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Abstract: Errors in microelectromechanical systems (MEMS) inertial measurement units (IMUs) are
large, complex, nonlinear, and time varying. The traditional noise reduction and compensation
methods based on traditional models are not applicable. This paper proposes a noise reduction
method based on multi-layer combined deep learning for the MEMS gyroscope in the static base state.
In this method, the combined model of MEMS gyroscope is constructed by Convolutional Denoising
Auto-Encoder (Conv-DAE) and Multi-layer Temporal Convolutional Neural with the Attention
Mechanism (MultiTCN-Attention) model. Based on the robust data processing capability of deep
learning, the noise features are obtained from the past gyroscope data, and the parameter optimization
of the Kalman filter (KF) by the Particle Swarm Optimization algorithm (PSO) significantly improves
the filtering and noise reduction accuracy. The experimental results show that, compared with the
original data, the noise standard deviation of the filtering effect of the combined model proposed
in this paper decreases by 77.81% and 76.44% on the x and y axes, respectively; compared with
the existing MEMS gyroscope noise compensation method based on the Autoregressive Moving
Average with Kalman filter (ARMA-KF) model, the noise standard deviation of the filtering effect
of the combined model proposed in this paper decreases by 44.00% and 46.66% on the x and y axes,
respectively, reducing the noise impact by nearly three times.

Keywords: MEMS gyroscope; convolutional denoising autoencoder; temporal convolutional network;
attention mechanism; Particle Swarm Optimization algorithm; Kalman filter

1. Introduction

MEMS gyroscopes have the characteristics of small size, low power consumption,
low cost, and high-cost performance [1]. It is easier to act as an actuator or a key node of
inertial navigation in small institutions, such as in the drone remote sensing measurement
gimbals [2], aviation pods [3,4], navigation terminals [5,6], and other institutions, and it
plays an important role. High-precision MEMS gyroscopes can already meet the needs of
engineers for practical projects, so reducing the noise of MEMS gyroscopes and improving
measurement accuracy has become a hot issue.

Traditional gyroscope noise reduction methods include Kalman filter [7], Fast Fourier
Transform [8], Empirical Mode Decomposition [9], Wavelet Transform [10], Variational
Mode Decomposition [11], and Ensemble Empirical Mode Decomposition [12], etc. For
example, Liu, Fuchao [13] proposed an adaptive unscented Kalman filter algorithm by
analyzing the influence of the MEMS IMU noise statistical characteristics on the accuracy
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of the angular rate solution of a high-rotating projectile and verified that the algorithm
has better performance than the unscented Kalman filter algorithm with higher estimation
accuracy. Yingjie Hu [14] proposed a method combining wavelet denoising with time series
analysis, using wavelet denoising to deal with high-frequency noise, followed by time series
analysis combined with the Sage-Husa adaptive Kalman filter to remove low-frequency
noise. Siyuan Liang [15] proposed to use the compression characteristics of multi-scale
wavelet transform to compress the original signal of MEMS gyroscope, fuse the compressed
data according to the support degree, and then perform threshold processing on the
fused wavelet coefficients to improve the accuracy of MEMS inertial devices. The harsh
environment of actual engineering often limits traditional methods, so machine learning
represented by the neural network and support vector machine has also been derived to
filter MEMS gyroscopes [16]. Huiliang Cao [17] utilized three methods, radial basis function
neural network (RBF NN), genetic algorithm (GA)-based RBF NN, and GA-based RBF NN
with Kalman filter, to effectively compensate for the temperature energy-influenced drift of
MEMS vibrating gyroscopes. Rita Fontanella [18] used a back-propagation artificial neural
network as an improvement of polynomial fitting in order to solve the zero bias when the
polynomial was applied to temperature calibration of MEMS gyroscope, and the study
applied it to the Attitude and Heading Reference System model to improve its attitude
accuracy by 20%. Mitchell Webber [19] used a combination of support vector machine and
Kalman filtering to fuse the data of MEMS gyroscopes and accelerometers in wearable
devices to achieve noise reduction and recognition.

At this stage, in order to further increase the production cost of the equipment and
improve the cost performance, designers often only use cost-effective MEMS gyroscopes
instead of the optical fiber gyroscopes as essential components. With the continuous
improvement of computer arithmetic power, attempts have been made to use deep learning
models with more robust fitting capabilities to denoise MEMS gyroscope signals [20–22].
Changhui Jiang [23] proposed an artificial intelligence method for denoising the output
signal of a MEMS IMU, where the signal was processed as a time series, and a long short-
term memory (LSTM) was used to filter the output signal of a MEMS gyroscope. Martin
Brossard [24] used convolutional neural networks to calculate gyro corrections based on
past gyro measurements as a way of filtering out undesirable errors in the original gyro
signal. Israr Ullah [25] used an artificial neural network-based learning module to estimate
the amount of error in the sensor readings and update the measurement covariance R in
the Kalman filter accordingly, resulting in a reduction in sensor noise of around 10%. It is
possible to use deep learning techniques to eliminate MEMS gyroscope noise. Although
the research on noise reduction of MEMS gyroscopes based on deep learning is just in its
infancy, existing research shows that the noise reduction of MEMS gyroscopes based on
deep learning is undoubtedly a new idea.

In order to further improve the measurement accuracy of MEMS gyroscopes, this
paper proposes an error compensation method based on the combination of Conv-DAE
and MultiTCN-Attention model, then using the Kalman filter, which has the particle swarm
optimization algorithm to dynamically adjust the predicted value of the combined network
to improve the performance of error compensation. The main contributions of this paper
are as follows:

(1) In the presence of corrupted sensor data, the feasibility of the convolutional denoising
autoencoder to recover and reconstruct the signal is verified.

