
Vol.:(0123456789)1 3

Engineering with Computers 
https://doi.org/10.1007/s00366-022-01658-x

ORIGINAL ARTICLE

On the size‑dependent bending and buckling of the partially covered 
laminated microplate

Guangyang Fu1,2  · Zhenjie Zhang3 · Yulin Ma1,2 · Hongyu Zheng1,2 · Qianjian Guo1 · Xuye Zhuang1

Received: 8 October 2021 / Accepted: 6 April 2022 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract 
The bending and buckling of the microcomponents show size dependency. The strain gradient elasticity theory is proposed 
to explain the size dependency. In this paper, we derive the theoretical relations among the modified strain gradient elasticity 
theory, the modified couple stress theory and the general strain gradient elasticity theory, and clarify the degradation relation. 
The general theory includes all strain gradients while the modified strain gradient elasticity theory and the modified couple 
stress theory only contain part of strain gradients. By ignoring the deviatoric part of the strain gradients �

�(2)

ijk
 or the symmetric 

part of the strain gradients �s
ijk

 , the general theory is simplified as the modified couple stress theory or the modified strain 
gradient elasticity theory, respectively. The ability of the general theory and the reduced theories in describing the bending 
and buckling response of the partially covered laminated microplate is subsequently compared. Results reveal that the general 
theory predicts smaller bending deflection and axial displacement while larger buckling load than that of the reduced theories. 
The general theory is more effective in reflecting the size effects. In addition, it is found that the increase of the thickness or 
radius of the upper elastic layer makes the buckling load increase while the deflection increase firstly and then decrease. 
There exists the specific radius ratio and thickness ratio to make the clamped-clamped microplate achieve the maximum 
deflection.
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1 Introduction

The partially covered laminated plate constitutes the func-
tional component of the pump [1], energy harvester [2] and 
acoustic sensor [3]. The performance of the devices is deter-
mined by the mechanical property of the plate. In order to 
accurately describe the pump flow, energy conversion and 
dynamic density of the devices, more and more attentions 
have been paid to the mechanical analysis of the plate.

For the static bending of the macroplate, the static deflec-
tion of the partially covered laminated plate was derived by 
Afzal [4] using the classical theory. Nguyen et al. [5] per-
formed the static analysis of the partially covered plate actu-
ator with various design parameters. Prasad et al. [6] further 
considered the effects from the variation of the location of 
the upper layer on the bending behaviour of the plate. Bakh-
tiari-Shahri and Moeenfard [7] performed the bending and 
vibration simulation of the plate and optimized the structure 
parameters. Based on the bending model above, Wang et al. 
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[8] subsequently designed the valveless pump and calibrated 
the performance of the pump. For the dynamic vibration 
of the macroplate, Shahri and Moeenfard [9] studied the 
random vibration response of the plate and determined the 
vibration frequency. Kan et al. [10] established the theoreti-
cal model for the hydraulic actuator, and further determined 
the optimal frequency for drug delivery. The nonlinear bend-
ing response of the plate with various boundary conditions 
was solved by Hu et al. [11]. Yuan et al. [12] further ana-
lysed the softening and hardening characteristics of the non-
linear vibration response. Sahoo and Ray [13] performed the 
nonlinear dynamic analysis of the laminated plate integrated 
with rectangular pitch and elliptical pitch, and found that 
compared with the rectangular pitch, the elliptical pitch is 
more effective in attenuating the vibration. Based on the 
vibration model above, Sun et al. [14] subsequently designed 
the wind-based vibration energy harvester with the vortex 
effects. Chong and Williams [15] further considered the 
magnetoelectric effects when they performed the vibration 
analysis of the plate.

The above models about the linear and nonlinear bend-
ing and vibration responses of the partially covered lami-
nated macroplate are applied to characterize the mechanical 
response of the microplate. Microplate is not only the min-
iaturization of the macroplate. The mechanical property of 
the microplate is obvious different from those of the macro-
plate. The variation of the bending rigidity, dynamic vibra-
tion and buckling load depends on the feature size of the 
microplate [16–18] and thus shows size dependency obvi-
ously. However, classical theory is unable to capture the size 
dependency.

The rotation gradients were originally considered as the 
reason for the size effects. The classical couple stress theory 
[19, 20] was applied widely to describe the effects from rota-
tion gradients. Subsequently, the modified versions [21–23] 
were also proposed. However, the rotation gradients were 
proved to be part of the strain gradients [24]. Neff et al. [25, 
26] further proved the limitations of the application of the 
modified versions. To include the effects from all strain gra-
dients, Mindlin and Eshel [24, 27] firstly established the 
theoretical framework of the general strain gradient elastic-
ity theory with five length parameters. For simplification 
of the general theory, the modified strain gradient elasticity 
theories were proposed [16, 28, 30, 31]. Recently, Zhou et al. 
[29] proved the number of the independent length param-
eters is three, reformulated the general theory, and proposed 
the general theory with three independent length parameters. 
The differences among these theories in describing the size-
dependent buckling response of the partially covered lami-
nated microbeam were further confirmed [32].

For the static bending of the monolayer microplate, Yue 
et al. [33] performed the bending analysis of the microplate. 
The effects of various loading and boundary conditions on 

the bending deflection were discussed by Barretta et al. [34]. 
The solution was subsequently extended to the incompress-
ible functionally graded plates [35]. Thai et al. [36] per-
formed the bending analysis of the carbon nanotube-rein-
forced plate. The similar method was also applied by Akgöz 
and Civalek [37, 38] to analyse the size-dependent mechani-
cal responses of the microcomponents. Subsequently, the 
effects from the nonlocal elasticity and rotation gradients 
were also explored by Civalek et al. [39] using the Cheby-
shev-Ritz method. Farzam and Hassani [40] further consid-
ered the temperature effects. For the dynamical vibration 
of the monolayer microplate, Shahrbabaki [41] performed 
the vibration analysis of the plate with various boundary 
conditions. Alizadeh and Fattahi [42] further extended the 
solution to the functionally graded microplate. Afterwards, 
this solution was extended to dynamic analysis of the plate 
supported by the winkler foundation [43]. Nguyen et al. [44] 
further solved the vibration problem of the cracked function-
ally graded microplates and discussed the effects of the loca-
tion of the crack on the vibration frequency. The vibration 
behaviour of the plate with internal hinges was subsequently 
solved [45]. Thanh et al. [46] and Li et al. [47] performed 
the nonlinear bending and vibration analysis of the plate, 
respectively. For the buckling response of the monolayer 
microplate, Zhou et al. [48] performed the buckling analysis 
of the plate. Akgöz and Civalek [49] proposed a microstruc-
ture-dependent sinusoidal plate model with strain gradients, 
and solved the buckling problem. Ullah et al. [50] further 
considered the influences from boundary conditions when 
they solved the buckling problem. The solution was subse-
quently extended to the functionally graded microplate [51]. 
The buckling problem of the plate with the porosity effects 
and thermal effects was also solved [52]. Tenenbaum et al. 
[53] performed the buckling analysis of the corner supported 
orthotropic microplate.

