data and sent them to the host computer via the network cable. The STIM300
gyroscope was powered up firstly and then preheated for 20 min at room temperature.
Lastly, static test experiments were performed.

Sensors 2022, 22, 7249 12 of 23 
 

 

 
Figure 8. Equipment testing device. (a) STIM300 IMU; (b) static IMU data collection system; (c) da-
ta acquisition procedure. 

Table 2. Equipment specifications of STIM300 gyroscope. 

 Parameter Normal 

Gyro 

Input Range ±400°/h 
Bandwidth (－3 dB) 262 Hz 

Bias Instability (Allan Variance @25 °C) 0.3°/h 
Angular Random Walk (Allan Variance @25 °C) 0.15°/√ℎ 

General 

Sample Rate ≤ 2000sample/s 
Power Supply 5.0 ± 0.5V 

Operating Temperature −40 ℃ ≤ 𝑇 ≤ +85 ℃ 
RS422 Transmission Bit Rate 921,600 bps 

In order to adapt to the application scenario of the STIM300 gyroscope, the platform 
to which the gyroscope equipment was adapted was mainly used to measure the pitch 
angular velocity and yaw angular velocity of the photoelectric stabilization platform. As 
shown in Figure 8c, the pitch angle was obtained by rotating the plane YOZ with the y-
axis, and the yaw angle was obtained by rotating the plane XOZ with the x-axis. There-
fore, we mainly studied the x-axis and y-axis angular velocity. The static raw data ob-
tained from the measurement are shown in Figure 9. 

  
(a) (b) 

Figure 9. Raw gyroscope data under static conditions. (a) X-axis raw signal; (b) Y-axis raw signal. 

Figure 8. Equipment testing device. (a) STIM300 IMU; (b) static IMU data collection system; (c) data
acquisition procedure.

In order to adapt to the application scenario of the STIM300 gyroscope, the platform
to which the gyroscope equipment was adapted was mainly used to measure the pitch
angular velocity and yaw angular velocity of the photoelectric stabilization platform. As
shown in Figure 8c, the pitch angle was obtained by rotating the plane YOZ with the y-axis,
and the yaw angle was obtained by rotating the plane XOZ with the x-axis. Therefore, we



Sensors 2022, 22, 7249 12 of 22

mainly studied the x-axis and y-axis angular velocity. The static raw data obtained from
the measurement are shown in Figure 9.

Table 2. Equipment specifications of STIM300 gyroscope.

Parameter Normal

Gyro

Input Range ±400◦/h
Bandwidth (−3 dB) 262 Hz

Bias Instability (Allan Variance @25 ◦C) 0.3◦/h
Angular Random Walk (Allan Variance @25 ◦C) 0.15◦/√h

General

Sample Rate ≤ 2000 sample/s
Power Supply 5.0± 0.5 V

Operating Temperature −40 °C ≤ T ≤ +85 °C
RS422 Transmission Bit Rate 921, 600 bps

Sensors 2022, 22, 7249 12 of 23 
 

 

 
Figure 8. Equipment testing device. (a) STIM300 IMU; (b) static IMU data collection system; (c) da-
ta acquisition procedure. 

Table 2. Equipment specifications of STIM300 gyroscope. 

 Parameter Normal 

Gyro 

Input Range ±400°/h 
Bandwidth (－3 dB) 262 Hz 

Bias Instability (Allan Variance @25 °C) 0.3°/h 
Angular Random Walk (Allan Variance @25 °C) 0.15°/√ℎ 

General 

Sample Rate ≤ 2000sample/s 
Power Supply 5.0 ± 0.5V 

Operating Temperature −40 ℃ ≤ 𝑇 ≤ +85 ℃ 
RS422 Transmission Bit Rate 921,600 bps 

In order to adapt to the application scenario of the STIM300 gyroscope, the platform 
to which the gyroscope equipment was adapted was mainly used to measure the pitch 
angular velocity and yaw angular velocity of the photoelectric stabilization platform. As 
shown in Figure 8c, the pitch angle was obtained by rotating the plane YOZ with the y-
axis, and the yaw angle was obtained by rotating the plane XOZ with the x-axis. There-
fore, we mainly studied the x-axis and y-axis angular velocity. The static raw data ob-
tained from the measurement are shown in Figure 9. 

  
(a) (b) 

Figure 9. Raw gyroscope data under static conditions. (a) X-axis raw signal; (b) Y-axis raw signal. Figure 9. Raw gyroscope data under static conditions. (a) X-axis raw signal; (b) Y-axis raw signal.

3.2. Comparison of Training Based on Convolutional Denoising Auto-Encoders

In order to further apply the deep learning model and the construction of the ARMA
model, this paper chose to use the pre-data processing method of the ARMA model
to process the raw data, mainly including the elimination of wild values, the removal
of constant components, and the extraction of trend terms [39–41]. To consider model
generality and accuracy, we took the first 80% of the processed x-axis and y-axis data as the
training set and the last 20% of the x-axis and y-axis data as the test set.

The deep learning algorithms proposed in this paper were performed on Tensorflow
2.3.0 (Google, Mountain View, CA, USA) and Keras 2.4.3 (Google, USA) running on Ubuntu
16.04-LTS-x86 64-bit operating system (Canonical Ltd., London, UK). The computer plat-
form was equipped with Intel i7-4770 CPU (Intel, Santa Clara, CA, USA), 16G memory
(SKhynix, Icheon-si, Korea), 2T SSD (Samsung, Seoul, Korea), and GeForce RTX-2080Ti
GPU (NVIDIA, Santa Clara, CA, USA). In order to compare the superiority of convolutional
denoising autoencoders, this paper used the normal denoising autoencoder (Normal-DAE)
listed in Table 3 to compare with the convolutional denoising autoencoders listed in Table 1
above. They adopted the Adam optimization algorithm for updating network parameters,
using mean squared error (MSE) as the loss function.



