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Ze Zheng,1,2 Ying Song ,1,2 Yu Wei Shan,1,2 Wei Xin,3 and Jin Luo Cheng1,2,*

1GPL Photonics Lab, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics,
Chinese Academy of Sciences, Changchun 130033, China

2University of Chinese Academy of Science, Beijing 100039, China
3Key Laboratory of UV-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024, China

(Received 18 November 2021; revised 20 January 2022; accepted 21 January 2022; published 7 February 2022)

We theoretically investigate optical injection processes, including one- and two-photon carrier injection and
two-color coherent current injection, in twisted bilayer graphene with moderate angles. The electronic states are
described by a continuum model, and the spectra of injection coefficients are numerically calculated for different
chemical potentials and twist angles, where the transitions between different bands are understood by the electron
energy resolved injection coefficients. The comparison with the injection in monolayer graphene shows the
significance of the interlayer coupling in the injection processes. For undoped twisted bilayer graphene, all
spectra of injection coefficients can be divided into three energy regimes, which vary with the twist angle. For
very low photon energies in the linear dispersion regime, the injection is similar to graphene with a renormalized
Fermi velocity determined by the twist angle; for very high photon energies where the interlayer coupling is
negligible, the injection is the same as that of graphene; and in the middle regime around the transition energy
of the Van Hove singularity, the injection shows fruitful fine structures. Furthermore, the two-photon carrier
injection diverges for the photon energy in the middle regime due to the existence of double resonant transitions.
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I. INTRODUCTION

In recent years, twisted bilayer graphene (TBG) has at-
tracted a great deal of attention in condensed matter physics
as a novel platform for studying strong correlated phenomena
[1–5], topological properties [6,7], chiralities [8,9], and non-
linear Hall effects [10]. The underlying physics arises from
flat bands at certain “magic angles,” implying strong carrier-
carrier interactions. TBG is formed by the relative rotation
of two-monolayer graphene at a twist angle θ [11,12]. After
the rotation, the Dirac cones of these two layers intersect and
form two saddle points, which further lead to the Van Hove
singularities (VHS) in its density of states (DOS) or the joint
density of states (JDOS) [13,14]. At the “magic angles,” these
two VHS merge to give flat bands [15,16]. The twist angle
provides an additional degree of freedom to control the band
structure, as well as the energy of VHS. For large twist angles,
the band structure lower than VHS is mostly linear, similar to
that of graphene but with a smaller Fermi velocity [17,18] that
is determined by the twist angle.

The optical properties of TBG can be effectively tuned by
the twist angle, and the optical transitions occurring around
VHS are greatly enhanced, giving featured optical conduc-
tivity [17,19,20] and enhanced photoluminescence [21] for
optoelectronic applications. The nonlinear optical properties
of TBG have been extensively studied for second harmonic
generation [22,23], third harmonic generation [24], third-
order conductivity [25], high-harmonic generation [26,27],
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and nonlinear magneto-optic properties [28]. Compared to
that of graphene, the huge nonlinear conductivity due to the
resonance at VHS occurs at much lower photon energies,
which might enable possible applications on nonlinear pho-
tonic devices at long wavelength. It is interesting to consider
if other nonlinear optical phenomena can also benefit from
such VHS enhanced transitions.

In this work, we focus on the two-color optical coher-
ent injection of carriers and currents in TBG with twist
angles limited in the range of 2◦–10◦, which are suitable
for the continuum model we adopted and are easy to evalu-
ate numerically. Two-color optical injection is a third-order
nonlinear optical process, which utilizes the quantum interfer-
ence between the optical excitation paths of the one-photon
absorption by a weak light at frequency 2ω and degener-
ate two-photon absorption by a strong light at frequency ω.
Both absorptions can generate electron-hole pairs and inject
electrons in the conduction bands and holes in the valence
bands; the interferences of these two absorption processes
lead to net charge currents of injected carriers. Therefore, it
can provide a full optical way to inject carriers and currents
for studying their dynamics. Extensive investigations have
been done for bulk semiconductors [29–32], topological ma-
terials [33], transition metal dichalcogenides [34], graphene
[35–37], and bilayer graphene [36]. The difference between
the results in graphene and bilayer graphene shows that the
interlayer coupling has strong effects on the optical injection.
In TBG, because the interlayer coupling can be effectively
tuned by the twist angle, the optical injection is expected to
be different from both the graphene and bilayer graphene, and
it is possible to further understand the effects of interlayer
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coupling on optical coherent control. This is the focus of this
work.