For the static bending of the bilayer microplate, Arefi 
et al. [54] performed the bending analysis of the plate with 
various loading conditions. The bending behaviour of the 
microplate under double sinusoidal loading was subse-
quently solved [55]. Ghorbanpour and Zamani [56] extended 
the solution to the functionally graded plate. Gao and Sun 
[57] subsequently solved the nonlinear bending problem. 
The influence from the magnetic field on the bending deflec-
tion was further considered [58]. For the dynamical vibra-
tion of the bilayer microplate, Zhang et al. [61] compared the 
effects of loading and boundary conditions on the vibration 
of orthotropic bilayer plates. Nguyen et al. [62] extended the 
solution to the functional gradient microplate. The influence 
of nonlinear effects on the vibration behaviour of the plate 
was analysed by Roque et al. [63]. Zuo et al. [64] further 
considered the thermoelastic damping effects. The linear and 
nonlinear analysis of the vibration of the plate were also 
performed [65]. For the buckling response of the bilayer 
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microplate, Reddy et al. [66] performed the uniaxial and 
biaxial buckling analysis of the plate. Afterwards, Mondal 
et al. [67] further considered the nonlinear effects and ther-
mal effects. The nonlinear buckling analysis of the micro-
plate with different boundary conditions was subsequently 
performed by Magnucki et al. [68]. Arefi et al. [69] further 
considered the influence from the temperature. The influence 
from the magnetic field on the buckling load was subse-
quently solved [58].

Although much attention has been paid to the mechani-
cal response of microplate, the size dependency of the 
same microplate predicted by different strain gradient theo-
ries is different. In addition, little attention is focused on 
the bending and buckling behaviour of the partially cov-
ered laminated microplate, while the plate of this type is 
usually served as the key functional components in the 
micro-devices. To reasonably estimate the size effects of 
the mechanical responses of the microplate, and offer a 
theoretical basis for the structure design and performance 
optimization of the micro-devices, it is urgent to clarify the 
relations between the general theory and other strain gradi-
ent theories, and further apply the general theory to perform 
the buckling and bending analysis of the partially covered 
laminated microplate.

To fill in the gaps, this paper discusses the differences 
between the general theory and other strain gradient theories 
in detail, and presents the corresponding degradation rela-
tion, then, the partially covered laminated microplate model 
with strain gradient effects is established using the general 
strain gradient theory [29]. The bending and buckling analy-
sis of the laminated plate under various boundary conditions 
are performed.

The size dependency of the bending deflection and buck-
ling load are discussed.

The paper is organized as follows.
The equations of the general strain gradient theory are 

reviewed in Sect. 2. The mechanical response model of the 
laminated plate is derived in Sect. 3. Subsequently, we per-
form the bending and buckling analysis of the laminated 
plate in the Sects. 4 and 5, respectively. Subsequently, the 
size dependency of bending and buckling responses of the 
plate are studied. Finally, the conclusion is given in Sect. 6.

2  Theoretical comparison

2.1  Strain gradient elasticity theory

The strain gradient elasticity theory considers the influ-
ence from the strain and strain gradients, and thus the strain 
energy density is expressed as

where the strain tensor �ij is written as

the strain gradient tensor �ijk is written as

For isotropic material, Mindlin and Eshel [27] firstly given 
the general expression of the strain energy density of Eq.(1) 
as

where � and � are the Lamé constants. an(n = 1, 2, 3, 4, 5) are 
the material constants.

The strain gradient tensor �ijk can be expressed in the form 
of the anti-symmetric splitting and symmetric splitting as

where �(1)
ijk

 and �(0)
ijk

 are, respectively, the traceless and trace 
parts of the symmetric strain gradient tensor �s

ijk
 . �as

ijk
 and �aa

ijk
 

are respectively the symmetric and anti-symmetric parts of 
the anti-symmetric strain gradient tensor �a

ijk
.

The strain gradient tensor �ijk can also be expressed in the 
form of the deviatoric splitting and hydrostatic splitting as

where �h
ijk

 is the hydrostatic part of the strain gradient tensor. 
�
�(2)

ijk
 is the deviatoric part of the strain gradient tensor.

Using the anti-symmetric splitting and symmetric split-
ting, deviatoric splitting and hydrostatic splitting, Zhou 
et al. [29] reformulated the general theory [27], proved the 
number of the independent material parameters is three, and 
given the strain energy density as

The strain energy density in Eq. (7) can also be expressed in 
the form of the strain gradient components as

(1)w = w(�ij, �ijk)

(2)�ij =
1

2

(
ui,j + uj,i

)

(3)�ijk = �jk,i

(4)

w =
1

2
��ii�jj + ��ij�ij + a1�iik�kjj + a2�ijj�ikk

+ a3�iik�jjk + a4�ijk�ijk

+ a5�ijk�kji

(5)�ijk = �
s
ijk
+ �

a
ijk

= �
(0)

ijk
+ �

(1)

ijk
+ �

as
ijk
+ �

aa
ijk

(6)�ijk = �
h
ijk
+ �

(1)

ijk
+ �

as
ijk
+ �

�(2)

ijk

(7)
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1

2
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9
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In which l0 , l1 and l2 represent the length parameters.

2.2  Relation to the other strain gradient elasticity 
theory

Various strain gradient elasticity theories including the 
modified strain gradient elasticity theory [16] and the modi-
fied couple stress theory [21] were proposed to capture size 
effects. Here, we will discuss the reduction relation among 
the modified strain gradient elasticity theory, the general 
theory and the modified couple stress theory.

The modified strain gradient elasticity theory [16] 
includes the dilatation gradients, the deviatoric stretch gra-
dients, the classical strain and the symmetric rotational gra-
dients. To derive the theoretical relations between the gen-
eral theory and the modified strain gradient elasticity theory, 
the strain energy density of the general theory is expressed 
in the form of the hydrostatic and deviatoric splitting (Eq. 9). 
By ignoring the contributions from the deviatoric part of the 
strain gradients �

�(2)

ijk
 , the following equation is obtained as

The relation between the strain gradients and the rotational 
gradients is given as

with

where � s
ij
 and �a

ij
 are respectively the symmetric and anti-

symmetric parts of the rotational gradients �ij.
Using Eqs. (10) and (11), the strain energy density for 

the modified strain gradient elasticity theory is obtained as

(8)
w0 =

1

2
��ii�jj + ��ij�ij + 3�l2

0

(
�
(0)

ijk
�
(0)

ijk
+ �

aa
ijk
�
aa
ijk

)

+ �l2
1
�
(1)

ijk
�
(1)

ijk
+ 3�l2

2
�
as
ijk
�
as
ijk

(9)
w0 =

1

2
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0

(
�
h
ijk
�
h
ijk
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�(2)

ijk
�
�(2)

ijk

)

+ �l2
1
�
(1)

ijk
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(1)
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2
�
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�
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1

2
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1
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ijk
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2
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�
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(11)
�
as
ijk

=
1

3

(
eijp�
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+ eikp�

s
pj
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�
aa
ijk

=
1

3
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eijp�
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(12)
�
s
ij
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1
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eipq�qj,p + ejpq�qi,p

)

�
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ij
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1

2
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with

The modified couple stress theory [21] contains the effects 
only from the symmetric part of the rotational gradients. 
It can be seen from Eq. (11) that the symmetric part of the 
rotational gradients is related to the symmetric part of the 
anti-symmetric strain gradients. Therefore, to derive the 
theoretical relations between the modified couple stress 
theory and the general theory, the strain energy density of 
the general theory is expressed in the form of the symmetric 
and anti-symmetric splitting (Eq. 8).