Sensors 2022, 22, 7249 13 of 22

Table 3. Details of Normal-DAE.

Layer Units Activation Function Output Size

Dense 128 Relu 20 × 128
Dense 64 Relu 20 × 64
Dense 32 Relu 20 × 32
Dense 64 Relu 20 × 64
Dense 128 Relu 20 × 128
Dense 1 Tanh 20 × 1

The preprocessed x-axis and y-axis data volume of 30,000 were used as the input
number of the denoising autoencoder, and the randomly damaged data were set to account
for 5% of the total data volume. The batch_size was set to 200, the number of epoch was set
to 100, and input_size was set to (20,1) for deep learning training.

The results of the convolutional denoising autoencoder are shown in Table 4 and
Figure 10. The noise standard deviation of the MEMS gyroscope signals from the x-axis and
y-axis decreased by approximately 23.41% and 28.72%, respectively, after processing by the
normal denoising autoencoder, while the noise standard deviation of the signals decreased
by approximately 44.63% and 38.44%, respectively, after processing by the convolutional
denoising autoencoder proposed in this paper. It can be shown that the proposed con-
volutional denoising autoencoder outperformed normal denoising autoencoder in terms
of noise reduction and signal reconstruction of MEMS gyroscope signals. It prepared the
signals processed by the convolutional denoising autoencoder for further processing in the
later paper.

Table 4. Comparison of denoising autoencoder results.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Standard
Deviation (×10−2◦/s) Percentage

X-Axis

Raw 76.029 8.7194 —
Normal-

DAE 44.608 6.6789 76.59%

Conv-DAE 23.309 4.8280 55.37%

Y-Axis

Raw 61.028 7.8120 —
Normal-

DAE 31.007 5.5684 71.28%

Conv-DAE 23.124 4.8088 61.56%

Sensors 2022, 22, x FOR PEER REVIEW 14 of 23 
 

 

 
(a) 

  
(b) (c) 

Figure 10. Denoising autoencoder training results: (a) DAE training loss; (b) X-axis raw DAE re-

sults; (c) Y-axis raw DAE results. 

3.3. The Training Based on Combinatorial Model Compared with Other Neural Networks 

To validate the performance of the MultiTCN-Attention model for gyroscope error 

compensation in the static base environment, this paper used data reconstructed by the 

convolutional denoising autoencoder as the input values for deep learning. The Mul-

tiTCN model was first explored using an x-axis test set with appropriate values for the 

input data step size, number of hidden cells, number of hidden layers, and dilation list, 

with the base settings shown in Table 5, and it took the Adam optimization algorithm 

and mean squared error (MSE) loss function. Subsequently, the training was carried out 

using the determined values. The MultiTCN-Attention network results were compared 

with MultiTCN networks and LSTM networks using the x-axis and y-axis test sets, re-

spectively. As shown in Tables 6–9, when the input data stride and the number of hid-

den layers were wider, the training time per epoch was longer. We need to make a 

trade-off between results and computational performance. According to the compari-

sons, the best results were obtained when the input data stride was 20, the number of 

hidden units was 128, and the number of hidden layers was 4. While this did not indi-

cate that this was an optimal parameter for the network, it would be an appropriate val-

ue given the computational resources. 

  

Figure 10. Cont.



Sensors 2022, 22, 7249 14 of 22

Sensors 2022, 22, x FOR PEER REVIEW 14 of 23 
 

 

 
(a) 

  
(b) (c) 

Figure 10. Denoising autoencoder training results: (a) DAE training loss; (b) X-axis raw DAE re-

sults; (c) Y-axis raw DAE results. 

3.3. The Training Based on Combinatorial Model Compared with Other Neural Networks 

To validate the performance of the MultiTCN-Attention model for gyroscope error 

compensation in the static base environment, this paper used data reconstructed by the 

convolutional denoising autoencoder as the input values for deep learning. The Mul-

tiTCN model was first explored using an x-axis test set with appropriate values for the 

input data step size, number of hidden cells, number of hidden layers, and dilation list, 

with the base settings shown in Table 5, and it took the Adam optimization algorithm 

and mean squared error (MSE) loss function. Subsequently, the training was carried out 

using the determined values. The MultiTCN-Attention network results were compared 

with MultiTCN networks and LSTM networks using the x-axis and y-axis test sets, re-

spectively. As shown in Tables 6–9, when the input data stride and the number of hid-

den layers were wider, the training time per epoch was longer. We need to make a 

trade-off between results and computational performance. According to the compari-

sons, the best results were obtained when the input data stride was 20, the number of 

hidden units was 128, and the number of hidden layers was 4. While this did not indi-

cate that this was an optimal parameter for the network, it would be an appropriate val-

ue given the computational resources. 

  

Figure 10. Denoising autoencoder training results: (a) DAE training loss; (b) X-axis raw DAE results;
(c) Y-axis raw DAE results.