We arrange the paper as follows. In Sec. II we introduce
an effective model for TBG and expressions for injection
coefficients. In Sec. III we present the main spectra features
for the injection coefficients at a twist angle 4◦ as an example,
we discuss the contributions from different electronic states
using the electron energy resolved injection coefficients, and
then we study the effects of chemical potentials and the twist
angles. We conclude in Sec. IV.

II. MODELS

A. Electronic model Hamiltonian

TBG with a twist angle θ can be formed from rotating the
upper and lower layers of AB-stacked bilayer graphene by an-
gles of − θ

2 and θ
2 [15], respectively. The primitive reciprocal

lattice vectors of the unrotated graphene layer are chosen as

b1 = 2π

a0

( 1√
3

−1

)
, b2 = 2π

a0

( 1√
3

1

)
, (1)

and then the primitive reciprocal lattice vectors of TBG can
be taken as

t1 = R

(
−θ

2

)
b2 − R

(
θ

2

)
b2, (2)

t2 = R

(
θ

2

)
b1 − R

(
−θ

2

)
b1, (3)

with the rotation matrix R(θ ) = (cos θ − sin θ

sin θ cos θ ). After the rota-
tion, the Dirac point K = (b1 − b2)/3 of the unrotated layer
is folded to TBG reciprocal space as the Dirac points Kt =
(t1 − 2t2)/3 from the upper layer and K ′

t = (2t1 − t2)/3 from
the lower layer; similarly, the Dirac point K ′ = −K of the
unrotated layer is folded to TBG reciprocal space as K ′

t and
Kt , respectively. These two valleys are decoupled. The low-
energy electronic excitations around the νth valley (ν = + for
the K point and ν = − for the K ′ point) of each graphene layer
can be determined by a 4 × 4 continuum effective Hamilto-

nian [15],

H (ν)(∇, r)

=
(

h(ν)
( − θ

2 ,−i∇ − νKt
)

T (ν)(r)
[T (ν)(r)]

†
h(ν)

(
θ
2 ,−i∇ − νK ′

t

)), (4)

where h(ν) gives the graphene Hamiltonian in the νth valley as

h(ν)(θ, k) = h̄v f

(
0 eiνθ (ikx + νky)

eiνθ (−ikx + νky) 0

)
, (5)

and T (ν)(r) describes the interlayer coupling as

T (ν)(r) = w0
(
T (ν)

1 + T (ν)
2 e−iνt1·r + T (ν)

3 e−iνt2·r), (6)

with

T (ν)
1 =

(
1 1
1 1

)
, T (ν)

2 =
(

eiν 2π
3 1

e−iν 2π
3 eiν 2π

3

)
,

T (ν)
3 =

(
e−iν 2π

3 1
eiν 2π

3 e−iν 2π
3

)
. (7)

The parameter v f = √
3γ0a0/(2h̄) is the Fermi velocity of

graphene with γ0 = 3 eV, and w0 = 110 meV is the interlayer
coupling strength. Obviously, the interlayer coupling poten-
tial T (ν)(r) is periodic in space with primitive lattice vectors
determined by the primitive reciprocal vectors t1 and t2. The
continuum model adopted here is appropriate for twist angles
less than or equal to 10◦.

The Schrödinger equation in the νth valley becomes

H (ν)(∇, r)ψ (ν)(r) = Eψ (ν)(r). (8)

For a periodic potential, the eigen wave functions are Bloch
states, and they can be expanded in plane waves as

ψ (ν)(r) = 1

2π
eik·r ∑

nm

eiνtnm·rC(ν)
nmk, (9)

with tnm = nt1 + mt2. The expansion coefficient C(ν)
nmk is a

four-component column vector, which can be further written
into a compact column vector C(ν)

k with elements [C(ν)
k ]nm =

C(ν)
nmk. Then the eigenequation can be written as

H (ν)
k C(ν)

sk = ε
(ν)
sk C(ν)

sk , (10)

where the subscript s labels the band, and the matrix elements
of H (ν)

k between (n1m1) and (n2m2) are a 4 × 4 matrix,

[
H (ν)

k

]
n1m1,n2m2

=
(

h(ν)
( − θ

2 , k + νtn1m1 − νKt
)

0

0 h(ν)
(

θ
2 , k + νtn1m1 − νK ′

t

))δn1,n2δm1,m2

+ w0

(
T (ν)

1(
T (ν)

1

)∗

)
δn1,n2δm1,m2 + w0

(
0 T (ν)

2 δn1,n2−1(
T (ν)

2

)∗
δn1,n2+1 0

)
δm1,m2

+ w0

(
0 T (ν)

3 δm1,m2−1(
T (ν)

3

)∗
δm1,m2+1 0

)
δn1,n2 . (11)