By ignoring the contributions from symmetric strain gra-
dients �(0)

ijk
 and �(1)

ijk
 , the anti-symmetric part of the anti-sym-

metric strain gradients �aa
ijk

 , and using Eq. (8), the modified 
couple stress theory strain energy density is obtained as

From Eqs. (9)–(13), (8), (11) and (15), it can be seen that the 
general theory can be simplified as the modified couple 
stress theory or the modified strain gradient elasticity theory 
respectively by ignoring the contribution from the symmet-
ric part of the strain gradients �s

ijk
 or the deviatoric part of 

the strain gradients �
�(2)

ijk
 . The differences and relations among 

the strain gradient theories are summarized in Table 1.

3  Size‑dependent model for Kirchhoff plate

The isotropic homogeneous partially covered laminated 
circular microplate subjected to the transverse load q(r, �) 
and the axial compressive force P is shown in Fig. 1. The 
contact of the upper and lower elastic layer is assumed to 
be ideal. Here, we adopt the cylindrical coordinate system. 
The r − � plane is at the centroid surface of the lower micro-
plate. The thickness of the lower and upper circular micro-
plate are respectively defined as h1 and h2 . The radius of the 
lower and upper circular microplate are defined as R and R1 , 
respectively.

Due to the geometric discontinuity of the circular micro-
plate, the neutral surface of the circular microplate is piece-
wise [59, 60]. The neutral surface of the circular microplate 
( R1 < r < R ) lies along the centroid surface of the lower 

(13)
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1

2
��ii�jj + ��ij�ij + �l2

3
�nn,i�nn,i

+ �l2
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+ �l2

5
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(14)l3 = l0 l4 = l1 l5 =
√
2l2

(15)w0 =
1

2
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5
�
s
pi
�
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microplate. The location of the neutral surface of the circular 
microplate ( 0 < r < R1 ) is unknown, and assumed to be d 
away from the centroid surface of the lower circular micro-
plate. Each region of the circular microplate is separately 
modelled as the Kirchhoff circular microplate. The displace-
ment model of the circular microplate is given as

In Eq. (16), uri , u�i and uzi(i = 1, 2) are the r, � and z direction 
displacement components, respectively. The lateral deflec-
tion is denoted as w(x).

Based on Eqs. (2), (3) and (16), the non-laminated region 
non-zero strain and strain gradient are, respectively, written 
as

(16)

ur1 = −z
𝜕w(r)

𝜕r
u
𝜃1 = 0 uz1 = w(r) R1 < x < R

ur2 = −(z + d)
𝜕w(r)

𝜕r
u
𝜃2 = 0 uz2 = w(r) 0 < x < R1

(17)
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z
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Similarly, the laminated region non-zero strain and strain 
gradient are, respectively, written as

In Eq. (18), the axial displacement is u0 = −d ⋅ �w∕�r.
Based on Eqs. (7) and (17), the non-laminated region 

strain energy U1 is derived as

with
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(19)U1 =
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1

2
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−
1

2
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R
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∫

2�

0

w1rd�drdz

Table 1  The contacts among the strain gradient theories
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In Eq. (20), w(i)(i = 1, 2, 3) = dw(i)∕dri.
Similarly, using Eqs. (7) and (18), the laminated region 

strain energy U2 is derived as

with
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In Eq. (22), u(i)
0
(i = 1, 2) = du

(i)

0
∕dri . The parameters 

cn(i)(n = 1, 2,… , 7, i = 1, 2) are given as

The non-laminated region ( R1 < x < R ) work W1 is written 
as

where V is the shear force. M is the classical bending 
moment. P is the axial compressive force. Mh is the non-
classical moment. The laminated region ( 0 < x < R1 ) work 
W2 is given as

Using Eqs. (19), (24) and the variation principle, the follow-
ing equations are obtained as
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0(i)

−
4

3
l2
1(i)

− l2
2(i)

)

(24)

W1 = ∫
R

R1
∫

2�

0

qwrdrd�

+
1

2 ∫
R

R1
∫

2�

0

P(w(1))2rdrd� + [2�rVw]R
R1

+
[
2�rMw(1)

]R
R1

+
[
2�rMhw(2)

]R
R1

(25)

W2 = ∫
R1

0 ∫
2�

0

qwrdrd� +
1

2 ∫
R1

0 ∫
2�

0

P
(
w(1)

)2
rdrd�

+ [2�rVw]
R1

0
+
[
2�rMw(1)

]R1

0
+
[
2�rMhw(2)

]R1

0

Fig. 1  The mechanical response 
of the partially covered lami-
nated circular microplate

0 r
2R1

2R

P
h2
h1 dP

z
q(r,ɵ)
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with

From Eq.(26), we derive the governing equation as

The boundary conditions are derived as

Similarly, based on Eqs. (21), (25) and the variation princi-
ple, the following equations are derived as

where u is the primitive function of the u0 , namely, 
u0 = �u∕�r . F is the axial force. Fh is the non-classical axial 
force.

(26)

2� ∫
R

R1

[
− 2c5(1)I1∇

6w + 2
(
c3(1)h1 + c1(1)I1

)
∇4w

+ P∇2w − q

]
�wdr

+ 2�r[V1 − V]�w|R
R1
+ 2�r[M1 −M]�w(1)|R

R1

+ 2�r
[
Mh

1
−Mh

]
�w(2)|R

R1

= 0

(27)

V1 =2c5(1)I1
�

�r
∇4w − 2(c3(1)h1 + c1(1)I1)

�

�r
∇2w − Pw(1)

(28)

M1 = − 2c5(1)I1

(
w(4) +

1

r
w(3) −

3

r2
w(2) +

3

r3
w(1)

)
− c7(1)I1

(
1

r2
w(2) −

1

r3
w(1)

)
− c3(1)I1

1

r
w(1)

+ c4(1)h1
1

r
w(1) + 2c3(1)h1w

(2)

+ 2(c3(1)h1 + c1(1)I1)∇
2w

(29)Mh
1
=2c5(1)I1w

(3) − c7(1)I1

(
1

r
w(2) −

1

r2
w(1)

)

(30)
−2c5(1)I1∇

6w + 2
(
c3(1)h1 + c1(1)I1

)
∇4w + P∇2w − q = 0

(31)
[V1 − V]�w|R

R1
= 0 [M1 −M]�w(1)

||||
R

R1

= 0

[Mh
1
−Mh]�w(2)

||||
R

R1

= 0

(32)

2� ∫
R1

0

[
−A1∇

6w + A2∇
4w + A3∇

6u − A4∇
4u + P∇2w − q

]
�wdr

+ 2� ∫
R1

0

[
�

�r
(−A3∇

4w + A4∇
2w + A5∇

4u − A6∇
2u)