(2) Explore pertinent input data step sizes and network topologies to compare the er-
ror compensation performance of multilayer temporal convolutional neural (TCN)
networks, their variants, and other recurrent neural network variants.

(3) The particle swarm optimization algorithm is used for parameter estimation when
designing the Kalman filter. This is compared with the ARMA-KF model to further
improve the filtering effect.

The rest of the paper is organized as follows: Section 2 introduces the convolutional
denoising autoencoder, the temporal convolutional network, the attention mechanism, the
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Kalman filter, the ARMA-KF model, and the PSO-KF model, and explains the methods
proposed in this paper. Section 3 presents the experiments, results, and comparisons. The
rest of the paper contains conclusions and references.

2. Methods

This section clarifies the methods and principles proposed in the article and provides
corresponding theoretical support for the subsequent experimental verification.

2.1. Data Reconstruction Based on Convolutional Denoising Auto-Encoder

The convolutional denoising autoencoder (Conv-DAE) model consists of an encoder
and a decoder; the encoder is responsible for quickly compressing the original signal
dimension and mapping it to a feature representation in low-dimensional feature space;
the decoder is responsible for reconstructing this feature representation and reducing it to
the original signal, the basic structure of which is shown in Figure 1 [26].
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Figure 1. The overall structure of a denoising autoencoder.

The Conv-DAE model enables efficient and accurate feature extraction of the original
signal in feature space by minimizing the error between the noisy or corrupted original sig-
nal and the reconstructed original signal [27]. Compared to conventional DAEs, Conv-DAE
has the same basic structure of an encoder and decoder but replaces the fully connected lay-
ers with convolutional layers. As deep-structured convolutional neural networks (CNNs)
are easy to train, Conv-DAE, as a particular type of CNN, can improve the reconstruction
capability by using deep structure [28,29].

The Conv-DAE model structure proposed in this paper is shown in Figure 2 below.
The model has a symmetric structure of encoder and decoder, where the encoder consists
of two convolutional layers and two max-pooling layers, and the decoder consists of three
transposed convolutional layers and two upsampling layers. Each convolutional layer in
the encoder uses a 1 × 5 filter to extract the various feature vectors, and each transposed
convolutional layer in the decoder also uses a 1 × 5 filter to reduce and aggregate the
feature vectors. Details of the structure are shown in Table 1.
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Table 1. Details of Conv-DAE model.

Layer Kernel Number Kernel Size Stride Activation Function Output Size Padding

Conv1D 8 5 1 Relu 20 × 8 Same
MaxPooling — 2 — — 10 × 8 —

Conv1D 16 5 1 Relu 10 × 16 Same
MaxPooling — 2 — — 5 × 16 —

Conv1D_Trans 16 5 1 Relu 5 × 16 Same
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Conv1D_Trans 8 5 1 Relu 10 × 8 Same
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The convolutional layer, the max-pooling layer, the transposed convolutional layer,
and the upsampling layer are the main structures for feature extraction in the Conv-DAE
model proposed in this paper, with the following operational equations:

xl
j = f

 ∑
i∈Mj

ωl
ij ∗ xl−1

i + bl
j

 (1)

xk
j (n) = max

[
xk

j (2n− 1), xk
j (2n)

]
(2)

In Equation (1), xl
j is the current convolutional layer output features, xl−1

i is the

previous layer output features, f (·) function is the activation function, ωl
ij is the current

convolutional layer convolutional kernel, ∗ denotes convolution, Mj is the connection
between xl

j and output features of previous layer, and bl
j is the current convolutional layer

corresponding bias. In Equation (2), xk
j (n) is the jth convolutional kernel of the kth layer, n

is the edge length of the convolutional kernel size, and max is the maximum function. In
addition, the transposed convolutional layer in the decoder can be regarded as the inverse
process of the convolutional layer in the encoder [30].

2.2. Model Prediction Based on Temporal Convolutional Networks and Attention Mechanisms
2.2.1. Deep Neural Networks with Temporal Convolutional Neural Layers

The temporal convolutional network (TCN) [31] is primarily a temporal model based
on convolutional neural networks. Unlike standard convolutional neural networks, TCN
employs causal convolution for processing time series data and uses dilated convolution
to cope with the long-distance dependency problem common in time series models. The
basic structure of a temporal convolutional network consists of causal convolution, dilated
convolution, and residual connections, as shown in Figure 3.
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(a) Causal Convolution

Causal convolution is a fundamental architecture of temporal convolutional networks,
and Figure 3 shows the structure of a causal convolution stack. For a one-dimensional
time series input X = (x0, x1, . . . , xt, . . . , xT), the output yt of time t depends only on the
current time xt and partial past time input (i.e., xt−1, xt−2, xt−3, . . . , xt), not any future input
(i.e., xt+1, xt+2, xt+3, . . . , xT). Therefore, the output information of the temporal convolu-
tional network is only affected by the past input information, avoiding the “leakage” that
never came in the past. In addition, causal convolution is susceptible to the limitations of
the receptive field, i.e., the output can only be predicted by receiving information from a
shorter history size [32].