3.3. The Training Based on Combinatorial Model Compared with Other Neural Networks

To validate the performance of the MultiTCN-Attention model for gyroscope error
compensation in the static base environment, this paper used data reconstructed by the
convolutional denoising autoencoder as the input values for deep learning. The MultiTCN
model was first explored using an x-axis test set with appropriate values for the input
data step size, number of hidden cells, number of hidden layers, and dilation list, with the
base settings shown in Table 5, and it took the Adam optimization algorithm and mean
squared error (MSE) loss function. Subsequently, the training was carried out using the de-
termined values. The MultiTCN-Attention network results were compared with MultiTCN
networks and LSTM networks using the x-axis and y-axis test sets, respectively. As shown
in Tables 6–9, when the input data stride and the number of hidden layers were wider,
the training time per epoch was longer. We need to make a trade-off between results and
computational performance. According to the comparisons, the best results were obtained
when the input data stride was 20, the number of hidden units was 128, and the number of
hidden layers was 4. While this did not indicate that this was an optimal parameter for the
network, it would be an appropriate value given the computational resources.

Table 5. Basic settings for network training.

The output dimension of dense layer 1
Activation function of dense layer Tanh

Batch size 512
Training epoch 100

TCN Kernel Size 4
TCN No. Blocks 1

TCN Padding Causal

Table 6. MultiTCN architectures depending on the input data step (number of hidden layers = 4).

Input Data Step
MultiTCN Model Architecture Noise Standard Deviation

(×10−2◦/s)
Time/Epoch

Kernel Number Dilations

5 64 [1,2,4,8,16] — —
10 64 [1,2,4,8,16] 4.7156 41 s
15 64 [1,2,4,8,16] 4.6185 65 s
20 64 [1,2,4,8,16] 4.5121 80 s
25 64 [1,2,4,8,16] 4.5910 101 s
30 64 [1,2,4,8,16] 4.7347 140 s
40 64 [1,2,4,8,16] 4.8120 176 s



Sensors 2022, 22, 7249 15 of 22

Table 7. MultiTCN architectures depending on the Kernel number (number of hidden layers = 4).

MultiTCN Model Architecture
Input Data Step Noise Standard Deviation

(×10−2◦/s)
Time/Epoch

Kernel Number Dilations

16 [1,2,4,8,16] 20 — —
32 [1,2,4,8,16] 20 4.8256 23 s
64 [1,2,4,8,16] 20 4.5121 80 s

128 [1,2,4,8,16] 20 4.4920 116 s
256 [1,2,4,8,16] 20 — —

Table 8. MultiTCN architectures depending on the dilations (number of hidden layers = 4).

MultiTCN Model Architecture
Input Data Step Noise Standard Deviation

(×10−2◦/s)
Time/Epoch

Dilations Kernel Number

[1,2,4] 128 20 4.4737 61 s
[1,2,4,8] 128 20 4.8256 83 s

[1,2,4,8,16] 128 20 4.4920 116 s

Table 9. MultiTCN architectures depending on number of hidden layers.

Number of
Hidden Layers

MultiTCN Model Architecture Noise Standard Deviation
(×10−2◦/s)

Time/Epoch
Kernel Number Dilations

1 128 [1,2,4] — —
2 128 [1,2,4] — —
3 128 [1,2,4] 4.6564 55 s
4 128 [1,2,4] 4.4737 61 s
5 128 [1,2,4] 4.6110 85 s
6 128 [1,2,4] 4.7920 139 s
7 128 [1,2,4] — —

For the MultiTCN-Attention model, we set the following parameters according to
the above conclusions, as shown in Table 10. The attention layer was set to the same
length as the input length, and the results are shown in Figure 11 and Tables 11 and 12.
Figure 11a shows the training losses within 100 epochs and convergence is achieved for
all networks; Figure 11b shows the weights of the sequence output values in the total
sequence as calculated by the attention mechanism; as shown in the figure for the x and y
axes, the distribution of attention is different, with more even attention on the x-axis and
more focused attention on the front of the sequence input for the y-axis. Tables 11 and 12
show that the MultiTCN-Attention model resulted in a 58.15% and 57.89% reduction in
the standard deviation of noise in the x and y axes, respectively, compared to the raw data,
proving that the application of the MultiTCN-Attention model in MEMS gyroscope error
compensation studies was feasible. In addition, compared with the results of the LSTM
and the MultiTCN, the noise standard deviation values of the MultiTCN-Attention model
results on the x-axis were reduced by 11.68% and 9.46%, respectively, and the deviation
values on the y-axis were reduced by 17.05% and 9.52%, respectively. This indicated that the
MultiTCN-Attention model outperformed both networks regarding error compensation.

Table 10. Details of MultiTCN-Attention model.

Layer
MultiTCN-Attention Model Architecture

Kernel Number Kernel Size No. Blocks Dilations Padding

TCN1 128 4 1 [1,2,4] causal
TCN2 128 4 1 [1,2,4] causal
TCN3 128 4 1 [1,2,4] causal
TCN4 128 4 1 [1,2,4] causal

Attention unit = 20
Dense unit = 1, activation = tanh



Sensors 2022, 22, 7249 16 of 22Sensors 2022, 22, 7249 17 of 23 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 11. MulitTCN-Attention and other neural network training results: (a) training loss; (b) the 
percentage of attention mechanism; (c) X-axis training results; (d) Y-axis training results. 

3.4. Optimization of Kalman Filter Parameters Based on Particle Swarm Optimization 
Algorithm and Others 

In this section, the raw data and MultiTCN-Attention combined model results on 
the x-axis and y-axis were used as measurements, respectively. The parameters of the 
Kalman filter were estimated by the ARMA model and particle swarm optimization al-
gorithm, and the filtering results were compared. 

In order to make the experimental data more extensive and adaptable, the data of 
the MultiTCN-Attention combined model were no longer analyzed using the ARMA 
model method in this paper, only the particle swarm optimization algorithm was used 
to optimize the parameters of the Kalman filter, and the raw data were analyzed using 
the PSO-KF method and the ARMA-KF method. 