]
�u0dr

+ 2�r
[
V2 − V

]
�w|R1

0
+ 2�r[M2 −M]�w(1)

||||
R1

0

+ 2�r
[
Mh

2
−Mh

]
�w(2)

||||
R1

0

+ 2�rF�u0|R1

0
+ 2�rFh

�u
(1)

0

||||
R1

0

= 0

with

w h e r e  Si(i = 1, 2)  a r e  t h e  s t a t i c  m o m e n t . 
An(i)(n = 1, 2,… , 6, i = 1, 2) are material parameters and 
given as

(33)
V2 =A1

�

�r
∇4w − A2

�

�r
∇2w − A3

�

�r
∇4u

+ A4

�

�r
∇2u − Pw(1)

(34)

M2 = − A1

[
w(4) +

1

r
w(3) −

3

r2
w(2) +

3

r3
w(1)

]

− A7

[
1

r2
w(2) −

1

r3
w(1)

]

−
[
(2c1(1) − c2(1))I1 + (2c1(2) − c2(2)I1

]1
r
w(1)

+
[
c4(1)h1 + c4(2)h2

]1
r
w(1)

+ 2
[(
2c1(1) − c2(1)

)
h1 +

(
2c1(2) − c2(2

)
h2
]
w(2)

+ A2∇
4w + A3

[
u
(4)

0
+

1

r
u
(2)

0

−
3

r2
u
(1)

0
+

1

r3
u0

]
+ A8

[
1

r2
u
(1)

0
−

3

r3
u0

]

+
[
(2c1(1) − c2(1))S1 + (2c1(2) − c2(2)S2

]1
r
u0

− A4∇
2u

(35)
Mh

2
=A1w

3 + A7

[
1

r
w(2) −

1

r2
w(1)

]
− A3u

(2)

0

− A8

[
1

r
u
(1)

0
−

1

r2
u0

]

(36)

F =A3

[
w(4) +

1

r
w(3) −

3

r2
w(2) +

3

r3
w(1)

]

+ A8

[
1

r2
w(2) −

1

r3
w(1)

]

+
[(
2c1(1) − c2(1)

)
S1 +

(
2c1(2) − c2(2)

)
S2
]1
r
w(1) − A4∇

2w

−
[(
2c1(1) − c2(1)

)
h1 +

(
2c1(2) − c2(2)

)
h2
]1
r
u0 + A6∇

2u

− A9

[
1

r2
u
(1)

0
−

1

r3
u0

]

− A5

[
u
(3)

0
+

1

r
u
(2)

0
−

3

r2
u
(1)

0
+

3

r3
u0

]

(37)
Fh = − A3w

(3) − A8

[
1

r
w(2) −

1

r2
w(1)

]

+ A5u
(2)

0
+ A9

[
1

r
u
(1)

0
−

1

r2
u0

]
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From Eq. (32), we obtain the laminated region ( 0 < x < R1 ) 
governing equations as

The laminated region ( 0 < x < R1 ) boundary conditions are 
derived as

The governing equation in Eqs. (30), (39) and bound-
ary conditions in Eqs. (31), (40) of the general the-
ory are simplified as those of the modified strain gra-
dient elasticity theory when the length parameters 
s a t i s f y  l3(j) = l0(j), l4(j) = l1(j), l2(j) =

√
2

2
l5(j)(j = 1, 2)  . 

Similarly, when the length parameters satisfy 
l
0(j) = 0, l

1(j) = 0, l
2(j) =

√
2

2
l
5(j)(j = 1, 2) ,  the boundary 

conditions and governing equation of the modified couple 
stress theory are also obtained from those of the general 
theory. In addition, when the length parameters satisfy 
li(j) = 0(i = 0, 1, 2, j = 1, 2) , the strain gradient effects is 
vanished, thus the boundary conditions and governing equa-
tions of the general theory are simplified as those of classical 
theory.

4  On the bending of the microplate

The static bending governing equation ( R1 < r < R ) is 
reduced from the Eq. (30) by ignoring the axial force P and 
the transverse load q(r, �) as

(38)

A1 = 2
(
c5(1)I1 + c5(2)I2

)

A2 = 2
(
c3(1)h1 + c3(2)h2 + c1(1)I1 + c1(2)I2

)

A3 = 2
(
c5(1)S1 + c5(2)S2

)

A4 = 2
(
c1(1)S1 + c1(2)S2

)

A5 = 2
(
c5(1)h1 + c5(2)h2

)

A6 = 2
(
c1(1)h1 + c1(2)h2

)

A7 = c7(1)I1 + c7(2)I2 A8 = c7(1)S1 + c7(2)S2

A9 = c7(1)h1 + c7(2)h2

(39)

− A1∇
6w + A2∇

4w + A3∇
6u − A4∇

4u + P∇2w − q = 0

�

�r

(
−A3∇

4w + A4∇
2w + A5∇

4u − A6∇
2u
)
= 0

(40)

[
V2 − V

]
�w

||||
R1

0

= 0 [M2 −M]�w(1)
||||
R1

0

= 0

[
Mh

2
−Mh

]
�w(2)

||||
R1

0

= 0

F�u0
||||
R1

0

= 0 Fh
�u

(1)

0

||||
R1

0

= 0

(41)
(
2
(
c3(1)h1 + c1(1)I1

)
− 2c5(1)I1∇

2
)
∇4w1 = 0

The static bending boundary conditions ( R1 < r < R ) are 
reduced from the Eq. (31) by ignoring the axial force P and 
the transverse load q(r, �) as

with

Similarly, the static bending governing equation ( 0 < r < R1 ) 
is reduced from the Eqs. (39) by ignoring the axial force P as

The static bending boundary conditions ( 0 < r < R1 ) are 
reduced from the Eq. (40) by ignoring the axial force P as

with

For the non-laminated deflection in Eq. (41), we derive the 
solution w1(r) as

The deflection ws1 satisfies the following equation

Let r = et , D = d∕dt and apply the operator method of Euler, 
we can obtain the following equation as

The solution of Eq. (49) is derived as

The deflection ws2 satisfies the following equation

(42)
[V1s − V]�w1

||||
R

R1

= 0 [M1 −M]�w
(1)

1

||||
R

R1

= 0

[
Mh

1
−Mh

]
�w

(2)

1

||||
R

R1

= 0

(43)
V1s = 2c5(1)I1

�

�r
∇4w1 − 2(c3(1)h1

+ c1(1)I1)
�

�r
∇2w1

(44)
− A1∇

6w2 + A2∇
4w2 + A3∇

6u − A4∇
4u − q = 0

�

�r

(
−A3∇

4w2 + A4∇
2w2 + A5∇

4u − A6∇
2u
)
= 0

(45)
[V2s − V]�w2

||||
R

R1

= 0 [M1 −M]�w
(1)

2

||||
R

R1

= 0

[
Mh

1
−Mh

]
�w

(2)

