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Abstract
This paper studies a free-will arbitrary time sliding mode control (FATSMC) based on the predefined-time sliding mode

observer (PTSMO) for tracking control of robotic manipulators. First, a PTSMO is constructed to estimate the coupled

uncertainty of the robotic manipulator system in a preset time. Then, a FATSMC scheme is proposed to realize the free-will

arbitrary time tracking control for uncertain robotic manipulators and preset the upper bound on the settling time in the

reaching phase. The proposed control strategy has high tracking accuracy and smooth control torque, while the con-

vergence time of the system is nonconservative. The stability of the FATSMC and the PTSMO are rigorously demonstrated

using the Lyapunov stability theory. Finally, a three-degree-of-freedom uncertain manipulator is utilized for numerical

simulation. The effectiveness and superiority of the proposed control strategy are demonstrated by comparing it with

several control strategies.
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1. Introduction

Tracking control of uncertain robotic manipulators has been
paid much more attention in recent years, aiming to achieve
higher tracking accuracy, fast response, and strong ro-
bustness. Among many control methods, the sliding mode
control (SMC) technique has attracted much attention from
scholars for its robustness, order reduction, ease of im-
plementation, and design simplicity (Brahmi et al., 2020; Li
et al., 2022). Up to now, the SMC has been used in a variety
of applications for different control objectives, such as the
chaotic systems and robotic manipulators (Ablay, 2009;
Gambhire et al., 2021).

The purpose of the SMC is to force the tracking error
to the sliding manifold and then converge to the origin along
the sliding manifold (Drakunov and Utkin, 1992). Although
the finite-time SMC (Hong et al., 2002) has received a great
deal of research, its convergence time depends on the initial
state of the system. For robotic manipulators, the initial
states are not always available in advance, which means that
the actual convergence time is hard to be guaranteed. To
address this problem, a stronger property called the fixed-
time stability was proposed, where the upper bound of the
settling time is independent of the initial states (Polyakov,
2011). Some critical, theoretical, and mathematical analyses

related to fixed-time stability were proposed in Polyakov
et al. (2015); Zuo and Tie (2014, 2016), which facilitated the
development and application of the fixed-time SMC.
Benefiting from the fact that the convergence time of fixed-
time SMC is independent of the initial state of the system,
the fixed-time SMC has been extensively studied in the
tracking control of robotic manipulators (Sai et al. 2021,
2022; Su et al., 2020; Zhang et al., 2019).

It is worth noting that although the upper bound on the
settling time of the system is independent of the initial
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states, it is often challenging to find a direct relationship
between the settling time and the system parameters, and in
some cases, the settling time cannot be reduced to be less
than a fixed-constant, even by tuning the system parameters.
This motivates the formulation of prescribed-time and
predefined-time stability (Sánchez-Torres et al., 2018b;
Song et al., 2017). However, most of the predefined-time
SMC schemes can only guarantee the predefined-time
stability of the system in the reaching phase, and the ac-
tual convergence time is quite conservative compared to the
preset settling time (Jiménez-Rodrı́guez et al., 2017b, 2018,
2020; Sánchez-Torres et al., 2015). As a response, a more
advanced concept called free-will arbitrary time stabiliza-
tion was proposed in Pal et al. (2020a). Subsequently, free-
will arbitrary time control is combined with terminal sliding
mode control (TSMC) to provide an overall settling time for
the system and not only in the reaching phase (Pal et al.,
2020b). However, the convergence time of the system in the
reaching phase is finite-time stable and unknown, so it is
necessary to determine the convergence time in the reaching
phase by continuous iterations.