3.4.1. Determination of Kalman Filter Parameters Based on ARMA Model 
In this paper, the Akaike Information Criterion was used to determine the order of 

the ARMA (p, q) model. If the order increases, the identified model will be more realistic, 
but the computational difficulty will also increase with the order increase [45]. There-
fore, the maximum order was set to 3, i.e., the maximum value of p and q was set to 3. 
The results were as follows: 

Figure 11. MulitTCN-Attention and other neural network training results: (a) training loss; (b) the
percentage of attention mechanism; (c) X-axis training results; (d) Y-axis training results.

Table 11. Comparison of X-axis results between MultiTCN-Attention and other neural networks.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Standard Deviation
(×10−2◦/s) Percentage

X-Axis

Raw 76.029 8.7194 —
Conv-DAE 23.309 4.8280 55.37%

LSTM 21.786 4.6675 53.53%
MultiTCN 20.014 4.4737 51.31%
MultiTCN-
Attention 13.317 3.6493 41.85%

Table 12. Comparison of Y-axis results between MultiTCN-Attention and other neural networks.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Variance
(×10−2◦/s) Percentage

Y-Axis

Raw 61.028 7.8120 —
Conv-DAE 23.124 4.8088 61.56%

LSTM 21.362 4.6219 59.16%
MultiTCN 16.271 4.0337 51.63%
MultiTCN-
Attention 10.821 3.2895 42.11%



Sensors 2022, 22, 7249 17 of 22

3.4. Optimization of Kalman Filter Parameters Based on Particle Swarm Optimization Algorithm
and Others

In this section, the raw data and MultiTCN-Attention combined model results on the
x-axis and y-axis were used as measurements, respectively. The parameters of the Kalman
filter were estimated by the ARMA model and particle swarm optimization algorithm, and
the filtering results were compared.

In order to make the experimental data more extensive and adaptable, the data of the
MultiTCN-Attention combined model were no longer analyzed using the ARMA model
method in this paper, only the particle swarm optimization algorithm was used to optimize
the parameters of the Kalman filter, and the raw data were analyzed using the PSO-KF
method and the ARMA-KF method.

3.4.1. Determination of Kalman Filter Parameters Based on ARMA Model

In this paper, the Akaike Information Criterion was used to determine the order of the
ARMA (p, q) model. If the order increases, the identified model will be more realistic, but
the computational difficulty will also increase with the order increase [45]. Therefore, the
maximum order was set to 3, i.e., the maximum value of p and q was set to 3. The results
were as follows:

For the raw x-axis data, the identified model was identified as ARMA (3,2):

xk = 0.0497xk−1 + 0.7058xk−2 − 0.0131xk−3 + εk − 0.0534εk−1 − 0.6982εk−2 (26)

For the raw y-axis data, the identified model was identified as ARMA (2,2):

xk = −0.4143xk−1 − 0.7462xk−2 + εk + 0.4105εk−1 + 0.7526εk−2 (27)

where xk was the output of the ARMA model and εk was the driving white noise (mean 0,
variance δ̂2

ε ). The Kalman filter parameters are shown in Table 13. R is the covariance of the
measurement. The initial values of the Kalman filter were set as follows: x1 = [0; 0; 0; 0], P1
was the fourth-order identity matrix.

Table 13. Details of ARMA-KF model.

Method Φ B H Q R

X-Axis
Raw-ARMA-KF


0.0497 0.7058 0.0131 0

1 0 0 0
0 1 0 0
0 0 1 0




1 −0.0534 −0.6982 0
0 0 0 0
0 0 0 0
0 0 0 0

 [1 0 0 0
] 

0.0076 0 0 0
0 0.0076 0 0
0 0 0.0076 0
0 0 0 0.0076

 0.0079

Y-Axis
Raw-ARMA-KF


−0.4143 −0.7462 0 0

1 0 0 0
0 1 0 0
0 0 1 0




1 0.4105 0.7526 0
0 0 0 0
0 0 0 0
0 0 0 0

 [
1 0 0 0

] 
0.0061 0 0 0

0 0.0061 0 0
0 0 0.0061 0
0 0 0 0.0061

 0.0062

3.4.2. Optimization of Kalman Filter Parameters Based on Particle Swarm
Optimization Algorithm

In this paper, the particle swarm optimization algorithm was used to optimize the
Kalman filter parameters, using the data and original data of the MultiTCN-Attention
combined model. The optimization process was as follows (see Algorithm 1):

The initial values of the Kalman filter were set to x1 = 0 and P1 = 1, and the initial
parameters were set to Φ1 = 1, H1 = 1, Q1 = 1, and R1 = 1. The initial parameters of
the particle swarm optimization algorithm were set to N = 50, itermax = 500, ωmin = 0.3,
ωmax = 0.4, c1 = 0.5, and c2 = 0.6. The iterative process of the particle swarm optimization
algorithm is shown in Figure 12. The parameter estimation results are shown in Table 14.



Sensors 2022, 22, 7249 18 of 22

Algorithm 1: Kalman Filtering optimal solution

Input: A numeric sequence of sensor data;
Begin:

(1) Initialize a population of particles (population size N), including random positions, weights, and
velocities.

(2) Evaluate the fitness of each particle according to Equations (24) and (25).
(3) For each particle, compare its fitness value with the best position pib it passed through; if better, use it as

the current best position pib.
(4) For each particle, compare its fitness value with the global best position pgb it passed through; and if

better, take it as the global best position pgb.
(5) Adjust the particle velocity and position according to Equations (21)–(23).
(6) Turn to step (2) if the end condition is not reached.

Output: The Optimized parameter Φopt, Hopt, Qopt, Ropt and the Filtered Sequence.