2

||||
R

R1

= 0

(46)
V2s = A1

�

�r
∇4w2 − A2

�

�r
∇2w2

− A3

�

�r
∇4u + A4

�

�r
∇2u

(47)w1 = ws1 + ws2

(48)∇4ws1 = 0

(49)D4ws1 − 4D3ws1 + 4D2ws1 = 0

(50)ws1 = c1 + c2lnr + c3r
2 + c4r

2lnr
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The solution of Eq. (51) is derived as

with

Therefore, based on Eqs. (47), (50) and (52), the deflection 
w1(r) ( 0 < r < R1 ) is derived as

Similarly, based on Eq. (44), it can be seen that the solution 
of Eq. (44) includes the general solution ws and the special 
solution wq . The general solution ws(r) satisfies

Let L1 = −A1∇
2 + A2 , L2 = −A3∇

2 − A4 , L3 = −A3∇
2 + A4 , 

L4 = A5∇
2 − A6 and apply the L operator method, we obtain 

the following equation

From Eq. (56), the general solution ws(r) is derived as

with

Considering the deflection of the middle point of the 
circular plate is finite,the parameters should satisfy: 
a11 = a12 = a13 = a14 = 0 , thus, the general solution ws(r) 
is written as

(51)r2
d2ws2

dr2
+ r

dws2

dr
−

⎛⎜⎜⎝

�
(c3(1)h1 + c1(1)I1)

c5(1)I1
r

⎞⎟⎟⎠

2

ws2 = 0

(52)ws2 = c5I0(D1r) + c6k0(D1r)

(53)D1 =

√(
c3(1)h1 + c1(1)I1

)
c5(1)I1

(54)
w1(r) = c1 + c2lnr + c3r

3 + c4r
2lnr

+ c5I0(D1r) + c6k0(D1r)

(55)
− A1∇

6ws + A2∇
4ws + A3∇

6u − A4∇
4u − q = 0

�

�r

(
−A3∇

4ws + A4∇
2ws + A5∇

4u − A6∇
2u
)
= 0

(56)

(
A2
3
− A1A5

)
∇4ws + (A1A6 + A2A5 − 2A3A4)∇

2ws

− A2A6 + A2
4
= c7 + c8lnr + c9r

2 + c10r
2lnr

(57)

ws(r) = a7 + a8r
2 + a9J0

�√
s1r

�
+ a10J0

�√
s2r

�
+ a11Y0

�√
s1r

�

+ a12Y0
�√

s2r
�
+ a13lnr + a14r

2lnr

(58)

s1 =
s11 +

√
s2
11
− 4s12s13

2s12
s2 =

s11 −

√
s2
11
− 4s12s13

2s12

s11 = A1A6 + A5A2 − 2A3A4 s12 = A2
3
+ A1A5

s13 = A2
4
+ A2A6

(59)ws(r) = a7 + a8r
2 + a9J0

�√
s1r

�
+ a10J0

�√
s2r

�

Using Eq.(55) and the L operator method, we can also obtain

Due to u(r) is the primitive function of the u0 , we obtain

with

For the plate subjected by the distributed load q, the special 
solution wq(r) is assumed as

Based on Eqs. (44) and (63), we obtain

Therefore, the laminated region deflection w2(r) and axial 
displacement u0(r) are derived as

Using Eqs. (54) and (65), together with the boundary condi-
tions, internal force equilibrium conditions and deformation 
compatibility conditions, we can figure out the unknown 
constants and determine the static deflection of the plate.

The deformation compatibility conditions at r = R1 are 
given as

The internal shear forces at r = R1 should satisfy

The internal moments at r = R1 should satisfy

(60)u(r) = a15r
2 + a16J0

�√
s1r

�
+ a17J0

�√
s2r

�
+ a12

(61)u0(r) = 2a15r −
√
s1a16J0

�√
s1r

�
−
√
s2a17J0

�√
s2r

�

(62)a16 =
A3s1 + A4

A5s1 + A6

a9 a17 =
A3s2 + A4

A5s2 + A6

a10.

(63)wq = ar4 uq = br4

(64)a =
qA6

64
(
A2A6 − A2

4

) b =
qA4

64
(
A2A6 − A2

4

)

(65)

w2(r) = a7 + a8r
2 + a9J0

�√
s1r

�
+ a10J0

�√
s2r

�

+
qA6

64(A2A6 − A2
4
)

u0(r) = 2a15r −
√
s1a16J0(

√
s1r) −

√
s2a17J0(

√
s2r)

+
qA4

64(A2A6 − A2
4
)

(66)
w1(R1) = w2(R1) w

(1)

1
(R1) = w

(1)

2
(R1)

w
(2)

1
(R1) = w

(2)

2
(R1) u0(R1) = 0

(67)

[
2c5(1)I1

�

�r
∇4w1 − 2

(
c3(1)h1 + c1(1)I1

) �

�r
∇2w1

]
r=R1

=

[
A1

�

�r
∇4w2 − A2

�

�r
∇2w2 − A3

�

�r
∇4u + A4

�

�r
∇2u

]
r=R1
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The internal higher-order moments at r = R1 should satisfy

The internal axial forces at r = R1 should satisfy

The internal higher-order axial forces at r = R1 should satisfy

For the simply supported plate, we give the boundary condi-
tions as

(68)

[
−2c5(1)I1(w

(4)

1
+

1

r
w
(3)

1
−

3

r2
w
(2)

1
+

3

r3
w
(1)

1
)

− c7(1)I1

(
1

r2
w
(2)

1
−

1

r3
w
(1)

1

)
− c3(1)I1

1

r
w
(1)

1

+ c4(1)h1
1

r
w
(1)

1
+ 2c3(1)h1w

(2)

1

+2(c3(1)h1) + c1(1)I1)∇
2w1

]
r=R1

=

[
−A1

(
w
(4)

2
+

1

r
w
(3)

2
−

3

r2
w
(2)

2
+

3

r3
w
(1)

2

)

− A7

(
1

r2
w
(2)

2
−

1

r3
w
(1)

2

)

− ((2c1(1) − c2(1))I1 + (2c1(2) − c2(2)I1)
1

r
w
(1)

2

+ (c4(1)h1 + c4(2)h2)
1

r
w
(1)

2
+ A2∇

4w2 − A4∇
2u

+ 2((2c1(1) − c2(1))h1 + (2c1(2) − c2(2)h2)w
(2)

2

+ A3

(
u
(4)

0
+

1

r
u
(2)

0
−

3

r2
u
(1)

0
+

1

r3
u0

)

+ A8

(
1

r2
u
(1)

0
−

3

r3
u0

)
+ ((2c1(1) − c2(1))S1 + (2c1(2)

− c2(2)S2)
1

r
u0]r=R1

(69)

[
2c5(1)I1w

(3)

1
− c7(1)I1

(
1

r
w
(2)

1
−

1

r2
w
(1)

1

)]
r=R1

=

[
A1w

3
2
+ A7(

1

r
w
(2)

2
−

1

r2
w
(1)

2
) − A3u

(2)

0

−A8

(
1

r
u
(1)

0
−

1

r2
u0

)]
r=R1

(70)