In addition to the problemmentioned above, the free-will
arbitrary time controller in Pal et al., 2020b) is difficult to
apply to tracking control of uncertain robotic manipulators
because the upper bound of the coupled uncertainty of the
robotic manipulator is often difficult to obtain. Meanwhile,
overestimation of the upper bound on the system uncertainty
leads to strong chattering of the controller. Fortunately, the
observer is an effective tool to solve the above problems
(Xiao et al., 2016; Xiao and Yin, 2018). In Chalanga et al.
(2016); Rabiee et al. (2019), finite-time sliding mode dis-
turbance observers were designed based on adaptive and
super-twisting techniques, respectively. Additionally, in re-
cent years, several fixed-time disturbance observers (Ni et al.,
2017; Pan and Zhang, 2022; Zhang et al., 2019) have been
proposed for estimating the external disturbances of the
system in a fixed time. However, the above perturbation
observers can only guarantee finite-time or fixed-time esti-
mates of system perturbations, and few studies have ad-
dressed the design of predefined-time observer.

Driven by practical requirements for the uncertain ro-
botic manipulators tracking control problem and inspired by
previous discussions, a novel free-will arbitrary time sliding
mode control (FATSMC) based on the predefined-time
sliding mode observer (PTSMO) for uncertain robotic
manipulators is investigated. To the best of the authors’
knowledge, there is hardly any research on free-will arbi-
trary time controllers for tracking control of uncertain ro-
botic manipulators. The contributions of this paper are
twofold. First, a novel PTSMO is designed to enable es-
timation of the system coupled uncertainty in a preset
amount of time. Unlike finite-time and fixed-time observers,
the convergence time bounds of the designed observer are
clearly given in the control design. Second, the reaching

phase of the designed FATSMC is predefined-time stable,
and the total settling time is free-will arbitrary time stable.
Compared to the convergence time in the reaching phase
obtained by constant updating in Pal et al. (2020b), the
convergence time of the designed controller in the reaching
phase can be pre-settable. Therefore, it avoids the excessive
torques that result from achieving arbitrary time convergence
by forcing the system state to converge rapidly to the origin in
the sliding phase. Benefiting from the accurate estimation of
the system coupled uncertainty, the designed control strategy
avoids the overestimation of the upper bound of the external
disturbance and thus reduces the system chattering.

The remainder of the paper is organized as follows.
Some preliminaries and problem formulation are given in
Section 2. In Section 3, we introduce the design of the
controller and perform a stability analysis. Some numerical
simulations and comparisons are given in Section 4, and the
concluding remarks are summarized in Section 5.

Notation: In this paper, sgnðxÞ represents the signum
function, and vector sgnðxÞ 2R

n is sgnðxÞ ¼
½sgnðx1Þ,…, sgnðxnÞ�T . The nonlinear function sigαðxÞ and
vector SigαðxÞ 2R

n represent sigαðxÞ ¼ jxjαsgnðxÞ and
SigαðxÞ ¼ ½jx1jαsgnðx1Þ,…, jxnjαsgnðxnÞ�T , with α > 0.

2. Preliminaries and problem formulation

2.1. Some definitions and lemmas

Considering an autonomous dynamical system
_x ¼ f ðx, ρÞ; (1)

where x2R
n is the system state, and the vector ρ2R

n is the
constant parameter of system (1). The nonlinear function
f :Rn →R

n satisfies f ð0, ρÞ ¼ 0, and the initial state is
x0 ¼ xð0Þ 2R

n.

Definition 1. (Fixed-time stability) (Sánchez-Torres et al.,
2018a) The origin of system (1) is globally fixed-time stable
if it is globally finite-time stable (Bhat and Bernstein, 2000),
and the settling time function T :Rn →Rþ[f0g is bounded,
that is, ∃Tmax > 0 :"x0 2R

n : Tðx0Þ#Tmax.

Definition 2. (Free-will arbitrary time stability) (Pal et al.,
2020a) The origin of system (1) is free-will arbitrary time
stable if it is fixed-time stable and there exists an arbitrary
settling time Tf > 0 :"x0 2R

n : Tðx0Þ#Tf .