(b) Dilated Convolution

The traditional convolution operation process involves convolving the sequence once
and then pooling it to reduce the sequence’s size and expand the receptive field’s size.
One of its main disadvantages is that some sequence information will be lost during the
pooling process. In contrast, dilated convolutions feature no pooling process but gradually
increase the perceptual length through a series of dilated convolutions, so that the output of
each convolution contains rich information for long-term tracking [33]. Therefore, dilated
convolutions can be well applied to long information-dependent problems of sequences,
such as speech and signal processing, weather forecasting, etc. For a one-dimensional time
series input X = (x0, x1, . . . , xt, . . . , xT) and a filter F : {0, 1, 2, . . . , m− 1}, the H(·) of the
sequence element T of the dilated convolution operation is defined as follows:

H(T) = (X ∗d F )(T) =
m−1

∑
i=0
F (i)·xT−d·i (3)

where m denotes the filter size, d denotes the dilation factor, ∗ denotes convolution, and
T − d · i denotes the past direction.

The dilation operation can be thought of as introducing a fixed step between every two
adjacent filters. Each layer consists of a set of dilated convolutions with rate parameters dl , a
non-linear activation fnl(·), and a residual connection combining the input and convolution
signals of the layer. dl represents increasing the number of consecutive layers within
the block, calculated by dl = 2l . The convolution operation only works between two
timestamps t and t− dl . Specifically, the filters can be parameterized by a weight matrix
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W = [W0, W1], and a bias vector b, where Wi ∈ RFw×Fw , b ∈ RFw , and Fw represent the
number of filters.Z̃(j,l)

t and Z(j,l)
t are the results of the null convolution and the addition of

the residual join at time series t, respectively, denoted as

Z̃(j,l)
t = fnl

(
W0Z̃(j,l−1)

t−dl
+ W1Z̃(j,l−1)

t

)
(4)

Z(j,l)
t = Z(j,l−1)

t + VZ̃(j,l)
t + e (5)

where V ∈ RFw×Fw denotes the weight matrix, and e ∈ RFw denotes the bias vector of
residual connections [34].

(c) Residual Connections

Residual connections have proven to be an effective method to train deep networks,
which allow the network to pass information across layers [31,33]. In addition, the receptive
field size of TCN can be enlarged by changing the number of hidden layers in residual
connections, and the problem of vanishing gradients in the process of training neural
networks can be avoided.

One branch of the residual block performs the transformation operation G(·) on the
input X(h−1), and a branch is added to perform a straightforward transform to keep the
number of feature maps in parallel with the existing branches. The output X(h) of the hth
residual block can be expressed as:

X(h) = δ
(

G
(

X(h−1)
)
+ X(h−1)

)
(6)

where δ(·) indicates the activation operation. G(·) is a series of transformation operations.
As shown in the right half of Figure 3, the residual connection structure includes dilated
causal convolutional layers, weightnorm layers, activation layers, and dropout layers.
Among them, the dilated causal convolution layer is composed of the aforementioned
causal convolution and dilated convolution, which is used to extract hidden features from
the input; the weightnorm layer is used to improve the training speed by limiting the weight
range; the activation layer adopts a good convergence Rectified Linear Unit (ReLU); and the
dropout layer is used for regularization to solve the overfitting problem of deep networks.

Therefore, in contrast to long short-term memory and the gated recurrent neural
network, (1) TCN can perform convolution in parallel due to its parallelism; (2) TCN can
adjust the receptive field size by the number of layers, dilation factor, and filter size, which
allows us to control the memory size of the model for different domain requirements;
(3) in the depth direction of the network, since TCN uses residual connections when the
input length is very long, the gradient in TCN will have more robust stability. Based on
the above characteristics, the temporal convolutional network can effectively avoid the
gradient disappearance or gradient explosion problem of the recurrent neural networks.

2.2.2. Attention Mechanism

The attention mechanism is a simulation of the human brain’s form of assigning
attention, and its essence is to change the weight of features in the hidden layer [35]. The
attention mechanism can reasonably filter out a small number of critical features from a
large number of features and assign more weight to them, reducing the weight of non-
key features to highlight the impact of critical features. Fusing attentional mechanisms
with temporal convolutional networks can highlight key features and improve prediction
accuracy. The structural principle of the attentional mechanism is shown in Figure 4.
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Where xt(t ∈ [0, n]) is the input to the deep neural network, ht(t ∈ [0, n]) corresponds
to the hidden layer output obtained by passing each input through the deep neural network,
at(t ∈ [0, n]) is the attention weight of the attention mechanism on the hidden layer output
of the deep neural network, and yt(t ∈ [0, n]) is the output value of the attention mechanism
introduced. The calculation formula of the weight coefficient of the attention mechanism
can be expressed as:

et = utanh(wht + b) (7)

at =
exp(et)

t
∑

j=0
ej

(8)

yt =
n

∑
t=0

atht (9)

where et represents the attention weight determined by the output layer vector ht of the
deep neural network at time t, u and w are the weight coefficients; b is the bias coefficient,
and yt is the output of the attention layer at time t. The attention mechanism automatically
calculates the corresponding weight assignments for the in-depth features and merges
them into a new vector. The input to this layer is the output vector of the deep neural
network, the Permute layer rearranges the dimensions of the input according to a given
pattern, and the Multiply layer completes the output of the attention with the output of the
deep neural network by multiplying the output bit by bit, achieving a dynamic weighting
process for the hidden layer units, and thus highlighting the impact of critical features on
the final result [36].