[
A3(w

(4)

2
+

1

r
w
(3)

2
−

3

r2
w
(2)

2
+

3

r3
w
(1)

2
) + A8

(
1

r2
w
(2)

2
−

1

r3
w
(1)

2

)

+ ((2c1(1) − c2(1))S1 + (2c1(2) − c2(2))S2)
1

r
w
(1)

2
− A4∇

2w2

− ((2c1(1) − c2(1))h1 + (2c1(2) − c2(2))h2)
1

r
u0 + A6∇

2u

−A9

(
1

r2
u
(1)

0
−

1

r3
u0

)
− A5

(
u
(3)

0
+

1

r
u
(2)

0
−

3

r2
u
(1)

0
+

3

r3
u0

)]
r=R1

= 0

(71)

[
−A3w

(3)

2
− A8

(
1

r
w
(2)

2
−

1

r2
w
(1)

2

)
+ A5u

(2)

0

+A9

(
1

r
u
(1)

0
−

1

r2
u0

)]
r=R1

= 0

(72)w1(R) = 0 M1(R) = 0 M
(h)

1
(R) = 0

For the clamped-clamped plate, we give the boundary con-
ditions as

Using Eqs. (54), (65)–(72) or (73), we obtain the following 
equation

The matrix [M(P)] and vector D are respectively given in 
the “Appendix A”. Solving Eq. (74), we can figure out the 
unknown constants and thus determine the static deflection 
of the simply supported microplate. The static deflection of 
the clamped-clamped microplate can also be determined in 
the similar way.

4.1  Numerical results

The size-dependent bending response of the microplate is 
studied. The material parameters of lower silicon elastic 
layer are E(1) = 1530Gpa . �(1) = 0.33. The geometric param-
eters are h1 = 1 μm . R = 10h1 . The material parameters of 
upper elastic layer are E(2) = 0.5E(1) . �(2) = 0.5�(1) . We define 
TR as the thickness ratio, TR = h2∕h1 . LR is defined as the 
radius ratio, LR = R1∕R . In addition, the length parameters 
satisfy: li(1) = l , li(2) = 0.5l(i = 0, 1, 2) , l = 0.428 μm [70].

The calibration of the bending model with different 
boundary conditions is shown in Fig. 2. It can be seen 
that when the thickness ratio and length ratio satisfy 
TR = 0, LR = 1 , the deflection of the present model with 
simply supported boundary conditions is the same as that 
of the monolayer microplate model in the Ref. [71] without 
the material graded parameter. When the thickness ratio and 
length ratio satisfy TR = 0.2, LR = 1 , the present model with 
simply supported boundary conditions will reduce to the 
bilayer microplate model in the Ref. [72] without the surface 
effects. The degradation relations among the present model 
with clamped-clamped boundary conditions and the model 
in the Ref. [72] and Ref. [73] are also shown in Fig. 2. Thus, 
the effectiveness of the present model is revealed.

The maximum deflections of the partially covered lami-
nated microplate predicted by the conventional model in 
Refs. [6] and [74] are respectively given in the Table 2. It 
can be seen that the present model can respectively reduce to 
the conventional model in Refs. [6] and [74] when the thick-
ness is much larger than the material length scale parameter. 
The results imply that the effects from strain gradients can 
be ignored at this dimension. It can be also seen that the 
present model predicts smaller deflection than that of the 
conventional model in Refs. [6] and [74] when the thick-
ness is the same as the material length scale parameter. The 
results imply that the effects from strain gradients should be 

(73)w1(R) = 0 w
(1)

1
(R) = 0 w

(2)

1
(R) = 0

(74)[M(P)]{a} = {D}
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considered in this dimension. The limitation of the conven-
tional model is thus revealed.

The comparison of the deflection of the clamped-clamped 
partially covered laminated microplate based on the present 
model, the experiment results in the Ref. [6] and numerical 
methods in the Ref. [47] is respectively shown in the Fig. 3. 
It can be seen that when the thickness ratio is TR = 0.4 , 
length ratio is LR = 0.87 , the deflection of the present 
model without strain gradients fits well with the experiment 
results in the Ref. [6]. In addition, when the thickness ratio 
is TR = 0 , length ratio is LR = 1 , the deflection of the pre-
sent model is almost the same as that of the model without 
the nonlinear effects in the Ref. [47] using the differential 
quadrature method (DQM).

The comparison of bending response of the microplate 
predicted by different strain gradient models is shown in 
Fig. 4. It can be seen that the deflection of strain gradient 
model including different strain gradients is different. Com-
pared with the reduced theories, the deflection of the gen-
eral theory is much smaller. The general theory contains 
all strain gradients and thus predicts smaller deflection. In 
addition, the modified couple stress theory with the influ-
ence only from the rotation gradients predicts larger deflec-
tion. The bending rigidity of the beam of the general theory 
is maximum while the bending rigidity corresponding to the 
reduced theories is relatively smaller. The similar conclusion 
can also be obtained for the axial displacement.

The size-dependent bending response of the micro-
plate is given in Fig. 5. It can be seen that the deflection 
decreases gradually along the radius direction from � =0 to 
� = 1 . In addition, the variation of the deflection depends 
on the dimensionless thickness � . The deflection gradually 
increases with the increase of the dimensionless thickness 
� . The conventional model is unable to capture the size 

dependency of the deflection. Compared with the conven-
tional theory, when the dimensionless thickness � is small, 
the deflection of the general theory is much smaller. As 
the dimensionless thickness � increases, the deflection of 
the general theory increases and closes to the conventional 
theory. Conventional theory underestimates the size effects.

The size effects of the axial displacement is shown in 
Fig. 6. It can be seen that the axial displacement increases 
gradually along the radius direction from � = 0 to � = 1 . In 
addition, the variation of the axial displacement is depend-
ent on the dimensionless thickness � . As the dimension-
less thickness � increases, the axial displacement gradu-
ally increases. Classical theory is unable to predict the size 
effects of the axial displacement correctly. Compared with 
the general theory, when the dimensionless thickness is 
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Fig. 2  Calibration of the bending model

Table 2  The maximum deflection of the partially covered microplate 
predicted by the present model and the conventional model

h/l Clamped-Clamped 
microplate

Simply supported microplate

Present 
model ( μ
m)

Ref. [6] ( μm) Present model ( μm) Ref. [74] ( μm)

1 0.0235 0.9077 15.7388 399.9809
5 0.3594 0.9077 193.6944 399.9809
10 0.6563 0.9077 299.6364 399.9809
15 0.7786 0.9077 335.4767 399.9809
20 0.8343 0.9077 352.1831 399.9809
25 0.8635 0.9077 362.1958 399.9809
30 0.8805 0.9077 369.3037 399.9809
35 0.8914 0.9077 374.9456 399.9809
40 0.8987 0.9077 379.7618 399.9809
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� = 1 , the axial displacement of the classical theory is much 
smaller. When the dimensionless thickness is � = 50 , the 
axial displacement of the general theory and the classical 
theory is almost the same. The general theory can reflect 
the size dependency behaviour of the axial displacement 
more suitably.