Theorem 1. (Pal et al., 2020a) For system (1), if there
is a bounded continuously differentiable function
V ðx, tÞ :Rn ×Rþ →R

n, t 2 ½t0, tf � and a constant ηP 1
such that

V ð0, tÞ ¼ 0,"tPt0

_V#� ηðeV � 1Þ
eV
�
tf � t

�,"t2 �
t0, tf Þ,

(2)
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then the origin is free-will arbitrary time stable with an
arbitrary settling time Tf ¼ tf � t0.

Theorem 2. (Munoz-Vazquez et al., 2019) For system (1),
if there exists a Lyapunov function V ðxÞ such that any
solution xðt, x0Þ satisfies

_V ðxÞ#� π
ρtr

�
V 1�ρ=2 þ V 1þρ=2

�
,"x2R

nnf0g, (3)

where ρ2 ð0; 1Þ is a defined parameter and tr > 0 is a preset
settling time. Then, the origin of system (1) is globally
fixed-time stable with the settling time tr.

Remark 1. A system satisfying Theorem 2 is also called
predefined-time stable. The difference with free-will ar-
bitrary time control is that the total time of stabilization of
the predefined-time control cannot be guaranteed, but only
the stability of the system during the sliding phase or the
reaching phase. Meanwhile, the settling time bounds of
free-will arbitrary time control are less conservative
compared to the predefined-time control.

2.2 Dynamic model of uncertain
robotic manipulators

Consider the dynamic equation of n degree-of-freedom
(DOF) rigid robotic manipulators as

MðqÞq:: þ Cðq, _qÞ _qþ GðqÞ ¼ τ þ τd , (4)

where q, _q, q
:: 2R

n represent the joint position, velocity, and
acceleration vector of the joint, respectively. Positive-
definite matrix MðqÞ, centripetal-Coriolis matrix Cðq, _qÞ,
and gravitational vector GðqÞ can be expressed as
MðqÞ¼M0ðqÞþ4MðqÞ,Cðq, _qÞ ¼ C0ðq, _qÞþ 4Cðq, _qÞ,
and GðqÞ ¼ G0ðqÞ þ 4GðqÞ. M0ðqÞ,C0ðq, _qÞ and G0ðqÞ
are the nominal parts of the model parameters, and
4MðqÞ,4Cðq, _qÞ and 4GðqÞ are the model uncertainties.
τ is the joint torque vector, and τd represents the external
disturbance. Then, system (4) can be written as

€q ¼�M�1
0 ðqÞ�C0

�
q, _q

�
_qþ G0ðqÞ

�þM�1
0 ðqÞτ þ Dd

(5)

where
Dd ¼ M�1

0 ðqÞðτd �4MðqÞ€q�4Cðq, _qÞ _q� ΔGðqÞÞ de-
notes the coupled uncertainty, and it consists of external
disturbances and the effects on the system dynamics model
due to errors in the system parameters.

Assumption 1. Dd is unknown but bounded and satisfies
j _Ddij#D1i.

Remark 2. The external disturbance of the robotic system
consists mainly of frictional force, which is often bounded
in the actual system. Therefore, it is reasonable to suppose

the assumption that the coupled uncertainty of the system
and its derivatives are bounded, and such assumption can
be found in Jing et al. (2019).

3. Main results

In this section, a novel PTSMO and FATSMC are designed
for uncertain robotic manipulator, respectively. Meanwhile,
their stability is rigorously proved through the Lyapunov
stability theory.

3.1. Design of PTSMO

Define the tracking error e = q� qd, where qd represents the
reference trajectory. For simplicity, three variables are in-
troduced: x1 ¼ q, x2 ¼ _q, and x3 ¼ Ddðx1, x2, _x2Þ, wherebx1,bx2,bx3 represent the estimates of x1, x2, x3.