Sensors 2022, 22, 7249 19 of 23 
 

 

 
Figure 12. Iterative process of particle swarm optimization algorithm. 

Table 14. Details of PSO-KF model. 

Axis Method 𝚽 H Q R 

X-Axis Raw-PSO-KF 0.8687 0.9617 0.1283 0.5465 
MultiTCN-Attention-PSO-KF 0.8871 0.9502 0.0343 0.7973 

Y-Axis 
Raw-PSO-KF 0.8689 0.9618 0.1284 0.5466 

MultiTCN-Attention-PSO-KF 0.8239 0.9217 0.0279 0.7547 

3.4.3. Comparison of Kalman Filter Results 
The Kalman filtering results in this paper were shown in Tables 15 and 16. On the x-

axis, compared with the original data, the Kalman filtering noise standard deviation 
based on the particle swarm optimization algorithm was reduced by 59.65%, and the da-
ta using the MultiTCN-Attention-PSO-KF model were reduced by 77.81%, which was 
25.84% and 44.71%, respectively, compared with the traditional ARMA-KF noise reduc-
tion process. On the y-axis, the Kalman filter noise standard deviation based on the par-
ticle swarm optimization algorithm was reduced by 59.66%, and the data using the Mul-
tiTCN-Attention-PSO-KF model were reduced by 76.44%, which was 29.88% and 
46.66%, respectively, compared with the traditional ARMA-KF noise reduction process. 
It can be seen that the combined algorithm proposed in this paper can effectively com-
pensate for MEMS gyroscope noise. At the same time, it can be seen from Figure 13 that 
the filtering effect of the combined algorithm proposed in this paper was smoother, and 
the signal fluctuation of the MEMS gyroscope was slight, which was closer to the actual 
value tested in the static base. 

Figure 12. Iterative process of particle swarm optimization algorithm.

Table 14. Details of PSO-KF model.

Axis Method Φ H Q R

X-Axis
Raw-PSO-KF 0.8687 0.9617 0.1283 0.5465

MultiTCN-Attention-PSO-KF 0.8871 0.9502 0.0343 0.7973

Y-Axis
Raw-PSO-KF 0.8689 0.9618 0.1284 0.5466

MultiTCN-Attention-PSO-KF 0.8239 0.9217 0.0279 0.7547

3.4.3. Comparison of Kalman Filter Results

The Kalman filtering results in this paper were shown in Tables 15 and 16. On the
x-axis, compared with the original data, the Kalman filtering noise standard deviation
based on the particle swarm optimization algorithm was reduced by 59.65%, and the data
using the MultiTCN-Attention-PSO-KF model were reduced by 77.81%, which was 25.84%
and 44.71%, respectively, compared with the traditional ARMA-KF noise reduction process.
On the y-axis, the Kalman filter noise standard deviation based on the particle swarm
optimization algorithm was reduced by 59.66%, and the data using the MultiTCN-Attention-
PSO-KF model were reduced by 76.44%, which was 29.88% and 46.66%, respectively,
compared with the traditional ARMA-KF noise reduction process. It can be seen that
the combined algorithm proposed in this paper can effectively compensate for MEMS
gyroscope noise. At the same time, it can be seen from Figure 13 that the filtering effect of



Sensors 2022, 22, 7249 19 of 22

the combined algorithm proposed in this paper was smoother, and the signal fluctuation
of the MEMS gyroscope was slight, which was closer to the actual value tested in the
static base.

Table 15. Comparison of Kalman filtering results in the X-axis.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Standard Deviation
(×10−2◦/s) Percentage

X-Axis

Raw 76.029 8.7194 —
Raw-ARMA-KF 33.312 5.7717 66.19%

Raw-PSO-KF 12.376 3.5179 40.35%
MultiTCN-Attention 13.317 3.6493 41.85%

MultiTCN-Attention-
PSO-KF 3.743 1.9348 22.19%

Table 16. Comparison of Kalman filtering results in the Y-axis.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Standard Deviation
(×10−2◦/s) Percentage

Y-Axis

Raw 61.028 7.8120 —
Raw-ARMA-KF 30.089 5.4854 70.22%

Raw-PSO-KF 9.935 3.1520 40.34%
MultiTCN-Attention 10.821 3.2895 42.11%

MultiTCN-Attention-
PSO-KF 3.3878 1.8406 23.56%Sensors 2022, 22, 7249 20 of 23 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 13. Kalman filtered effect: (a) X-axis raw data filtering results; (b) X-axis combined model 
filtering results; (c) Y-axis raw data filtering results; (d) Y-axis combined model filtering results. 

Table 15. Comparison of Kalman filtering results in the X-axis. 

Axis Method 
Noise Variance  
(× 𝟏𝟎 𝟒(°/𝒔)𝟐) 

Noise Standard Deviation  
(× 𝟏𝟎 𝟐°/𝒔) Percentage 

X-Axis 

Raw 76.029 8.7194 — 
Raw-ARMA-KF 33.312 5.7717 66.19% 

Raw-PSO-KF 12.376 3.5179 40.35% 
MultiTCN-Attention 13.317 3.6493 41.85% 

MultiTCN-Attention-PSO-
KF 

3.743 1.9348 22.19% 

Table 16. Comparison of Kalman filtering results in the Y-axis. 