The effects of the thickness and radius of laminated 
region on the bending response are shown in Fig. 7. The 
bending performance is influenced by the laminated region 
parameters. When the radius of the upper layer is fixed, as 
the increase of the thickness of the upper layer, the deflec-
tion decreases gradually. The increase of the thickness of the 
upper layer makes the bending rigidity increase, the beam 
stiffer and harder to deformation, therefore the deflection 
becomes relatively smaller.

When the upper layer thickness is fixed, the increase of 
the radius of the upper layer makes the uniformly distributed 
load and the stiffness increase gradually at the same time. 
Therefore, the influence of the radius of the upper layer on 
the bending deflection is dependent on the contributions of 
the bending stiffness, the boundary conditions and the exter-
nal load. For the simply supported microplate, the increase 
of the radius of the upper layer makes the deflection increase 
gradually, which indicates that the effects of the uniformly 
distributed load are predominate. Therefore, for the smart 
microcomponents based on the bending response of the sim-
ply supported microplate, to achieve the maximum bending 
deflection, the radius of the upper layer should be the same 
as that of the lower layer.

For the clamped-clamped microplate, as the radius of the 
upper layer increases, the deflection gradually increases and 
subsequently decreases. For a certain thickness and radius of 
the upper layer, the defection can obtain the maximum value. 

When the thickness ratio is 1 and the radius ratio is 0.82, the 
deflection of the microplate is maximum.

5  On the buckling of the microplate

The buckling governing equation ( R1 < r < R ) is obtained 
from the Eq.(30) by ignoring the uniformly distributed load 
q as

The buckling boundary conditions ( R1 < r < R ) are already 
given in the Eq. (31)

Similarly, by ignoring the uniformly distributed load q, 
the buckling governing equation ( 0 < r < R1 ) is obtained 
from the Eqs. (39) as

The buckling boundary conditions ( 0 < r < R1 ) are already 
shown in the Eq.(40).

The solution w1(r) of Eq. (75) is written as

The deflection ws1 satisfies the following equation

The solution of Eq. (78) is derived as

The deflection ws2 satisfies the following equation

with

where A = 2c5(1)I1 and B = 2(c3(1)h1 + c1(1))I1 . The solution 
of Eq. (80) is derived as

Therefore, using Eqs. (79) and (82), the non-laminated 
region deflection w1(r) is written as

(75)
−2c5(1)I1∇

6w1 + 2(c3(1)h1 + c1(1)I1)∇
4w1 + P∇2w1 = 0

(76)
∇2

[(
−A1∇

4 + A2∇
4 + P

)
w2 +

(
A3∇

4 − A4∇
2
)
u
]
= 0

�

�r
∇2

[(
−A3∇

2 + A4

)
w2 +

(
A5∇

2u − A6

)
u

)]
= 0

(77)w1 = ws1 + ws2

(78)∇4ws1 = 0

(79)ws1 = c1 + c2lnr

(80)(∇2 − s1)
(
∇2 − s2

)
ws2 = 0

(81)s1 =
B +

√
B2 + 4PA

2A
s2 =

B −
√
B2 + 4PA

2A

(82)
ws2 = c3I0(

√
s1r) + c4K0(

√
s1r) + c5I0(

√
s2r)

+ c6K0(
√
s2r)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Experiment Results in Ref.[6]
Numerical Solution in Ref.[47]
Present model (TR=0.4,LR=0.87,l=0)
Present model (TR=0,LR=1,l=1µm

D
ef
le
ct
io
n,

w
(µ
m
)

Dimensionless radius, = r / R

Fig. 3  The comparison of the deflection of the microplate based on 
different methods



 Engineering with Computers

1 3

The solution w2(r) of Eq.(76) is written as

L e t  L1 = −A1∇
4 + A2∇

4 + P  ,  L2 = A3∇
4 − A4∇

2  , 
L3 = −A3∇

2 + A4 , L4 = A5∇
2u − A6 and apply the L opera-

tor method, we obtain the following equation

(83)
w1 = c1 + c2lnr + c3I0(

√
s1r) + c4K0(

√
s1r)

+ c5I0(
√
s2r) + c6K0(

√
s2r)

(84)

(
−A1∇

4 + A2∇
4 + P

)
w2 +

(
A3∇

4 − A4∇
2
)
u = c7 + c8lnr(

−A3∇
2 + A4

)
w2 +

(
A5∇

2u − A6

)
u) = c9 + c10lnr + c11r

2

with

It can be seen that the solution of Eq. (85) includes the gen-
eral solution ws(r) and the special solution wq(r) . The gen-
eral solution ws(r) satisfies

(85)a∇6w2 + b∇4w2 + c∇2w2 = PA6 + D1 + D2lnr

(86)
a = A2

3
− A1A5 b = A1A6 + A5A2 − 2A3A4

c = PA5 + A6A2 − A2
4

(87)∇2
(
∇2 + s3

)(
∇2 + s4

)
ws = 0
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with

The general solution ws(r) is derived as

The special solution wq(r) can also be derived as

(88)s3 =
b +

√
b2 − 4ac

2a
s4 =

b −
√
b2 − 4ac

2a

(89)
ws = c12 + c13lnr + c14J0

�√
s3r

�
+ c15Y0

�√
s3r

�

+ c16J0
�√

s4r
�
+ c17Y0

�√
s4r

�

(90)wq =
PA6

4c
r2 + c18r

2 + c19r
2lnr

Therefore, using Eqs. (89) and (90), the laminated region 
deflection w2(r) is written as

Because the laminated region deflection of the middle point 
of the plate is finite, thus c13 = c15 = c17 = c19 = 0 . The 
deflection w2(r) is written as

(91)
w2 = c12 + c13lnr + c14J0

�√
s3r

�
+ c15Y0
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s3r

�

+ c16J0
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s4r
�
+

PA6

4c
r2 + c18r

2 + c19r
2lnr
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Similarly, based on Eq. (84), we obtain

Due to u(r) is the primitive function of u0(r) , thus the axial 
displacement u0(r) is derived as

with

(93)
u(r) = c19 + mc14J0

�√
s3r

�
+ nc16J0

�√
s4r

�

+
PA6

4c
r2 + c20r

2

(94)
u0(r) = −m

√
s3c14J0

�√
s3r

�
− n

√
s4c16J0

�√
s4r

�

+
PA6

2c
r + c21r

(95)m =
A3s1 + A4

A5s1 + A6

n =
A3s2 + A4

A5s2 + A6

Thus, the laminated region deflection w2(r) and axial dis-
placement u0(r) are respectively written as

Based on Eqs. (83) and (96), using the boundary conditions, 
deformation compatibility conditions and internal force equi-
librium conditions, we can figure out the buckling load of 
the plate.

The deformation compatibility conditions, the internal 
moments equilibrium conditions, the internal higher-order 
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moment equilibrium conditions, the internal axial force 
equilibrium conditions and the internal non-classical axial 
force equilibrium conditions are same as those of the bend-
ing problem, see Eqs. (66), (68)–(71). However, the internal 
shear force equilibrium conditions at r = R1 of the buckling 
problem are different from that in the bending problem, and 
written as

The boundary conditions are already given in Eqs. (72) and 
(73).