The in-plane velocity operator is calculated from v
(ν)
k = h̄−1∇kH (ν)

k , and its matrix elements between band eigenstates are

v
(ν)
s1s2k = [

C(ν)
s1k

]†
v

(ν)
k C(ν)

s2k . (12)
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The time-reversal symmetry connects these two valleys ν =
±, and it can also be directly verified that

H (−)
k = [

H (+)
−k

]∗
. (13)

Therefore, we can always choose C(−)
sk = [C(+)

s(−k)]
∗ and ε

(−)
sk =

ε
(+)
s(−k). Then the velocity matrix elements satisfy

v
(−)
s1s2k = −v

(+)
s2s1(−k). (14)

B. Carrier injection and coherent current injection

We consider the two-color coherent control of injected
carriers and currents in TBG induced by an electric field
E(t ) = Eωe−iωt + E2ωe−2iωt + c.c., where the 2ω beam is
usually generated from the second harmonic of the ω beam.
The injection of a physical quantity P can be described [37]

by

dP(t )

dt
= pab

1 (ω)
[
Ea

ω

]∗
Eb

ω + pab
1 (2ω)

[
Ea

2ω

]∗
Eb

2ω

+ pabcd
2 (ω)

[
Ea

ω

]∗[
Eb

ω

]∗
Ec

ωEd
ω

+ {
pabc

12 (ω)
[
Ea

2ω

]∗
Eb

ωEc
ω + c.c.

}
. (15)

The first two terms involving pab
1 (ω) describe the injection in-

duced by one-photon absorption at photon frequencies ω and
2ω, respectively. The third term involving pabcd

2 (ω) describes
the injection induced by degenerate two-photon absorption at
photon frequency ω. When one-photon absorption at 2ω and
two-photon absorption at ω occur simultaneously, the same
electronic states can be optically excited to the same final
electronic states by two different quantum paths, which lead
to an interference, giving the coherent control of the injection.
All these response coefficients can be derived from the Fermi
golden rule [37,38], and they can be written as the sum of the
contributions from two valleys p = ∑

ν=± p(ν) with

p(ν);ab
1 (ω) =2 × 2π

( e

h̄ω

)2 ∑
ss′

∫
dk

(2π )2 P(ν)
ss′k

(
v

(ν);a
ss′k

)∗
v

(ν);b
ss′k f (ν)

s′skδ
(
ω

(ν)
ss′k − ω

)
, (16)

p(ν);abcd
2 (ω) =2 × 2π

( e

h̄ω

)4 ∑
ss′

∫
dk

(2π )2 P(ν)
ss′k

(
w

(ν);ab
ss′k

)∗
w

(ν);cd
ss′k f (ν)

s′skδ
(
ω

(ν)
ss′k − 2ω

)
, (17)

p(ν);abc
12 (ω) = − 2 × π i

( e

h̄ω

)3 ∑
ss′

∫
dk

(2π )2 P(ν)
ss′k

(
v

(ν);a
ss′k

)∗
w

(ν);bc
ss′k f (ν)

s′skδ
(
ω

(ν)
ss′k − 2ω

)
. (18)

Here the superscripts a, b, c, d stand for the Cartesian direc-
tions x, y. The prefactor 2 comes from the spin degeneracy.
f (ν)
s′sk = f (ν)

s′k − f (ν)
sk gives the electron population difference,

where f (ν)
sk = 
(μ − ε

(ν)
sk ) is the Fermi-Dirac distribution at

chemical potential μ and zero temperature, with 
 being the
Heaviside step function, and the matrix elements w

(ν);ab
ss′k are

given as

w
(ν);ab
ss′k =

∑
m

v
(ν);a
smk v

(ν);b
ms′k + v

(ν);b
smk v

(ν);a
ms′k

ω
(ν)
msk + ω

(ν)
ms′k − iγ

, (19)

with h̄ω
(ν)
ss′k = ε

(ν)
sk − ε

(ν)
s′k . The quantity γ is a phenomenolog-

ical damping parameter to avoid divergence.
In conventional semiconductors, the absorption processes

for p(ν);ab
1 (ω), p(ν);abcd

2 (ω), and p(ν);abc
12 (ω) can occur only

when the photon energy 2h̄ω is larger than the band gap Eg.
Because TBG has no band gap in our adopted model, these
processes in principle can occur at any photon energy in an
undoped TBG. However, when TBG is doped to a chemical
potential μ, the population difference f (ν)

s′sk leads to an absorp-
tion edge by Pauli blocking. This is equivalent to a chemical
potential induced effective gap parameter Eg, which can set
the injection edge. For small μ, it is the same as graphene
with Eg = 2|μ|.