Axis Method 
Noise Variance  
(× 𝟏𝟎 𝟒(°/𝒔)𝟐) 

Noise Standard Deviation  
(× 𝟏𝟎 𝟐°/𝒔) Percentage 

Y-Axis 

Raw 61.028 7.8120 — 
Raw-ARMA-KF 30.089 5.4854 70.22% 

Raw-PSO-KF 9.935 3.1520 40.34% 
MultiTCN-Attention 10.821 3.2895 42.11% 

MultiTCN- 
Attention-PSO-KF 3.3878 1.8406 23.56% 

Figure 13. Kalman filtered effect: (a) X-axis raw data filtering results; (b) X-axis combined model
filtering results; (c) Y-axis raw data filtering results; (d) Y-axis combined model filtering results.



Sensors 2022, 22, 7249 20 of 22

4. Conclusions

This paper proposed a combined method combining multiple neural networks and
Kalman filters for MEMS gyroscope error compensation in the static base environment. By
comparing the results, the following conclusions were drawn:

(1) This paper verified the feasibility of the convolutional denoising autoencoder to
recover and reconstruct the signal when the sensor data were damaged and provided
a new idea for signal repair.

(2) It was verified that the TCN network with added attention mechanism was better
than the standard TCN network and LSTM network, which provided a new way
to compensate for the error of MEMS gyro. Moreover, it was also verified that the
compensation method of TCN network was more reasonable than that of LSTM
network. By adding the attention mechanism, the model we proposed can focus on
the temporal data being more decentralized rather than concentrating on the part of
the sequence.

(3) By using the particle swarm optimization algorithm to estimate the Kalman filter
parameters, the noise standard deviation reduction of Kalman filter parameter estima-
tion was more satisfactory than that of the ordinary ARMA model. The calculation
process was also more straightforward, and the curve fluctuations were relatively
small. Compared to the original data, the noise standard deviation of the filtering
effect of the combined model proposed in this paper decreased by 77.81% and 76.44%
on the x and y axes, respectively. Additionally, the combined model reduced the noise
effect by nearly three times compared to the traditional ARMA-KF filtering model,
making the effect of the sensor more stable and effective.

In subsequent experiments, we shall perform dynamic experiments to obtain the
MEMS gyroscope output, write the trained neural network model into the xPC module of
the host computer for online real-time filtering, and build a platform to validate its practical
engineering applications.

Author Contributions: Conceptualization, Z.H. and H.C.; methodology, Z.H. and F.W.; software,
Z.H. and F.W.; validation, H.S. and F.W.; formal analysis, Z.H. and F.W.; investigation, Z.H. and X.S.;
resources, Z.H., H.C. and Y.L.; data curation, X.S.; writing—original draft preparation, Z.H.; writing—
review and editing, Z.H.; visualization, Z.H.; supervision, Y.L. and H.C.; project administration, H.S.;
funding acquisition, J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Scientific Research Business Fee Fund of Heilongjiang
Provincial Scientific Research Institutes, Research on Key Technologies of Wide Area Forest and Grass
Fire Aerial Monitoring and Early Warning, grant number CZKYF2020B009.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhanshe, G.; Fucheng, C.; Boyu, L.; Le, C.; Chao, L.; Ke, S. Research development of silicon MEMS gyroscopes: A review.

Microsyst. Technol. 2015, 21, 2053–2066. [CrossRef]
2. Balestrieri, E.; Daponte, P.; De Vito, L.; Lamonaca, F. Sensors and Measurements for Unmanned Systems: An Overview. Sensors

2021, 21, 1518. [CrossRef]
3. Guangchun, L.; Yunfeng, H.; Yanhui, W.; Shenbo, Z.; Yanzhe, C. The MEMS gyro stabilized platform design based on Kalman

Filter. In Proceedings of the 2013 International Conference on Optoelectronics and Microelectronics (ICOM), Harbin, China, 7–9
September 2013; pp. 14–17.

4. Fu, F.; Lei, X.; Wang, R. A Compound Control Method Based on the Adaptive Linear Extended State Observer and Global Fast
Terminal Sliding Mode Control for Inertially Stabilized Platform. Machines 2022, 10, 426. [CrossRef]

5. Gao, J.; Li, K.; Chen, J. Research on the Integrated Navigation Technology of SINS with Couple Odometers for Land Vehicles.
Sensors 2020, 20, 546. [CrossRef]

6. Perov, A.; Shatilov, A. Deeply Integrated GNSS/Gyro Attitude Determination System. Sensors 2020, 20, 2203. [CrossRef]
7. Wang, Z.; Shan, L.; Wu, Z.; Yan, J.; Li, J. MEMS Gyro Signal Processing based on Improved-Sage-Husa Adaptive Filtering

Method. In Proceedings of the 2021 33rd Chinese Control and Decision Conference (CCDC), Kunming, China, 22–24 May
2021; pp. 5029–5035.

http://doi.org/10.1007/s00542-015-2645-x
http://doi.org/10.3390/s21041518
http://doi.org/10.3390/machines10060426
http://doi.org/10.3390/s20020546
http://doi.org/10.3390/s20082203


Sensors 2022, 22, 7249 21 of 22

8. Kim, B.H.; Kim, M.Y. Active LOS Stabilization of Pan-Tilt Motion Control System Using an Adaptive Notch Filtering Based on
Gyro Sensing and FFT Analysis. In Proceedings of the 2014 International Symposium on Optomechatronic Technologies, Seattle,
WA, USA, 5–7 November 2014; pp. 61–65.