Using Eqs. (83), (96) and (66) (68)–(72), (97), the follow-
ing equation is obtained as

For a non-trivial solution, the matrix [M2(P)] should satisfy

By solving Eq. (99), the buckling load is obtained. Similarly, 
the buckling load of the microplate under other boundary 
conditions can also be derived.

5.1  Numerical results

The calibration of the bucking model is shown in the 
Fig. 8. The dimensionless buckling load Pnon is defined as 
Pnon = P∕Pc . Pc and P are the buckling load of the con-
ventional model and the strain gradient model, respectively. 
It can be seen that if the thickness ratio and length ratio 

(97)

[
2c5(1)I1

�

�r
∇4w1 − 2(c3(1)h1 + c1(1)I1)

�

�r
∇2w − Pw

(1)

1

]
r=R1

=

[
A1

�

�r
∇4w2 − A2

�

�r
∇2w2 − A3

�

�r
∇4u + A4

�

�r
∇2u − Pw

(1)

2

]
r=R1

(98)[M2(P)]{C} = {0}

(99)|M2(P)| = 0

satisfy TR = 0, LR = 1 , the present model with simply sup-
ported boundary conditions will reduce to the monolayer 
microplate model in the Ref. [73]. If the thickness ratio and 
length ratio satisfy TR = 0.2, LR = 1 , the buckling load of 
present model with simply supported boundary conditions 
and the bilayer microplate model in the Ref. [58] without 
the material graded parameter are the same. The degradation 
relations among the present model with clamped-clamped 
boundary conditions and the model in the Ref. [58] and Ref. 
[73] are also given in Fig. 8. Thus, the validation of the pre-
sent model is indicated.

The size-dependent buckling response is given in Fig. 9. 
It can be seen that the dimensionless buckling load is deter-
mined by the parameter h/l, gradually decreases with the 
increase of the parameter h/l and thus shows size depend-
ency obviously. When the parameter satisfies h∕l = 1 , the 
buckling load predicted by the general theory is about 50 
times of that predicted by the classical theory. This indi-
cates that at this dimensionless thickness, the effects of strain 
gradient are obvious and should be considered. The classi-
cal model without the strain gradients is unable to describe 
the size dependency of the buckling load, and thus predict 
smaller buckling load. In addition, when the parameter is 
h∕l = 10 , the buckling load predicted by the general theory 
is almost the same as that of the classical theory. This indi-
cates that at this dimensionless thickness, the effects of strain 
gradient is weak. In addition, compared with the general 
theory, the buckling load of the reduced theories is rela-
tive smaller. The reduced theories contain part of the strain 
gradients, therefore, underestimate the buckling response.

The influences of the geometric parameters of the lami-
nated region on the buckling response are shown in Fig. 10. 
It can be seen that when the thickness or radius of the upper 
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layer increases, the buckling load gradually increases. The 
increase of the geometric parameters of the laminated region 
makes the increase of the rigidity and thus enhances the 
ability of the micoplate to resist the deformation. When the 
radius ratio is taken as lR = 0 , the size-dependent partially 
covered laminated micoplate mode reduces to the monolayer 
micoplate model. At this radius ratio, the buckling load is 
minimum and the micoplate is easy to deformation. When 
the radius ratio is taken as lR = 1 , the size-dependent par-
tially covered laminated microplate mode reduces to the 
bilayer microplate model. At this radius ratio, the buckling 

load is maximum and the micoplate is hard to deformation. 
In addition, the buckling load of the micoplate under various 
boundary conditions is different. The buckling load of the 
clamped-clamped micoplate is obviously larger than that of 
the simply supported microplate.

The influences of the length parameters on the buckling 
response are shown in Fig. 11. It can be seen that compared 
with strain gradient buckling model, classical buckling 
model predicts a smaller buckling load. Classical buckling 
model without the length parameters is unable to describe 
the strain gradient effects and thus underestimates the size 
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Fig. 8  Calibration of the bucking model
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effects. In addition, it can also be seen that the ability of 
the size-dependent models including different length param-
eters to describe the buckling response is different. Differ-
ent length parameters stand for the influences from different 
strain gradients. l0 is corresponding to the dilatation gradi-
ents, l1 is corresponding to the stretch gradients, and l2 is 
corresponding to the rotation gradients. The buckling load 
of the size-dependent model including the length param-
eter l0 is maximum. However, the buckling load of the size-
dependent model with the length parameter l1 is minimum. 
Namely, the stretch gradients have little contribution to the 
buckling deformation compared with the dilatation gradients 
and rotation gradients.

6  Conclusions

In this paper, the relations between the general theory and 
other strain gradient theories are identified, and the deg-
radation relation are clarified. Subsequently, the bending 
and buckling analysis of the partially covered laminated 
microplate with strain gradient effects are performed. The 
expression of the axial displacement, bending deflection and 
buckling load of the microplate is derived. The size depend-
ency of the axial displacement, deflection and buckling load 
are studied. The influences from material parameters and the 
laminated region geometric parameters on the deflection and 
buckling load are studied.

Results reveal that the general theory can be simplified as 
the modified couple stress theory by ignoring the deviatoric 
part of the strain gradients �

�(2)

ijk
 , and the modified strain gra-

dient elasticity theory by ignoring the symmetric part of the 
strain gradients �s

ijk
 . The general theory is able to reflect the 

size dependency more appropriately. As the ratio of the 
thickness and length parameters increases, the deflection and 
axial displacement increase while the buckling load 
decreases, and thus show size effects obviously. In addition, 
the analysis of the contributions from the radius and thick-
ness of the upper elastic layer on the deflection and buckling 
load is performed. The increase of thickness and radius of 
the upper elastic layer leads to the increase of the buckling 
load, and thus enhances the ability of the plate to resist the 
deformation. As the radius of the upper elastic layer increase, 
the bending rigidity and uniformly distributed load gradually 
increase. Thus, the deflection is decided by the contributions 
from the bending rigidity and external load. For the 
clamped-clamped microplate, the deflection first increases 
and then decreases with the increase of the radius of the 
upper elastic layer. The deflection achieves the maximum 
value when the radius ratio is 0.82 and the thickness ratio is 
1.

Appendix A

The matrix [M(P)] in Eq. (74) is derived as
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Fig. 10  Influences of the dimension of the laminated region on the buckling load
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with

[M(P)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 R2 m1 m2 m3 m4 0 0 0 0 0

0 m5 m6 m7 m8 m9 0 0 0 0 0

0 0 m10 m11 m12 m13 0 0 0 0 0

m14 m15 m16 m17 m18 m19 − 1 m20 m21 m22 0

0 m23 m24 m25 m26 m27 0 m28 m29 m30 0
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0 m43 m44 m45 m46 m47 0 m48 m49 m50 m51
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0 0 0 0 0 0 0 m58 m59 m60 m61

0 0 0 0 0 0 0 0 m62 m63 0
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Fig. 11  Influences of the length parameters on the buckling load
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The vector D in Eq. (74) is given as

with

(112)
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