For carrier injection, we set P(ν)
ss′k = 1 and use symbols

ξ1 and ξ2 as one- and two-photon injection coefficients; for
current injection, we set P(ν)

ss′k = e(v(ν);g
ssk − v

(ν);g
s′s′k ) and use sym-

bols ηg as injection coefficients. The injection coefficient ξ1

is a second-order tensor, and ξ2 and η are fourth-order ten-
sors. The crystal symmetry of TBG depends on the initial
stacking order and rotation center [15,39]. In our model,
the point group of the structure is D6. Thus the nonzero in-
plane components [40] are ξ xx

1 = ξ
yy
2 for ξ ab

1 , ξ xxxx
2 = ξ

yyyy
2 =

ξ
xxyy
2 + 2ξ

xyxy
2 , ξ

xyxy
2 = ξ

xyyx
2 for ξ abcd

2 , and similar results for
η

gabc
12 . By inspecting the expression in Eqs. (16)–(18), it can

be found that ξ ab
1 = [ξ ba

1 ]∗ and ξ abcd
2 = [ξ cdab

2 ]∗, thus ξ xx
1 ,

ξ
xxyy
2 , and ξ

xyxy
2 are all real, and η

xxyy
12 and η

xyxy
12 are in general

complex. Furthermore, there exists time-reversal symmetry
linking the ± valleys. All injection coefficients can then be
obtained from the calculation of one valley. For one-photon
carrier injection, it gives ξ

(+);ab
1 (ω) = ξ

(−);ab
1 (ω); for two-

photon carrier injection and coherent current injection, we
have

ξ abcd
2 (ω) =8π

( e

h̄ω

)2 ∑
ss′

∫
dk

(2π )2 f (+)
s′sk δ(ω(+)

ss′k − 2ω)

× Re
[(

w
(+);ab
1;ss′k

)∗
w

(+);cd
1;ss′k + (

w
(+);ab
2;ss′k

)∗
w

(+);cd
2;ss′k

]
,

(20)

η
gabc
12 (ω) = − 4π

( e

h̄ω

)3 ∑
ss′

∫
dk

(2π )2
f (+)
s′sk δ(ω(+)

ss′k − 2ω)

× {−iRe
[(

v
(+);g
ssk − v

(+);g
s′s′k

)
v

(+);a
s′sk w

(+);bc
1;ss′k

]
+ Im

[(
v

(+);g
ssk − v

(+);g
s′s′k

)
v

(+);a
s′sk w

(+);bc
2;ss′

]}
, (21)
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with w
(ν);ab
ss′k = w

(ν);ab
1;ss′k + iw(ν);ab

2;ss′k and

w
(ν);ab
1;ss′k =

∑
m

v
(ν);a
smk v

(ν);b
ms′k + v

(ν);b
smk v

(ν);a
ms′k(

ω
(ν)
msk + ω

(ν)
ms′k

)2 + γ 2

(
ω

(ν)
msk + ω

(ν)
ms′k

)
, (22)

w
(ν);ab
2;ss′k =

∑
m

v
(v);a
smk v

(v);b
ms′k + v

(v);b
smk v

(v);a
ms′k(

ω
(ν)
msk + ω

(ν)
ms′k

)2 + γ 2
γ . (23)

Here we give a brief discussion on the parameter γ . For
graphene, which has only two bands in the simplest model,
such a parameter can be taken as 0 directly because the
denominator usually does not go to zero. However, due to
the existence of many bands in TBG, the denominator in
Eq. (19) can go to zero for zero γ when there exists an
intermediate state in the middle of the initial and final states,
i.e., ε

(ν)
sk + ε

(ν)
s′k = 2ε

(ν)
mk . This condition leads to the resonant

one-photon transition at ω between the initial and intermedi-
ate states; thus it requires the photon energy 2h̄ω > Eg. To
better understand how such divergences affect the injection
coefficients, we show the limit of γ → 0 in Eq. (23) as

lim
γ→0

w
(ν);ab
2;ss′k = π

∑
m

(
v

(ν);a
smk v

(ν);b
ms′k + v

(ν);b
smk v

(ν);a
ms′k

)
× δ

(
ω

(ν)
msk + ω

(ν)
ms′k

)
. (24)

It gives an additional δ function. In the calculation of η
gabc
12 (ω),

the product of two δ functions δ(ω(ν)
ss′k − 2ω)δ(ω(ν)

msk + ω
(ν)
ms′k)

can behave well after integrating over two-dimensional wave
vector k, while in the calculation of ξ abcd

2 (ω), an addi-
tional product δ(ω(ν)

ss′k − 2ω)[δ(ω(ν)
msk + ω

(ν)
ms′k)]2 appears and

becomes divergent. However, this is physically meaningful:
with the existence of the one-photon absorption, two-photon
absorption is a signature toward saturated absorption. In this
case a finite h̄γ = 10 meV is adopted unless another value
is specified, but one keeps in mind that the results depend
strongly on the value of γ .