The PTSMO is designed as

ε ¼ bx2 � x2 (6)

θ ¼ _εþ λ1Sig
1�ρðεÞ þ λ2Sig

1þρðεÞ (7)

_bx2 ¼ M�1
0 ðx1Þðτ � C0ðx1, x2Þx2 � G0ðx1ÞÞ þ bx3

�λ1Sig
1�ρðεÞ � λ2Sig

1þρðεÞ
(8)

_bx3 ¼ �λ3Sig
1�ρðθÞ � λ4Sig

1þρðθÞ � γsgnðθÞ (9)

where λ1 ¼ 2ρ�2=2π=ρT1, λ2 ¼ 2�ρþ2=2π=ρT1, λ3 ¼ 2ρ�2=2

π=ρT2, λ4 ¼ 2�ρþ2=2π=ρT2, ρ2 ð0; 1Þ is a defined positive
constant, and T1, T2 > 0 are two preset settling time pa-
rameters. γ ¼ ½γ1,…, γn�T is a given vector satisfying
γiPD1i.

Theorem 3. Considering the uncertain robotic manipulator
(4) with the bounded external disturbance, the estimated
disturbance error and velocity error under the PTSMO (6)–
(9) can converge to zero within T2 and T1 þ T2.

Proof. Taking the derivative of (6), we can have

_ε ¼ _bx2 � _x2
¼ bx3 � x3 � λ1Sig

1�ρðεÞ � λ2Sig
1þρðεÞ

(10)

Taking (10) into (7) yields θ ¼ bx3 � x3. Then, the de-
rivative leads to

_θ ¼ _bx3 � _x3
¼ �λ3Sig

1�ρðεÞ � λ4Sig
1þρðεÞ � γsgnðθÞ � _x3:

(11)

Choose the Lyapunov function as

V1 ¼ 1

2
θi

2: (12)

Sai et al. 3



Then, from (11), it can be obtained

_V 1 ¼ θi _θi
¼ θi

��λ3sig1�ρðθiÞ � λ4sig
1þρðθiÞ � γisgnðθiÞ � _x3i

�
#� λ3jθij2�ρ � λ4jθij2þρ � �

γi �
�� _x3i���jθij:

(13)

With Assumption 1, (13) can lead to

_V 1#� λ3jθij2�ρ � λ4jθij2þρ

¼ �2
ρ�2
2

π
ρT2

jθij2�ρ � 2�
ρþ2
2

π
ρT2

jθij2þρ

¼ � π
ρT2

�
V1

1�ρ=2 þ V1
1þρ=2

�
:

(14)

According to Theorem 3, the inequality (14) satisfies the
predefined-time stability, and the estimated coupled un-
certainty error will converge to zero within the settling time
T2.

When the estimated coupled uncertainty converges to
zero, such as tPT2, (10) can lead to

_ε ¼ _bx2 � _x2 ¼ �λ1Sig
1�ρðεÞ � λ2Sig

1þρðεÞ: (15)

Choose the Lyapunov function

V2 ¼ 1

2
εi
2: (16)

Taking the time derivative of (16), then we can have

_V 2 ¼ εi _εi ¼ εi
��λ1sig1�ρðεiÞ � λ2sig

1þρðεiÞ
�

¼ �2
ρ�2
2

π
ρT1

jεij2�ρ � 2�
ρþ2
2

π
ρT1

jεij2þρ

¼ � π
ρT1

�
V2

1�ρ=2 þ V2
1þρ=2

�
:

(17)

With Theorem 2, the estimated velocity error converges to
zero within T2 after the estimated coupled error converges to
zero within. This completes the proof of Theorem 3.

3.2. Design of FATSMC based on PTSMO

Our objective is to design a novel FATSMC scheme based
on the PTSMO in (6)–(9) to guarantee that the uncertain
robotic manipulator achieves tracking of the reference

trajectory within an arbitrary preset time. Our findings
reveal that it can guarantee that the system state converges
to the sliding mode surface (SMS) within a given tr and then
converges to the origin within a total preset time
tf ðtf > tr þ T1 þ T2Þ, as shown in Figure 1.