2.3. Multi-Layer Deep Learning Network Combination Model

In order to further improve the prediction performance of the MultiTCN-Attention
model, this article proposes a method based on the combination of convolutional denoising
autoencoder and MultiTCN-Attention model. After data reconstruction is carried out
through the convolutional denoising autoencoder model, the output result is used as the
input of the MultiTCN-Attention model for prediction processing. The specific structure
and parameter configuration of the convolutional noise reduction autoencoder model
are described in Section 2.1 of this paper. When the MEMS gyroscope is sampled for a
long time, due to the limitation of the communication between the MEMS gyroscope and
the host computer equipment, packet loss will occur. Therefore, in order to imitate the
appearance of this phenomenon, 5% of the original MEMS gyroscope data are randomly
damaged and reset, as the input data of the convolutional denoising autoencoder and the
original data are compared. The data reconstruction operation is performed, as shown in
Figure 5. The reconstructed data output by the convolutional denoising autoencoder is
used as the input to the next model.
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The MultiTCN-Attention model was chosen to build multi-layer TCN, and the addition
of an attention mechanism layer made the multi-layer TCN more focused on what was
beneficial to the outcome. The output layer was a fully connected layer that accepted the
output vector from the attention mechanism weighted processing and processed it into
the predicted value of the MEMS gyroscope. The detailed parameter configuration of
the MultiTCN-Attention model is described in a later section. As can be seen, the input
vector starts at the input layer and it is processed by several TCN layers before entering the
attention mechanism, which calculates the attention weight vector based on the current
input vector and merges the two to obtain a new vector, which is fed into the fully connected
layer to output the predicted value.

2.4. Particle Swarm Optimization Algorithm for Optimal Kalman Filter and Others

The Kalman filter is a recursive filter (autoregressive filter) capable of estimating the
state of a dynamic system from a series of incomplete and noise-containing measurements
by considering the joint distribution at each time based on the values of each measurement
at different times, thus producing an estimate of the unknown variables [37]. Kalman
filtering mainly includes two parts: the prediction process and the update process. It
is assumed that the state-space model of the system (state equation and measurement
equation) is as follows:

xk = Φk/k−1xk−1 + Bk−1wk−1 (10)

yk = Hkxk + vk (11)

where xk is the system state vector, Φk/k−1 is the system state transition matrix, Bk−1 is the
system noise driving matrix, and wk−1 is the state excitation noise or system noise; yk is
the measurement vector, Hk is the measurement matrix, and vk is the measurement noise.
Moreover, assume that wk, vk are Gaussian white noise sequences with zero mean, and the
two white noises are uncorrelated with each other, satisfying:

E[wk] = 0,
E[vk] = 0,

E[wjvT
k ] = 0,

E[wjwT
k ] = Qkδjk

E[vjvT
k ] = Rkδjk (Qk > 0, Rk > 0) (12)

In the prediction process, the current system state vector is predicted from the previous
moment’s system state vector such that:

x̂k/k−1 = Φk/k−1 x̂k−1 (13)
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Pk/k−1 = Φk/k−1Pk−1ΦT
k/k−1 + Bk−1Qk−1BT

k−1 (14)

where x̂k/k−1 is the predicted value of the system state vector, and Pk/k−1 is the predicted
covariance matrix of the system state vector.

In the update process of the Kalman filter, the current system state vector is updated
with the measurement vector such that:

Kk = Pk/k−1HT
k

(
HkPk/k−1HT

k + Rk

)−1
(15)

x̂k = x̂k/k−1 + Kk(yk − Hk x̂k/k−1) (16)

Pk = Pk/k−1 − Kk HkPk/k−1 (17)

where Kk is the Kalman filter gain matrix, and Pk is the updated covariance matrix of the
system state vector.

2.4.1. Kalman Filter Based on ARMA Model

The Autoregressive Moving Average (ARMA) model is obtained by regressing the
dependent variable on its lagged values as well as the present and lagged values of the
random error term [38]. Moreover, it is one of the standard methods used in time series
analysis. The ARMA model can be expressed as follows:

xk =
p

∑
i=1

ϕixk−i +
q

∑
j=1

θjεk−j+εk (18)

εk ∼W
(

0, σ2
)

(19)

That is, the autoregressive moving average model ARMA (p, q). p and q are the accep-
tance orders of the autoregressive (AR) and moving average (MA) models, respectively. In
addition, p is also expressed as the number of lags in the time series data itself used, and q
represents the number of forecast error lags used in the forecast model. They are determined
by the nature of the time series data itself. xk is the observed time series data; εk represents
a discrete white noise sequence with mean 0 and variance σ2. ϕi < 1(i = 1, 2, . . . , p) is the
autoregressive coefficient, and θj < 1(j = 1, 2, . . . , q) is the moving average coefficient.

The steps for designing the Kalman filter using the ARMA model are as follows [39–41]:
(1) data pre-processing, including the removal of wild values, removal of constant compo-
nents and extraction of trend terms, and data testing; (2) determination of the model type
based on the autocorrelation function and partial autocorrelation function; (3) determina-
tion of the order based on the Akaike Information Criterion; and (4) adaptive testing of the
designed model.

2.4.2. Particle Swarm Optimization Algorithm for Optimal Kalman Filter

In order to further improve the accuracy of the Kalman filter, in addition to using the
traditional ARMA time series modeling, this paper chooses to optimize the parameters of
the Kalman filter using the particle swarm optimization algorithm. Particle swarm opti-
mization has attracted more researchers because of its flexibility and robustness, especially
for problems in dynamic environments. PSO is a swarm-based stochastic optimization
technique inspired by social behaviors such as bird flocking or fish flocking [42].