III. RESULTS AND DISCUSSION

In this work, we focus on the injection coefficients for
twist angles between 3◦ and 10◦. In the diagonalization of
the Hamiltonian, the plane wave used for the wave-function
expansion is taken as eiνtnm·r with nm ∈ [−N, N][−N, N], and
the numerical calculation of the injection coefficients is per-
formed by discretizing the TBG Brillouin zone in an M × M
grid. The δ function is approximated by a Gaussian function

with an energy broadening 20 meV. The convergences of the
results are checked with the values of N and M. At the twist
angle 4◦, we choose N = 5 and M = 150.

A. Band structure and density of states

As an example, we plot the band structure at θ = 4◦ in
Fig. 1(a). The bands are labeled by s = ±1,±2, . . . , where
negative/positive s are for bands with energies below/above
zero. Together with the DOS shown in Fig. 1(b), the band
structure clearly shows three energy regimes: (i) There exists
a linear regime of the ±1 band around the Dirac points,
which has already been well discussed and characterized
by a renormalized Fermi velocity [15] v′

f = 1−3α2

1+6α2 v f , with
α = 3a0w0/[8πv f sin(θ/2)]. It is easy to conclude that the
physics in this regime should be similar to that of graphene,
but with a smaller Fermi velocity and a larger DOS. At θ = 4◦,
this regime is about in the energy range [−0.19, 0.19] eV.
(ii) When the electron energies are higher than 0.95 eV, the
interlayer coupling shows little effect on the DOS. This is easy
to understand because the coupling energy w0 = 110 meV
only contributes a bit to the electron energy in this case. The
optical response of these two regimes is similar to the results
of graphene. Because the continuum model for graphene is
appropriate for electronic states in the linear dispersion regime
(usually < γ0), our calculation is performed for photon energy
less than 5 eV. (iii) When the energy is between 0.19 and
0.95 eV, the band structure is complicated compared to that
of graphene. There are multiple bands in this regime, and the
M points of the ±1 bands [shown as red points in Figs. 1(a)
and 1(b)] are saddle points, leading to VHS in the DOS at an
energy of about 0.25 eV. The energies of these saddle points
are approximately linear with the twist angle, as shown in
Fig. 1(c). When the electron energy exceeds the VHS, there is
a sudden decrease of the DOS, because the states are shifted
to the M points to form VHS [19].

B. Injection coefficients at θ = 4◦

To clearly show how the interlayer coupling at different
twist angles affects the injection, it is constructive to consider
the ratio between the obtained results and those for uncoupled
TBG, where the interlayer coupling strength is set as w0 = 0.
The uncoupled TBG becomes simply two uncoupled mono-
layers of graphene, and the injection occurs in each layer only,
for which analytic results have been obtained [36]. The injec-

FIG. 1. Illustration of (a) the band structure and (b) the DOS for twist angle θ = 4◦. The two dotted vertical lines separate the three regimes
in positive energies. (c) The twist angle dependence of energy at VHS.
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FIG. 2. Spectra of injection coefficients of TBG with θ = 4◦ and
μ = 0. (a) One-photon carrier injection coefficient ξ xx

1 (ω), (b) two-
photon carrier injection coefficients ξ xxxx

2 (ω) and ξ
xxyy
2 (ω), and (c) the

imaginary part of coherent current injection coefficients ηxxxx
12 (ω)

and η
xxyy
12 (ω). In (a)–(c) the right axis gives the normalized injection

coefficients. The vertical solid lines located at 2h̄ω = 0.38, 1.9, or
4 eV divide the spectra into three regimes. The vertical dashed lines
indicate the energy for the transition at the M point from band −1
(−2) to +2 (+1). (d) ξ xxxx

2 (ω) at different h̄γ = 5, 10, 20 meV.

tion in graphene is isotropic with additional relations for the
injection coefficients as ξ

xyxy
2 = −ξ

xxyy
2 and η

xyxy
12 = −η

xxyy
12 .