9. Bingbo, C.; Xiyuan, C.; Rui, S. Application of EMD Threshold Filtering for Fiber Optical Gyro Drift Signal De-Noising. Acta Opt.
Sin. 2015, 35, 207001. [CrossRef]

10. El-Sheimy, N.; Nassar, S.; Noureldin, A. Wavelet de-noising for IMU alignment. IEEE Aerosp. Electron. Syst. Mag. 2004, 19,
32–39. [CrossRef]

11. Wu, Y.; Shen, C.; Cao, H.; Che, X. Improved Morphological Filter Based on Variational Mode Decomposition for MEMS Gyroscope
De-Noising. Micromachines 2018, 9, 246. [CrossRef] [PubMed]

12. Bonnet, V.; Ramdani, S.; Azevedo-Coste, C.; Fraisse, P.; Mazzà, C.; Cappozzo, A. Integration of Human Walking Gyroscopic Data
Using Empirical Mode Decomposition. Sensors 2014, 14, 370. [CrossRef] [PubMed]

13. Liu, F.; Su, Z.; Zhao, H.; Li, Q.; Li, C. Attitude Measurement for High-Spinning Projectile with a Hollow MEMS IMU Consisting
of Multiple Accelerometers and Gyros. Sensors 2019, 19, 1799. [CrossRef] [PubMed]

14. Hu, Y.; Xiong, L. An Integrated Approach of Wavelet Techniques and Time Series Analysis in Eliminating MEMS Inertial Gyro
Stochastic Error. In Proceedings of the 2018 18th International Conference on Control, Automation and Systems (ICCAS),
PyeongChang, Korea, 17–20 October 2018; pp. 762–766.

15. Liang, S.; Zhu, W.; Zhao, F.; Wang, C. High-Efficiency Wavelet Compressive Fusion for Improving MEMS Array Performance.
Sensors 2020, 20, 1662. [CrossRef] [PubMed]

16. Wu, X.; Li, Q. Research of the Random Noise Compensation of MEMS Gyro. In Proceedings of the System Simulation and
Scientific Computing, Shanghai, China, 27–30 October 2012; pp. 328–335.

17. Cao, H.; Zhang, Y.; Shen, C.; Liu, Y.; Wang, X. Temperature Energy Influence Compensation for MEMS Vibration Gyroscope
Based on RBF NN-GA-KF Method. Shock Vib. 2018, 2018, 2830686. [CrossRef]

18. Fontanella, R.; Accardo, D.; Lo Moriello, R.S.; Angrisani, L.; De Simone, D. MEMS gyros temperature calibration through artificial
neural networks. Sens. Actuators A Phys. 2018, 279, 553–565. [CrossRef]

19. Webber, M.; Rojas, R.F. Human Activity Recognition With Accelerometer and Gyroscope: A Data Fusion Approach. IEEE Sens. J.
2021, 21, 16979–16989. [CrossRef]

20. Herath, S.; Yan, H.; Furukawa, Y. RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, & New
Methods. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Virtual, 31 May–31
August 2020; pp. 3146–3152.

21. Esfahani, M.A.; Wang, H.; Wu, K.; Yuan, S. OriNet: Robust 3-D Orientation Estimation With a Single Particular IMU. IEEE Robot.
Autom. Lett. 2020, 5, 399–406. [CrossRef]

22. Chen, H.; Aggarwal, P.; Taha, T.M.; Chodavarapu, V.P. Improving Inertial Sensor by Reducing Errors using Deep Learning
Methodology. In Proceedings of the NAECON 2018—IEEE National Aerospace and Electronics Conference, Dayton, OH, USA,
23–26 July 2018; pp. 197–202.

23. Jiang, C.; Chen, S.; Chen, Y.; Zhang, B.; Feng, Z.; Zhou, H.; Bo, Y. A MEMS IMU De-Noising Method Using Long Short Term
Memory Recurrent Neural Networks (LSTM-RNN). Sensors 2018, 18, 3470. [CrossRef] [PubMed]

24. Brossard, M.; Bonnabel, S.; Barrau, A. Denoising IMU Gyroscopes With Deep Learning for Open-Loop Attitude Estimation. IEEE
Robot. Autom. Lett. 2020, 5, 4796–4803. [CrossRef]

25. Ullah, I.; Fayaz, M.; Kim, D. Improving Accuracy of the Kalman Filter Algorithm in Dynamic Conditions Using ANN-Based
Learning Module. Symmetry 2019, 11, 94. [CrossRef]

26. Meng, Z.; Zhan, X.; Li, J.; Pan, Z. An enhancement denoising autoencoder for rolling bearing fault diagnosis. Measurement 2018,
130, 448–454. [CrossRef]

27. Liu, X.; Zhou, Q.; Zhao, J.; Shen, H.; Xiong, X. Fault Diagnosis of Rotating Machinery under Noisy Environment Conditions
Based on a 1-D Convolutional Autoencoder and 1-D Convolutional Neural Network. Sensors 2019, 19, 972. [CrossRef]

28. Lou, S.; Deng, J.; Lyu, S. Chaotic signal denoising based on simplified convolutional denoising auto-encoder. Chaos Solitons
Fractals 2022, 161, 2333. [CrossRef]

29. Chen, S.; Yu, J.; Wang, S. One-dimensional convolutional auto-encoder-based feature learning for fault diagnosis of multivariate
processes. J. Process. Control 2020, 87, 54–67. [CrossRef]

30. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition 2015, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

31. Bai, S.; Kolter, J.Z.; Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
arXiv 2018, arXiv:1803.01271.

32. Lara-Benítez, P.; Carranza-García, M.; Luna-Romera, J.M.; Riquelme, J.C. Temporal convolutional networks applied to energy-
related time series forecasting. Appl. Sci. 2020, 10, 2322. [CrossRef]

33. Wan, R.; Mei, S.; Wang, J.; Liu, M.; Yang, F. Multivariate temporal convolutional network: A deep neural networks approach for
multivariate time series forecasting. Electronics 2019, 8, 876. [CrossRef]