As shown in Figure 6a, suppose a flock of birds is randomly searching for food.
Additionally, suppose a piece of food that is known to be in a particular area, but none of
the birds know exactly where it is. However, they can use their own experience (optimal
individual choice) and group experience (optimal global choice) to predict how far away
the current location is from the food to find the location of the food quickly [43]. This bird
predation mechanism inspires the particle swarm optimization algorithm, so the basis of
PSO is the group sharing of information.
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Figure 6. Particle swarm optimization algorithm: (a) the basic principle diagram of PSO; (b) basic
flow chart of PSO.

The particle swarm optimization algorithm consists of a large swarm of particles
in which n particles fly in the D-dimensional space. Each particle maintains the particle
position xi, the direction and speed of particle movement vi, and the searched optimal
position fitness value pi in the D-dimensional space, which can be expressed as:

xi = (xi1, xi2, xi3, . . . , xiD)
vi = (vi1, vi2, vi3, . . . , viD)
pi = (pi1, pi2, pi3, . . . , piD)

(20)

The improvement of the flying speed, position, and weight of particle i can be adjusted
according to Equations (21)–(23).

vk+1
id = ωvk

id + c1rand
(

pib − xk
ib

)
+ c2rand

(
pgb − xk

ib

)
(21)

xk+1
ib = xk

ib + vk
ib (22)

ω = ωmax − (ωmax −ωmin)
iter

itermax
(23)

In the formula, d and k represent the dimension and the number of iterations, respec-
tively; b represents the bth generation. pib represents the best position of particle i, pgb
represents the current best position; c1 and c2 represent the individual learning factor and
group learning factor, respectively; rand(·) is used to obtain random values in the range of
[0, 1]. ω is the inertia weight used to balance the global search ability and local search ability,
which can be updated iteratively by using Equation (23); ωmax, ωmin are the maximum and
minimum inertia weights, respectively; iter, itermax are the current and maximum number
of iterations, respectively.

As shown in Figure 7, when optimizing the four parameters Qk, Rk, Φ, Hk of the
Kalman filter using the particle swarm optimization algorithm, according to the Formula
(16) in the update process of the Kalman filter, avoiding premature convergence of the
optimization seeking process to be able to obtain the optimal global solution, the actual
variance of the innovation is selected here as the objective function, with its value minimized
as the objective for optimization. The specific PSO process is shown in Figure 6b. Define
the objective function as shown in Equations (24) and (25):

h = ŷk/k−1(ŷk/k−1)
T (24)
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ŷk/k−1 = yk − Hk x̂k/k−1 (25)
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Among them, h is the actual variance of the state information, and ŷk/k−1 is the
innovation sequence generated by the Kalman filter [44].

3. Validation of the Proposed Method

In this section, the method proposed in the article was tested, the corresponding
experimental design and result analysis were given, and the method’s validity was verified.

3.1. Acquisition of Test Data

This article used the STIM300 IMU (Safran Sensing Technologies, Horten, Norway)
as the measured object, composed of a three-axis MEMS gyroscope, a three-axis MEMS
accelerometer, and a three-axis MEMS inclinometer. The physical drawing and gyroscope
specifications of the STIM300 are shown in Figure 8a and Table 2, respectively. The STIM300
was fixed to a high-precision static base stage, as shown in Figure 8b. The data acquisition
flow of the STIM300 is shown in Figure 8c. The data from the STIM300 were sent to the
xPC via the RS422 communication interface at a baud rate of 921,600 bps. xPC decoded the
gyroscope data and sent them to the host computer via the network cable. The STIM300
gyroscope was powered up firstly and then preheated for 20 min at room temperature.
Lastly, static test experiments were performed.
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In order to adapt to the application scenario of the STIM300 gyroscope, the platform
to which the gyroscope equipment was adapted was mainly used to measure the pitch
angular velocity and yaw angular velocity of the photoelectric stabilization platform. As
shown in Figure 8c, the pitch angle was obtained by rotating the plane YOZ with the y-axis,
and the yaw angle was obtained by rotating the plane XOZ with the x-axis. Therefore, we
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mainly studied the x-axis and y-axis angular velocity. The static raw data obtained from
the measurement are shown in Figure 9.

Table 2. Equipment specifications of STIM300 gyroscope.

Parameter Normal

Gyro

Input Range ±400◦/h
Bandwidth (−3 dB) 262 Hz

Bias Instability (Allan Variance @25 ◦C) 0.3◦/h
Angular Random Walk (Allan Variance @25 ◦C) 0.15◦/√h

General

Sample Rate ≤ 2000 sample/s
Power Supply 5.0± 0.5 V

Operating Temperature −40 °C ≤ T ≤ +85 °C
RS422 Transmission Bit Rate 921, 600 bps
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3.2. Comparison of Training Based on Convolutional Denoising Auto-Encoders

In order to further apply the deep learning model and the construction of the ARMA
model, this paper chose to use the pre-data processing method of the ARMA model
to process the raw data, mainly including the elimination of wild values, the removal
of constant components, and the extraction of trend terms [39–41]. To consider model
generality and accuracy, we took the first 80% of the processed x-axis and y-axis data as the
training set and the last 20% of the x-axis and y-axis data as the test set.