Thus in an uncoupled TBG for any twist angle θ , the injection
coefficients are just twice those in graphene, as

ξ xx
1 (ω)

∣∣∣∣
u

= e2

h̄2ω
, ξ xxxx

2 (ω)

∣∣∣∣
u

= 2h̄v2
f e4

(h̄ω)5
,

ηxxxx
12 (ω)

∣∣∣∣
u

= i
v2

f e4

(h̄ω)3
. (25)

The normalized injection coefficients are defined as

ξ
ab
1 (ω) = ξ ab

1 (ω)/ξ xx
1 (ω)|u, ξ

abcd
2 (ω) = ξ abcd

2 (ω)/ξ xxxx
2 (ω)|u,

and η
gabc
12 (ω) = η

gabc
12 (ω)/Im[ηgabc

12 (ω)|u], which are
dimensionless quantities. In an uncoupled TBG, η

gabc
12 (ω)

is a pure imaginary number; with the inclusion of interlayer
coupling, η

gabc
12 is in general complex, but the calculations

show that its real part is two orders of magnitude smaller than
its imaginary part, which will be presented below. Figure 2
gives the spectra of these coefficients for a twist angle 4◦ at
zero chemical potential. Corresponding to three regimes of
the band structure, the spectra of injection coefficients can
also be divided into three regimes, which are separated by
2h̄ω = 0.38 and 1.9 eV for ξ ab

1 and η
gabc
12 or 2h̄ω = 0.38 and

4 eV for ξ abcd
2 . The second boundary is different due to the

existence of unique divergence in two-photon absorption. At
the low-energy regime 2h̄ω < 0.38 eV, the injection occurs
mostly between the bands ±1 in the linear dispersion regime.
The results are similar to those of graphene but with a smaller
Fermi velocity v′

f . From Eq. (25), the one-photon injection
coefficient is the same as the uncoupled TBG because it
is independent of the Fermi velocity; however, two-photon
carrier injection and two-color coherent current injection
show smaller coefficients due to the smaller Fermi velocity.
These features are clearly shown by the values ξ

xx
1 = 1, ξ

xxxx
2 ,

and ηxxxx
12 , which are approximately constant but less than 1. In

the high-energy regime with photon energies 2h̄ω > 1.9 eV
for ξ xx

1 (ω) and ηxxxx
12 (ω), or 2h̄ω > 4 eV for ξ xxxx

2 (ω), the
coefficients gradually approach the case without interlayer
coupling.

In the middle regime, the spectra of injection coefficients
contain fruitful fine structures, which are also clearly shown
in the normalized injection coefficients. All of them have
dips at 2h̄ω ≈ 0.68 eV, which are induced by the optical
transitions involving the states with smaller DOS shown in
Fig. 1(b). At 2h̄ω ≈ 0.72 eV, ξ̄ xx

1 (ω) appears as a peak with a
value around 3, which arises from the optical transitions at
the VHS. However, both η̄xxxx

12 (ω) and η̄
xxyy
12 (ω) show local

peaks at 2h̄ω = 0.76 and 0.85 eV, respectively. The higher
photon energies of these peak locations are because the VHS
has zero carrier velocity v

g
ssk − v

g
s′s′k, which lowers and shifts

the peak for current injection coefficients. After the peak, the
injection coefficients decrease with some fine features (tiny
dips), which are induced by the existence of multiple bands.
In the whole middle regime, the normalized current injection
coefficients are less than 1.

Different from one-photon carrier injection and two-color
coherent injection, where the injection coefficients are at the
same order of magnitude of graphene, the two-photon car-
rier injection can be a few hundred times larger than that
of graphene for photon energies 0.72 < 2h̄ω < 4 eV. This
is because for these photon energies, both the resonant one-
photon optical transition and the resonant two-photon optical
transition can exist simultaneously, which leads to a double
resonance discussed after Eq. (24). To better illustrate its
dependence on γ , we also plot ξ abcd

2 (ω) in Fig. 2(d) for differ-
ent h̄γ = 5, 10, 20 meV. Our calculation indicates that the
injection coefficients for the double resonant transitions are
approximately proportional to γ −1.

C. Electron energy resolved injection coefficients at θ = 4◦

The injection processes can be better understood by using
the electron energy resolved injection coefficients, from which
the contributions from different electron energies can be vi-
sualized. As an example, for the one-photon injection, it is
defined as

ξ̃
(ν);ab
1 (εv, 2ω) = 4π

( e

h̄ω

)2 ∑
ss′

∫
dk

(2π )2

(
v

(ν);a
ss′k

)∗
v

(ν);b
ss′k

× δ(εs′k − εv )h̄δ(εsk − εv − 2h̄ω), (26)

from which the injection coefficients can be obtained as

ξ
(ν);ab
1 (2ω) =

∫
dεv[
(μ − εv ) − 
(μ − 2h̄ω − εv )]

× ξ̃
(ν);ab
1 (εv, 2ω). (27)

Similar definitions can be applied to get ξ̃ dabc
2 (εv, ω) and

η̃
gabc
12 (εv, ω). Equation (27) shows that only the electron states

with energies μ − 2h̄ω < εv < μ contribute to the injection
process. For uncoupled TBG or for graphene, the injection
occurs as εv = −h̄ω < −|μ|.