First, the SMS is designed as(
s ¼ _eþ wðeÞ 0#t < tf
s ¼ κeþ _e tPtf

(18)

where κ is a defined positive constant, and _e ¼ x2 � _qd . tf is
an arbitrary given stability time constant.
wðeÞ ¼ ½wðe1Þ,…,wðeiÞ�T and wðeiÞ are nonlinear func-
tions leading to free-will arbitrary time stabilization as

wðeiÞ ¼ ηð1� expð�eiÞÞ
tf � t

(19)

where i denotes the joint i, and η > 1 is a constant. It is easy
to obtain the derivative of wðeiÞ with respect to time as

_w
�
ei, _ei

� ¼ η
�
expðeiÞ � 1þ �

tf � t
�
_ei
�

expðeiÞ
�
tf � t

�2 (20)

Then, based on PTSMO (6)–(9) and SMS (18), the
FATSMC scheme is constructed as (21)

In (21), φðsÞ ¼ ½φðs1Þ,…,φðsnÞ�T and Fðx1, x2Þ are
expressed as

Figure 1. The phase plot of the system.

(
τ ¼ �M0ðx1Þ

h
φðsÞsgnðsÞ þ _w

�
e, _e

�
� λ1Sig

1�ρðε1Þ � λ2Sig
1þρðε1Þ þ Fðx1, x2Þ þ bx3i, 0#t < tf

τ ¼ �M0ðx1Þ
h
κbeþ bx3 þ Fðx1, x2Þ � λ1Sig

1�ρðε1Þ � λ2Sig
1þρðε1Þ

i
, tPtf

(21)
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φðsiÞ ¼ π
ρtr

�
jsij1�

ρ
2 þjsij1þ

ρ
2

�
(22)

Fðx1, x2Þ ¼ �M�1
0 ðx1ÞðC0ðx1, x2Þx2 þ G0ðx1ÞÞ � €qd

(23)

where tr and ρ are two defined positive constants satisfying
T1 þ T2 þ tr < tf and 0 < ρ < 1.

The flowchart diagram of the FATSMC based on the
PTSMO is presented in Figure 2.

Remark 3. In practical model-based dynamics control
applications of robotic manipulators, the main limitations on
control performance are (i) knowledge of the upper bound of
the robotic system model or dynamical system, (ii) system
uncertainty and external disturbances, and (iii) the feasibility of
control inputs (Boukattaya et al., 2018). For the proposed control
strategy, neither accurate dynamics nor a priori knowledge of the
upper bound of disturbances is required. Moreover, in general,
the position and velocity of the robotic joints can be generally
obtained by encoders or tachometers. Therefore, the proposed
control strategy can be applied to the actual robotic control and
does not suffer from harmful chattering.Modeling the dynamics
of a multi-DOF robotic manipulator may be an essential
challenge, but techniques such as neural networks may provide
an effective way to address this problem.

Theorem 4. With PTSMO (6)–(9), the uncertain robotic
manipulator system (4) attains predefined-time stability
in the reaching phase within tr þ T1 þ T2 and free-will
arbitrary time stability within tf if the SMS is selected as
(18), and the control strategy is designed in (21)–(23).

Proof. First, considering 0# t < tf , the stability discussion
of the proposed control strategy is divided into the reaching
phase and the sliding phase.

In the reaching phase, taking the time derivative of SMS
(18), it can obtain that

_s ¼ e
:: þ _wðe, _eÞ ¼ _x2 � €qd þ _wðe, _eÞ (24)

When t > T1 þ T2, it has x2 ¼ bx2. Then, combining with
PTSMO (8), (24) can lead to

_s ¼ bx3 � λ1Sig
1�ρðε1Þ � λ2Sig

1þρðε1Þ
þM�1

0 ðx1Þðτ�C0ðx1,x2Þx2 �G0ðx1ÞÞ � €qd þ _w
�
e, _e

�
¼ bx3 � λ1Sig

1�ρðε1Þ � λ2Sig
1þρðε1Þ þM�1

0 ðx1Þτ
þ _w

�
e, _e

�þFðx1,x2Þ:
(25)