The deep learning algorithms proposed in this paper were performed on Tensorflow
2.3.0 (Google, Mountain View, CA, USA) and Keras 2.4.3 (Google, USA) running on Ubuntu
16.04-LTS-x86 64-bit operating system (Canonical Ltd., London, UK). The computer plat-
form was equipped with Intel i7-4770 CPU (Intel, Santa Clara, CA, USA), 16G memory
(SKhynix, Icheon-si, Korea), 2T SSD (Samsung, Seoul, Korea), and GeForce RTX-2080Ti
GPU (NVIDIA, Santa Clara, CA, USA). In order to compare the superiority of convolutional
denoising autoencoders, this paper used the normal denoising autoencoder (Normal-DAE)
listed in Table 3 to compare with the convolutional denoising autoencoders listed in Table 1
above. They adopted the Adam optimization algorithm for updating network parameters,
using mean squared error (MSE) as the loss function.
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Table 3. Details of Normal-DAE.

Layer Units Activation Function Output Size

Dense 128 Relu 20 × 128
Dense 64 Relu 20 × 64
Dense 32 Relu 20 × 32
Dense 64 Relu 20 × 64
Dense 128 Relu 20 × 128
Dense 1 Tanh 20 × 1

The preprocessed x-axis and y-axis data volume of 30,000 were used as the input
number of the denoising autoencoder, and the randomly damaged data were set to account
for 5% of the total data volume. The batch_size was set to 200, the number of epoch was set
to 100, and input_size was set to (20,1) for deep learning training.

The results of the convolutional denoising autoencoder are shown in Table 4 and
Figure 10. The noise standard deviation of the MEMS gyroscope signals from the x-axis and
y-axis decreased by approximately 23.41% and 28.72%, respectively, after processing by the
normal denoising autoencoder, while the noise standard deviation of the signals decreased
by approximately 44.63% and 38.44%, respectively, after processing by the convolutional
denoising autoencoder proposed in this paper. It can be shown that the proposed con-
volutional denoising autoencoder outperformed normal denoising autoencoder in terms
of noise reduction and signal reconstruction of MEMS gyroscope signals. It prepared the
signals processed by the convolutional denoising autoencoder for further processing in the
later paper.

Table 4. Comparison of denoising autoencoder results.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Standard
Deviation (×10−2◦/s) Percentage

X-Axis

Raw 76.029 8.7194 —
Normal-

DAE 44.608 6.6789 76.59%

Conv-DAE 23.309 4.8280 55.37%

Y-Axis

Raw 61.028 7.8120 —
Normal-

DAE 31.007 5.5684 71.28%

Conv-DAE 23.124 4.8088 61.56%
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3.3. The Training Based on Combinatorial Model Compared with Other Neural Networks

To validate the performance of the MultiTCN-Attention model for gyroscope error
compensation in the static base environment, this paper used data reconstructed by the
convolutional denoising autoencoder as the input values for deep learning. The MultiTCN
model was first explored using an x-axis test set with appropriate values for the input
data step size, number of hidden cells, number of hidden layers, and dilation list, with the
base settings shown in Table 5, and it took the Adam optimization algorithm and mean
squared error (MSE) loss function. Subsequently, the training was carried out using the de-
termined values. The MultiTCN-Attention network results were compared with MultiTCN
networks and LSTM networks using the x-axis and y-axis test sets, respectively. As shown
in Tables 6–9, when the input data stride and the number of hidden layers were wider,
the training time per epoch was longer. We need to make a trade-off between results and
computational performance. According to the comparisons, the best results were obtained
when the input data stride was 20, the number of hidden units was 128, and the number of
hidden layers was 4. While this did not indicate that this was an optimal parameter for the
network, it would be an appropriate value given the computational resources.

Table 5. Basic settings for network training.

The output dimension of dense layer 1
Activation function of dense layer Tanh

Batch size 512
Training epoch 100

TCN Kernel Size 4
TCN No. Blocks 1

TCN Padding Causal

Table 6. MultiTCN architectures depending on the input data step (number of hidden layers = 4).

Input Data Step
MultiTCN Model Architecture Noise Standard Deviation

(×10−2◦/s)
Time/Epoch

Kernel Number Dilations

5 64 [1,2,4,8,16] — —
10 64 [1,2,4,8,16] 4.7156 41 s
15 64 [1,2,4,8,16] 4.6185 65 s
20 64 [1,2,4,8,16] 4.5121 80 s
25 64 [1,2,4,8,16] 4.5910 101 s
30 64 [1,2,4,8,16] 4.7347 140 s
40 64 [1,2,4,8,16] 4.8120 176 s
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Table 7. MultiTCN architectures depending on the Kernel number (number of hidden layers = 4).

MultiTCN Model Architecture
Input Data Step Noise Standard Deviation

(×10−2◦/s)
Time/Epoch

Kernel Number Dilations

16 [1,2,4,8,16] 20 — —
32 [1,2,4,8,16] 20 4.8256 23 s
64 [1,2,4,8,16] 20 4.5121 80 s

128 [1,2,4,8,16] 20 4.4920 116 s
256 [1,2,4,8,16] 20 — —

Table 8. MultiTCN architectures depending on the dilations (number of hidden layers = 4).

MultiTCN Model Architecture
Input Data Step Noise Standard Deviation

(×10−2◦/s)
Time/Epoch

Dilations Kernel Number

[1,2,4] 128 20 4.4737 61 s
[1,2,4,8] 128 20 4.8256 83 s

[1,2,4,8,16] 128 20 4.4920 116 s

Table 9. MultiTCN architectures depending on number of hidden layers.