Figure 3 shows electron energy resolved injection co-
efficients ξ̃ xx

1 (εv, 2ω), ξ̃ xxxx
2 (εv, ω), and η̃xxxx

12 (εv, ω). Taking
ξ̃ xx

1 (εv, 2ω) as an example, the main contributions are located
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FIG. 3. Electron energy resolved injection coefficients (a) ( 2h̄ω

1 eV )2ξ̃ xx
1 (εv, 2ω), (b) ( h̄ω

1 eV )4ξ̃ xxxx
2 (εv, ω), and (c) ( 2h̄ω

1 eV )3Im[̃ηxxxx
12 (εv, ω)]. The

two dotted lines give εv = μ and εv = μ − h̄ω for μ = 0 eV.

in the regions identified by the optical transitions between
bands A: −2 → −1, B: −1 → 1, C: 1 → 2, D: −2 → 1,
E: −1 → 2, and F: for transitions from or to higher-energy
bands. The regions D and E include the optical transitions
around the VHS. At μ = 0, the electron energy resolved in-
jection coefficients are mostly located in the region −2h̄ω <

εv < 0 given by the dashed red lines, including the regions B,
E, and D. For nonzero μ, contributions from other regions can
be tuned on or off, which will be discussed in the next section.

D. Chemical potential dependence at θ = 4◦

Now we consider how doping affects the injection coeffi-
cients. Figure 4 shows the spectra for μ = 0, 0.1, 0.3, 0.5 eV
at 4◦. For μ = 0.1 eV, the chemical potential is in the lin-
ear dispersion regime. Following the results of graphene, the
chemical potential induced effective band gap is Eg = 2|μ|,
thus all injection coefficients show an onset energy at 2h̄ω =
0.2 eV. The new transitions from the +1 band to higher bands
(from region C in Fig. 3) require higher photon energies and
the contribution is negligible, so the results after the effective
gap are almost the same as those results at zero chemical
potential. When the chemical potential increases to 0.3 eV,
which still lies in the +1 band, a direct consideration of
the effective gap should be as high as 0.6 eV. However, the
higher doping level makes transitions from the +1 band to
higher bands (from region C in Fig. 3) require less photon
energy, which reduces the effective gap to 0.15 eV. When the
chemical potential is 0.5 eV, the onset energy becomes even
smaller at around 0. From Fig. 3, all injections contributed
from regions B, D, and E are suppressed, but region C con-
tributes greatly for small photon energies, and it enhances the
one-photon carrier injection for photon energies between 0.27

and 0.31 eV, and two-photon carrier injection and coherent
current injection for photon energies between 0.27 and 0.5 eV.

E. Interference effects on current injection at θ = 4◦

To better illustrate how the injected current can be co-
herently controlled, we show the explicit dependence of the
injection currents on light phases. Taking the electric fields as
Eω = eiφ1 Eωêω and E2ω = eiφ2 E2ωê2ω, the injection current is
written from Eq. (15) as

dJ
dt

= −E2
ωE2ω

{
4 Im

[
η

xyxy
12

]
Im[ei�φ êωê∗

2ω · êω]

+ 2 Im
[
η

xxyy
12

]
Im

[
ei�φ ê∗

2ωêω · êω

]}
, (28)

where �φ = 2φ1 − φ2 is the phase difference of these two
beams. For collinearly polarized beams, the injection currents
are zero for �φ = 0 or π but maximized for �φ = ±π/2.
Usually the interference can also be identified by a swarm
velocity [38], which is an average velocity of excited carriers
defined as

vswarm = 1

e

J̇
ṅ1 + ṅ2

. (29)

When both fields are polarized along the x direction with a
phase difference −π/2, the swarm velocity can be written as

vx
swarm = 1

e

2 Im
[
ηxxxx

12

]
E2

ωE2ω

ξ xx
1 E2

2ω + ξ xxxx
2 E4

ω

. (30)

It can be maximized at E2
ω/E2ω = √

ξ xx
1 /ξ xxxx

2 . In Fig. 5,
we show the k-resolved carrier injection coefficients in
one valley for the parameters êω = ê2ω = x̂, 2h̄ω = 0.4 eV,
and E2

ω/E2ω ∼ 4 × 107 V/m. When only one-photon or
two-photon carrier absorption is considered, the k-resolved in-

FIG. 4. Spectra of injection coefficients (a) ξ xx
1 (2ω), (b) ξ xxxx

2 (ω), and (c) Im[η̄xxxx
12 (ω)] for chemical potentials μ = 0, 0.1, 0.3, 0.5 eV.
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FIG. 5. Illustration of the interference by k-resolved carrier injection coefficients: (a) one-photon carrier injection, (b) two-photon carrier
injection, and (c) total carrier injection.

jection coefficients are symmetric, which leads to zero charge
current. When the interference of these two absorptions is
taken into account, the injection becomes clearly asymmetric
and results in nonzero charge currents along the x direction.