Taking the control torque (21) into (25) derives to

_s ¼ �φðsÞsgnðsÞ: (26)

For any joint i, consider the candidate Lyapunov function
as V3 ¼ jsij. Then, it has

_V 3 ¼ � _sisgnðsiÞ ¼ � π
ρtr

�
jsij1�

ρ
2 þ jsij1þ

ρ
2

�

¼ � π
ρtr

�
V

1�ρ
2

3 þ V
1þρ

2
3

�
:

(27)

According to Theorem 2, it can draw that the SMS can be
reached within the preset time tr þ T1 þ T2.

Once the system tracking error is constrained to the
manifold si = 0, the following reduced-order dynamics can
be obtained from (18) as

_ei ¼ �wðeiÞ ¼ �ηð1� expð�eiÞÞ
tf � t

: (28)

According to Theorem 1, the position error ei and the
velocity error _ei can converge to zero within the arbitrary
time tf.

Then, considering the stability analysis for tPtf,
the SMC is switched to the linear surface s ¼ κeþ _e.
With the PTSMO in (8), the derivative of s can be
obtained as

Figure 2. Block diagram of the proposed FATSMC based on the PTSMO.
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_s ¼ κ _eþ €e ¼ κ _eþbx3 � λ1Sig
1�ρðεÞ � λ2Sig

1þρðεÞ � €qd
þM�1

0 ðx1Þðτ � C0ðx1, x2Þx2 � G0ðx1ÞÞ
¼ κeþ bx3 þM�1

0 ðx1Þτ � λ1Sig
1�ρðεÞ � λ2Sig

1þρðεÞ
þFðx1, x2Þ (29)

Taking the control torque τ in (21) when tPtf into (29),
it has _s ¼ 0. Therefore, with the control torque, the position
error ei and the velocity error _ei can maintain their acquired
equilibrium position for tPtf , regardless of the external
disturbance and the model uncertainties. This completes our
proof.

Remark 4. Different from the free-will arbitrary time
control strategy in Pal et al. (2020b), the reaching time
in the proposed controller is explicit and independent of
the initial state of the system. Therefore, reasonable tr and
tf can be preset to avoid the high control requirements
when the convergence time is close to tf.

Remark 5. Unlike the most existing predefined-time
controllers (Jiménez-Rodr ı́guez et al., 2017a, 2017b,
2019; Sánchez-Torres et al., 2018a), the actual con-
vergence time of the proposed control strategy is more
nonconservative compared to the preset convergence time,
which facilitates the selection of a more reasonable
settling-time parameter.

Remark 6. Besides the preset time parameters, only control
parameters η, ρ, κ, and γ should be chosen. Compared with
the fixed-time controllers (Sai et al., 2021; Su et al., 2020;
Zhang et al., 2019) and predefined-time controllers
(Jiménez-Rodrı́guez et al., 2020; Krishnamurthy et al.,
2021), fewer tuning parameters facilitate the practical ap-
plication of the control strategy.

Remark 7. The control parameters ρ in FATSMC can be
different from that in PTSMO, but they are generally
chosen to be 0.5 to simplify the control strategy. The
settling time T1 and T2 should be chosen as small as
possible to ensure that the observer is able to estimate the
coupled uncertainty of the system quickly. However, too
small T1 and T2 can lead to drastic changes in the value of
the observer during the initial phase, which can affect the
control performance of the controller. Similarly, a smaller
tf means that the tracking error of the system can converge
faster, but leads to an increase in the control torque and
therefore requires a trade-off between the control per-
formance and the control input.