34. Deng, S.; Zhang, N.; Zhang, W.; Chen, J.; Pan, J.Z.; Chen, H. Knowledge-driven stock trend prediction and explanation via
temporal convolutional network. In Proceedings of the 2019 World Wide Web Conference, San Francisco, CA, USA, 13–17 May
2019; pp. 678–685.

http://doi.org/10.3788/AOS201535.0207001
http://doi.org/10.1109/MAES.2004.1365016
http://doi.org/10.3390/mi9050246
http://www.ncbi.nlm.nih.gov/pubmed/30424179
http://doi.org/10.3390/s140100370
http://www.ncbi.nlm.nih.gov/pubmed/24379044
http://doi.org/10.3390/s19081799
http://www.ncbi.nlm.nih.gov/pubmed/30991707
http://doi.org/10.3390/s20061662
http://www.ncbi.nlm.nih.gov/pubmed/32192087
http://doi.org/10.1155/2018/2830686
http://doi.org/10.1016/j.sna.2018.04.008
http://doi.org/10.1109/JSEN.2021.3079883
http://doi.org/10.1109/LRA.2019.2959507
http://doi.org/10.3390/s18103470
http://www.ncbi.nlm.nih.gov/pubmed/30326646
http://doi.org/10.1109/LRA.2020.3003256
http://doi.org/10.3390/sym11010094
http://doi.org/10.1016/j.measurement.2018.08.010
http://doi.org/10.3390/s19040972
http://doi.org/10.1016/j.chaos.2022.112333
http://doi.org/10.1016/j.jprocont.2020.01.004
http://doi.org/10.3390/app10072322
http://doi.org/10.3390/electronics8080876


Sensors 2022, 22, 7249 22 of 22

35. Luong, M.-T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015,
arXiv:1508.04025.

36. Chen, Y.; Wen, M.; Zhang, K.; Yu, S. Short term photovoltaic output prediction based on similar day matching and TCN attention.
Electr. Meas. Instrum. 2020, 1–9.

37. Auger, F.; Hilairet, M.; Guerrero, J.M.; Monmasson, E.; Orlowska-Kowalska, T.; Katsura, S. Industrial Applications of the Kalman
Filter: A Review. IEEE Trans. Ind. Electron. 2013, 60, 5458–5471. [CrossRef]

38. Narasimhappa, M.; Nayak, J.; Terra, M.H.; Sabat, S.L. ARMA model based adaptive unscented fading Kalman filter for reducing
drift of fiber optic gyroscope. Sens. Actuators A Phys. 2016, 251, 42–51. [CrossRef]

39. Ma, Y.; Jin, J.; Huang, Q.; Dan, F. Data Preprocessing of Agricultural IoT Based on Time Series Analysis. In Intelligent Computing
Theories and Application; Springer: Cham, Switzerland, 2018; pp. 219–230.

40. Kan, X.; Li, X.; Liu, Q. Research on Random Error Model and Error Compensation of MEMS Gyroscope. In Proceedings of the
2019 4th International Conference on Robotics, Control and Automation, Guangzhou, China, 26–28 July 2019; pp. 43–47.

41. Yong, S.; Jiabin, C.; Chunlei, S.; Yongqiang, H. Research on the compensation in MEMS gyroscope random drift based on
time-series analysis and Kalman filtering. In Proceedings of the 2015 34th Chinese Control Conference (CCC), Hangzhou, China,
28–30 July 2015; pp. 2078–2082.

42. Wang, W.; Chen, X. Temperature drift modeling and compensation of fiber optical gyroscope based on improved support vector
machine and particle swarm optimization algorithms. Appl. Opt. 2016, 55, 6243–6250. [CrossRef]

43. He, H.; Zhu, B.; Zha, F. Particle Swarm Optimization-Based Gyro Drift Estimation Method for Inertial Navigation System. IEEE
Access 2019, 7, 55788–55796. [CrossRef]

44. Zhang Fengjiao, W.M.Z.W. Vehicle State Estimation Based on Ant Colony Optimization Algorithm. China Mech. Eng. 2015,
26, 3046–3050.

45. Awad, A.M. Properties of the Akaike information criterion. Microelectron. Reliab. 1996, 36, 457–464. [CrossRef]

http://doi.org/10.1109/TIE.2012.2236994
http://doi.org/10.1016/j.sna.2016.09.036
http://doi.org/10.1364/AO.55.006243
http://doi.org/10.1109/ACCESS.2019.2912871
http://doi.org/10.1016/0026-2714(95)00143-3

	Introduction 
	Methods 
	Data Reconstruction Based on Convolutional Denoising Auto-Encoder 
	Model Prediction Based on Temporal Convolutional Networks and Attention Mechanisms 
	Deep Neural Networks with Temporal Convolutional Neural Layers 
	Attention Mechanism 

	Multi-Layer Deep Learning Network Combination Model 
	Particle Swarm Optimization Algorithm for Optimal Kalman Filter and Others 
	Kalman Filter Based on ARMA Model 
	Particle Swarm Optimization Algorithm for Optimal Kalman Filter 


	Validation of the Proposed Method 
	Acquisition of Test Data 
	Comparison of Training Based on Convolutional Denoising Auto-Encoders 
	The Training Based on Combinatorial Model Compared with Other Neural Networks 
	Optimization of Kalman Filter Parameters Based on Particle Swarm Optimization Algorithm and Others 
	Determination of Kalman Filter Parameters Based on ARMA Model 
	Optimization of Kalman Filter Parameters Based on Particle Swarm Optimization Algorithm 
	Comparison of Kalman Filter Results 


	Conclusions 
	References