Number of
Hidden Layers

MultiTCN Model Architecture Noise Standard Deviation
(×10−2◦/s)

Time/Epoch
Kernel Number Dilations

1 128 [1,2,4] — —
2 128 [1,2,4] — —
3 128 [1,2,4] 4.6564 55 s
4 128 [1,2,4] 4.4737 61 s
5 128 [1,2,4] 4.6110 85 s
6 128 [1,2,4] 4.7920 139 s
7 128 [1,2,4] — —

For the MultiTCN-Attention model, we set the following parameters according to
the above conclusions, as shown in Table 10. The attention layer was set to the same
length as the input length, and the results are shown in Figure 11 and Tables 11 and 12.
Figure 11a shows the training losses within 100 epochs and convergence is achieved for
all networks; Figure 11b shows the weights of the sequence output values in the total
sequence as calculated by the attention mechanism; as shown in the figure for the x and y
axes, the distribution of attention is different, with more even attention on the x-axis and
more focused attention on the front of the sequence input for the y-axis. Tables 11 and 12
show that the MultiTCN-Attention model resulted in a 58.15% and 57.89% reduction in
the standard deviation of noise in the x and y axes, respectively, compared to the raw data,
proving that the application of the MultiTCN-Attention model in MEMS gyroscope error
compensation studies was feasible. In addition, compared with the results of the LSTM
and the MultiTCN, the noise standard deviation values of the MultiTCN-Attention model
results on the x-axis were reduced by 11.68% and 9.46%, respectively, and the deviation
values on the y-axis were reduced by 17.05% and 9.52%, respectively. This indicated that the
MultiTCN-Attention model outperformed both networks regarding error compensation.

Table 10. Details of MultiTCN-Attention model.

Layer
MultiTCN-Attention Model Architecture

Kernel Number Kernel Size No. Blocks Dilations Padding

TCN1 128 4 1 [1,2,4] causal
TCN2 128 4 1 [1,2,4] causal
TCN3 128 4 1 [1,2,4] causal
TCN4 128 4 1 [1,2,4] causal

Attention unit = 20
Dense unit = 1, activation = tanh
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Table 11. Comparison of X-axis results between MultiTCN-Attention and other neural networks.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Standard Deviation
(×10−2◦/s) Percentage

X-Axis

Raw 76.029 8.7194 —
Conv-DAE 23.309 4.8280 55.37%

LSTM 21.786 4.6675 53.53%
MultiTCN 20.014 4.4737 51.31%
MultiTCN-
Attention 13.317 3.6493 41.85%

Table 12. Comparison of Y-axis results between MultiTCN-Attention and other neural networks.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Variance
(×10−2◦/s) Percentage

Y-Axis

Raw 61.028 7.8120 —
Conv-DAE 23.124 4.8088 61.56%

LSTM 21.362 4.6219 59.16%
MultiTCN 16.271 4.0337 51.63%
MultiTCN-
Attention 10.821 3.2895 42.11%
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3.4. Optimization of Kalman Filter Parameters Based on Particle Swarm Optimization Algorithm
and Others

In this section, the raw data and MultiTCN-Attention combined model results on the
x-axis and y-axis were used as measurements, respectively. The parameters of the Kalman
filter were estimated by the ARMA model and particle swarm optimization algorithm, and
the filtering results were compared.

In order to make the experimental data more extensive and adaptable, the data of the
MultiTCN-Attention combined model were no longer analyzed using the ARMA model
method in this paper, only the particle swarm optimization algorithm was used to optimize
the parameters of the Kalman filter, and the raw data were analyzed using the PSO-KF
method and the ARMA-KF method.

3.4.1. Determination of Kalman Filter Parameters Based on ARMA Model

In this paper, the Akaike Information Criterion was used to determine the order of the
ARMA (p, q) model. If the order increases, the identified model will be more realistic, but
the computational difficulty will also increase with the order increase [45]. Therefore, the
maximum order was set to 3, i.e., the maximum value of p and q was set to 3. The results
were as follows:

For the raw x-axis data, the identified model was identified as ARMA (3,2):

xk = 0.0497xk−1 + 0.7058xk−2 − 0.0131xk−3 + εk − 0.0534εk−1 − 0.6982εk−2 (26)

For the raw y-axis data, the identified model was identified as ARMA (2,2):

xk = −0.4143xk−1 − 0.7462xk−2 + εk + 0.4105εk−1 + 0.7526εk−2 (27)

where xk was the output of the ARMA model and εk was the driving white noise (mean 0,
variance δ̂2

ε ). The Kalman filter parameters are shown in Table 13. R is the covariance of the
measurement. The initial values of the Kalman filter were set as follows: x1 = [0; 0; 0; 0], P1
was the fourth-order identity matrix.

Table 13. Details of ARMA-KF model.

Method Φ B H Q R

X-Axis
Raw-ARMA-KF


0.0497 0.7058 0.0131 0

1 0 0 0
0 1 0 0
0 0 1 0




1 −0.0534 −0.6982 0
0 0 0 0
0 0 0 0
0 0 0 0

 [1 0 0 0
] 

0.0076 0 0 0
0 0.0076 0 0
0 0 0.0076 0
0 0 0 0.0076

 0.0079

Y-Axis
Raw-ARMA-KF


−0.4143 −0.7462 0 0

1 0 0 0
0 1 0 0
0 0 1 0




1 0.4105 0.7526 0
0 0 0 0
0 0 0 0
0 0 0 0

 [
1 0 0 0

] 
0.0061 0 0 0

0 0.0061 0 0
0 0 0.0061 0
0 0 0 0.0061

 0.0062

3.4.2. Optimization of Kalman Filter Parameters Based on Particle Swarm
Optimization Algorithm

In this paper, the particle swarm optimization algorithm was used to optimize the
Kalman filter parameters, using the data and original data of the MultiTCN-Attention
combined model. The optimization process was as follows (see Algorithm 1):