Remark 8. According to (5), the proposed control scheme
can be easily extended to a class of general dual integrator
systems with the form of(

_x1 ¼ x2
_x2 ¼ f ðx1, x2Þ þ Bðx1, x2Þτ þ Δðt, x1, x2Þ (30)

where x1, x2 2R
n, f ðx1, x2Þ, and gðx1, x2Þ are two vector

functions, and Δðt, x1, x2Þ is the uncertain term. Therefore,
the designed controller can be applied to the control of
mechanical systems such as inverted pendulums and per-
manent magnet linear motors.

4. Simulation and comparison

In this section, three numerical simulation examples are
shown to illustrate the effectiveness and superiority of the
proposed control strategy. The numerical simulations are
programmed in Simulink of MATLAB R2020a, based on
the Euler integrator and 10�3 fundamental sample time.

As shown in Figure 3, a 3-DOF robotic manipulator (He
et al., 2017) is considered. The robotic manipulator includes
two rotary joints and a prismatic joint, and the two rotation
angles of rotary joints are defined as q1 and q2, and the
translational of the prismatic joint is defined as q3. The dynamics
model of the robotic manipulator can be represented as

MðqÞ ¼
24M11 M12 M13

M21 M22 0
M31 0 M33

35 (31)

Cðq, _qÞ ¼
24C11 C12 C13

C21 C22 C23

C31 C32 0

35 (32)

GðqÞ ¼
24 0
G21

G31

35 (33)

where
M11 ¼m3q23sinq

2
2þm3l21 þm2l21 þð1=4Þm1l21,M12 ¼M21 ¼

m3q3l1cosq2, M13 ¼M31 ¼m3l1sinq2, M22 ¼m3q23þð1=4Þ
m2l22, M33 ¼m3, C11 ¼m3q23sinq2cosq2 _q2þm3q23sinq

2
2 _q3,

C12 ¼m3q23sinq2cosq2 _q1�m3l1q3sinq2 _q2�m3l1q3sinq2 _q3,

Figure 3. Coordinate frame for each link utilizing D-H method.
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C13 ¼m3q23 sinq22 _q1� m3l1q3 sinq2 _q2, C21 ¼�m3q3sinq2
cosq2 _q1, C22 ¼ m3q3 _q3, C23 ¼ m3q3 _q2 þ m3l1cosq2 _q3,
C31 ¼�m3q3sinq22 _q1þm3l1cosq2 _q2, C32 ¼m3l1cosq2 _q1�
m3q3 _q2,G21 ¼�m3gq3cosq2,G31 ¼ �m3gsinq2. Nominal

model parameters of the manipulator are chosen as
l10= 0.3 m, l20= 0.4 m, m10= 2 kg, m20= 2 kg, and m30=
1 kg, and the actual model parameters are l1= 0.3 m, l2=
0.4 m, m1= 2 kg, m2= 2.1 kg, and m3= 1.1 kg, and mi

Figure 5. Velocity tracking results and errors.

Figure 4. Position tracking results and errors.
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denotes the equivalent lumped masses of links i. The
external disturbance τd is chosen as τd ¼ ½sinðtÞ
þ1; 2cosðtÞ þ 0:5; 2 sinðtÞ þ 1�T .
Example 1. The control goal is to make the output q track
the target trajectory qd ¼ ½sinð0:2πtÞ, 1:5cos
ð0:2πtÞ, 1þ 0:5sinð0:2πtÞ�T . The initial states are set as
qð0Þ ¼ ½0:5; 1:2; 0:5�T and _qð0Þ ¼ ½0; 0; 0�T . The con-
trol parameters in the PTSMO are chosen as
γ ¼ ½20 20 20�T , ρ ¼ 0:5, T1 = T2 = 0.5, and the initial
estimate is set as bx2 ¼ bx3 ¼ ½0 0 0�T . The other control
parameters in the FATSMC are set as η = 2, κ = 5, tr = 1.5
and tf = 3.