We estimate the amplitude of the injection current us-
ing typical experimental parameters [35]. The fundamental
laser beam is polarized along the y direction with wavelength
3.2 μm and intensity 2.8 GW/cm2, while the second harmonic
laser beam is polarized along the x direction with intensity
0.45 GW/cm2. Their field amplitudes are about 107 V/m
and 4 × 106 V/m, respectively. By taking pulse durations as
� = 220 fs, the phase difference as �φ = −π/2, and an
electrode length as l = 10 μm, the injected current is es-
timated as J ∼ dJ

dt l� = 2 Im[ηxxyy
12 ]E2

ωE2ωl� = 1.8 mA with
Im[ηxxyy

12 ] = 9.48 × 10−7 A V−3 m2 s−1.

F. Twist angle dependence

Figure 6 gives the injection coefficients at θ = 2◦. Simi-
lar to the results at θ = 4◦, the peak located around 0.2 eV
originates from the VHS. The optical transitions involving the
VHS and other bands occur at lower photon energies, resulting
in some other peaks at photon energies below 1 eV. From
the normalized injection coefficients, it can be seen that the
high-energy regime appears at quite low photon energies, due
to the smaller VHS energy at this twist angle. Furthermore, the
peak values of the normalized coefficients induced by VHS
are smaller than those at θ = 4◦.

Figure 7 gives the normalized injection coefficients for
θ = 3◦, 5◦, 7◦, 9◦, and 10◦. For θ > 10◦, the continuum
model for electronic states is not suitable [15]. The spectra
at different twist angles show very similar features to that of

4◦. With increasing θ , the peaks/valleys are shifted to larger
photon energies, which is consistent with our analysis of the
band structure. These results indicate that optical injection
processes can be effectively tuned by the twist angle.

IV. CONCLUSION

We have theoretically investigated one- and two-photon
carrier injection and two-color coherent current injection in
twisted bilayer graphene for twist angles between 3◦ and 10◦,
where the injection coefficients are numerically evaluated at
zero temperature for different chemical potentials. Compared
to the results for graphene, the spectra of injection coefficients
in twisted bilayer graphene exhibit different features in three
energy regimes: in the low-energy regime where the band
structure is approximately linear, all injection coefficients
have similar behaviors to that of graphene, but with a different
amplitude determined by the renormalized Fermi velocity; for
very high photon energies, all injection coefficients are almost
the same as that of graphene, because the involved electronic
states have large energies that are not effectively affected by
the interlayer coupling; and in the middle regime, the carrier
injection coefficients show resonant peaks around the Van
Hove singularity, while the current injection coefficients are
smaller because the injected carriers around the Van Hove
singularity have zero velocity. All these results are character-
ized by electron energy resolved injection coefficients. Due
to the existence of multiple bands, the degenerate two-photon
optical transition processes can have double resonant optical
transitions between the initial, the intermediate, and the final
states, which lead to a divergent two-photon carrier injection
and a finite two-color current injection.

FIG. 6. Spectra of injection coefficients of TBG with θ = 2◦ and μ = 0.
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FIG. 7. Photon energy dependence of the normalized injection coefficients. (a) ξ
xx
1 (ω), (b) ξ

xxxx
2 (ω), and (c) Im[ηxxxx

12 (ω)] for different twist
angles 3◦, 5◦, 7◦, 9◦, and 10◦.

With the decrease of the twist angle, these features shift
to low photon energies, suggesting twist angle tunable ap-
plications in far-infrared or terahertz wavelength. The optical
injection for very small twist angles around the “magic an-
gles” is not investigated in this work, mainly due to the
difficulties in the numerical calculations, which require a large
number of plane-wave expansions to get accurate band eigen-
states and an inclusion of many higher intermediate bands
to get the accurate amplitude for the two-photon transition
process. However, at these angles, the strong carrier-carrier
interaction may lead to a different behavior of the optical
injection [31], which is worthwhile for future exploration.

This work mostly focuses on the comparison of the in-
jection coefficients of twisted bilayer graphene and those
of graphene, and there also exist other important injection
processes appearing only in twisted bilayer graphene, which
are worthy of being explored but are not discussed here. For

example, the stacking of two layers of graphene brings the
focus along the perpendicular direction [41], which is usually
ignored in monolayer graphene, and the two-color optical in-
jection tensors have nonzero components for oblique incident
light. Moreover, due to the lower symmetry, a single color
light with an appropriate polarization is also possible to inject
currents.
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