The initial values of the Kalman filter were set to x1 = 0 and P1 = 1, and the initial
parameters were set to Φ1 = 1, H1 = 1, Q1 = 1, and R1 = 1. The initial parameters of
the particle swarm optimization algorithm were set to N = 50, itermax = 500, ωmin = 0.3,
ωmax = 0.4, c1 = 0.5, and c2 = 0.6. The iterative process of the particle swarm optimization
algorithm is shown in Figure 12. The parameter estimation results are shown in Table 14.
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Algorithm 1: Kalman Filtering optimal solution

Input: A numeric sequence of sensor data;
Begin:

(1) Initialize a population of particles (population size N), including random positions, weights, and
velocities.

(2) Evaluate the fitness of each particle according to Equations (24) and (25).
(3) For each particle, compare its fitness value with the best position pib it passed through; if better, use it as

the current best position pib.
(4) For each particle, compare its fitness value with the global best position pgb it passed through; and if

better, take it as the global best position pgb.
(5) Adjust the particle velocity and position according to Equations (21)–(23).
(6) Turn to step (2) if the end condition is not reached.

Output: The Optimized parameter Φopt, Hopt, Qopt, Ropt and the Filtered Sequence.
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Table 14. Details of PSO-KF model.

Axis Method Φ H Q R

X-Axis
Raw-PSO-KF 0.8687 0.9617 0.1283 0.5465

MultiTCN-Attention-PSO-KF 0.8871 0.9502 0.0343 0.7973

Y-Axis
Raw-PSO-KF 0.8689 0.9618 0.1284 0.5466

MultiTCN-Attention-PSO-KF 0.8239 0.9217 0.0279 0.7547

3.4.3. Comparison of Kalman Filter Results

The Kalman filtering results in this paper were shown in Tables 15 and 16. On the
x-axis, compared with the original data, the Kalman filtering noise standard deviation
based on the particle swarm optimization algorithm was reduced by 59.65%, and the data
using the MultiTCN-Attention-PSO-KF model were reduced by 77.81%, which was 25.84%
and 44.71%, respectively, compared with the traditional ARMA-KF noise reduction process.
On the y-axis, the Kalman filter noise standard deviation based on the particle swarm
optimization algorithm was reduced by 59.66%, and the data using the MultiTCN-Attention-
PSO-KF model were reduced by 76.44%, which was 29.88% and 46.66%, respectively,
compared with the traditional ARMA-KF noise reduction process. It can be seen that
the combined algorithm proposed in this paper can effectively compensate for MEMS
gyroscope noise. At the same time, it can be seen from Figure 13 that the filtering effect of
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the combined algorithm proposed in this paper was smoother, and the signal fluctuation
of the MEMS gyroscope was slight, which was closer to the actual value tested in the
static base.

Table 15. Comparison of Kalman filtering results in the X-axis.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Standard Deviation
(×10−2◦/s) Percentage

X-Axis

Raw 76.029 8.7194 —
Raw-ARMA-KF 33.312 5.7717 66.19%

Raw-PSO-KF 12.376 3.5179 40.35%
MultiTCN-Attention 13.317 3.6493 41.85%

MultiTCN-Attention-
PSO-KF 3.743 1.9348 22.19%

Table 16. Comparison of Kalman filtering results in the Y-axis.

Axis Method Noise Variance
(×10−4(◦/s)2)

Noise Standard Deviation
(×10−2◦/s) Percentage

Y-Axis

Raw 61.028 7.8120 —
Raw-ARMA-KF 30.089 5.4854 70.22%

Raw-PSO-KF 9.935 3.1520 40.34%
MultiTCN-Attention 10.821 3.2895 42.11%

MultiTCN-Attention-
PSO-KF 3.3878 1.8406 23.56%Sensors 2022, 22, 7249 20 of 23 
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4. Conclusions

This paper proposed a combined method combining multiple neural networks and
Kalman filters for MEMS gyroscope error compensation in the static base environment. By
comparing the results, the following conclusions were drawn:

(1) This paper verified the feasibility of the convolutional denoising autoencoder to
recover and reconstruct the signal when the sensor data were damaged and provided
a new idea for signal repair.

(2) It was verified that the TCN network with added attention mechanism was better
than the standard TCN network and LSTM network, which provided a new way
to compensate for the error of MEMS gyro. Moreover, it was also verified that the
compensation method of TCN network was more reasonable than that of LSTM
network. By adding the attention mechanism, the model we proposed can focus on
the temporal data being more decentralized rather than concentrating on the part of
the sequence.

(3) By using the particle swarm optimization algorithm to estimate the Kalman filter
parameters, the noise standard deviation reduction of Kalman filter parameter estima-
tion was more satisfactory than that of the ordinary ARMA model. The calculation
process was also more straightforward, and the curve fluctuations were relatively
small. Compared to the original data, the noise standard deviation of the filtering
effect of the combined model proposed in this paper decreased by 77.81% and 76.44%
on the x and y axes, respectively. Additionally, the combined model reduced the noise
effect by nearly three times compared to the traditional ARMA-KF filtering model,
making the effect of the sensor more stable and effective.

In subsequent experiments, we shall perform dynamic experiments to obtain the
MEMS gyroscope output, write the trained neural network model into the xPC module of
the host computer for online real-time filtering, and build a platform to validate its practical
engineering applications.
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