Simulation results are shown in Figures 4–7. From
Figures 4 and 5, it can be seen that the position errors and
velocity errors can converge to zero when t = 3 s, which is

consistent with the given settling time tf. Figure 6 shows
that the proposed control strategy can guarantee the
smooth control torque. Figure 7 shows that FATSMC
based on the PTSMO can accurately estimate the velocity
and coupled uncertainty of each joint accurately within the
predefined time. This example illustrates the effectiveness
of the proposed controller through different performance
metrics.

Example 2. To further illustrate the free-will arbitrary time
stability of the proposed controller, four different initial
states are considered as Case 1: qð0Þ ¼ ½0:7 1:1 0:4�T ; Case
2: qð0Þ ¼ ½0:2 1:4 0:8�T ; Case 3: qð0Þ ¼ ½�0:2 1:6 1:2�T ;
and Case 4: qð0Þ ¼ ½�0:7 1:8 1:4�T . The desired trajectory
and control parameters are the same as Example 1.

Figure 7. Uncertainty and velocity estimation results.

Figure 6. Control torque.
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The simulation results are shown in Figure 8. It can
be seen that the tracking errors can always converge to
zero at tf = 3 s without changing with different initial
states. Therefore, for operational tasks with strict time re-
quirements, the initial state of the system is not required,
and arbitrary time convergence of the robotic system can be
achieved by choosing the parameter tf.

Example 3. To further demonstrate the advantages of
the proposed control scheme, several existing SMC
schemes with different stability are utilized to com-
pare with the proposed control scheme, including the

nonsingular fast terminal SMC (NFTSMC) (Yang and
Yang, 2011), the fixed-time terminal SMC (Fixed
TSMC) (Zhang et al., 2019), and the second-order
predefined-time SMC (SOPSMC) (Jiménez-Rodr ı́guez
et al., 2017a). For a fair comparison, the settling time
in the SOPSMC was set to 3 s, and the boundary layer
approach was not considered in all controllers. The
initial state and the desired trajectory are used in
Example 1.

The simulation results are shown in Figures 9 and 10,
and we can obtain that the proposed control strategy can

Figure 9. Comparison on tracking errors.

Figure 8. Position tracking results with different initial states.
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obtain higher position tracking accuracy and significantly
smoother control torque. As a predefined-time controller,
the actual convergence time of SOPSMC is quite conser-
vative as mentioned in Remark 4, compared to the preset
settling time of 3 s. For the three existing control schemes,
the signum function is used to suppress the disturbances.
However, the discontinuity of the signum function leads to
strong chattering.

Moreover, as a finite-time stabilization controller, the actual
convergence time of NFTSMC depends on the initial state of
the system. For fixed-time controllers, there is a complex
tuning relationship between the convergence time of Fixed
TSMC and the control parameters. For most of the predefined-
time controllers, such as SOPSMC, their stability time bounds
tend to be very conservative, which leads to undesired con-
vergence rates. The overall settling time of the proposed
controller depends on only one control parameter, and the
settling time bound is quite nonconservative. Besides, with the
designed PTSMO, the priori knowledge of the upper bound of
the coupled uncertainty is not necessary, and the chattering of
the controller is avoided.

5. Conclusion

In this work, a FATSMC scheme based on the PTSMO has
been presented for uncertain robotic manipulators. A novel
PTSMO and FATSMC strategy are designed to guarantee
free-will arbitrary time stability and the predefined-time
convergence in the reaching phase for manipulators, which
means that the total settling time of the system and the
settling time in the reaching phase are available in advance.
Additionally, the proposed PTSMO guarantees that the
estimation of the coupled uncertainty of the system can be
completed in a predetermined time and avoids a priori
knowledge of the upper bound of the coupled uncertainty.
Compared with existing SMC schemes, numerical simu-
lation results show that the designed controller has higher
tracking accuracy and less chattering while ensuring a less
conservative actual convergence time with significant
economic benefits. Some future work will mainly focus on
the experimental evaluation of our approach by actual ro-
botic manipulator systems to verify the availability of the
proposed control scheme.

Figure 10. Comparison on control torque.
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