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A B S T R A C T   

A novel methane sensor based on neural network filter (NNF) assisted direct absorption spectroscopy (DAS) 
technique was proposed and experimentally demonstrated. The developed detection device adds the benefits of a 
digital filter based on the neural network, thereby compensating the shortcomings of traditional DAS. We 
overcame the scarce data problem by using the simulated absorption spectra that are highly consistent with 
practical experimental conditions to construct and train the NNF. The proposed NNF showed the best perfor-
mance compared with several widely used filtering algorithms. We performed a detailed assessment of the NNF- 
improved detection system. The proposed sensor shows more accurate concentration retrieval and better stability 
in a real-time measurement. The minimum detection limit of 2.93 ppm•m (1σ) was obtained, which is a sig-
nificant improvement compared to previous reports of near-infrared methane detection with the DAS technique. 
Finally, we systematically discuss the frequency principle underlying the NNF to explicitly interpret the mech-
anism of the generalized filtering. The improved methane sensor proves the feasibility of enhancing the per-
formance of DAS technique with the neural network algorithm and broad applicability of this approach to the 
high-sensitivity measurements of methane and other trace gases.   

1. Introduction 

Methane is a greenhouse gas second only to carbon dioxide, which 
seriously affects the global climate and environment. Being the main 
component of natural gas, methane is a colorless, odorless, non-toxic, 
but flammable and explosive gas [1–3]. Therefore, in consideration of 
environmental protection and public safety, it is very important to 
monitor the in real time methane concentration (typical atmospheric 
concentration ~ 2 ppm) and whether it is elevated and approaches the 
lower explosive limit (5–15%) [4–6]. Optical sensors have the advan-
tages of high sensitivity, specificity and wide dynamic range; also, being 
non-invasive they provide fast response, and long life-time. Therefore, 
methane sensors based on absorption spectroscopy have become the first 
choice for many engineering applications. Methane sensors employing 
other principles, such as electrochemical [7], semiconductor [8], gas 

chromatography [9], catalytic combustion [10] and surface acoustic 
wave [11] sensors often have insufficient sensitivity, specificity and 
dynamic range, limiting their applicability. 

The sensitivity of sensors has always been of major priority for re-
searchers. Several high-sensitivity detection techniques have been 
applied to the gas detection, among them cavity-enhanced absorption 
spectroscopy (CEAS) [12], cavity ring-down spectroscopy (CRDS) [13], 
Fourier transform infrared spectroscopy (FTIR) [14], photoacoustic 
spectroscopy (PAS) [15] and quartz-enhanced photoacoustic spectros-
copy (QEPAS) [16]. However, due to the influence of temperature, hu-
midity, vibration and noise, these technologies are hard to adapt to the 
full-range detection and hazardous site applications, such as coal mines 
and natural gas pipelines. In contrast, tunable diode laser absorption 
spectroscopy (TDLAS) is widely deployed in such applications, in 
particular, such techniques as direct absorption spectroscopy (DAS) [17] 
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and wavelength modulation spectroscopy (WMS) [18]. Although WMS 
has the advantage of shifting the absorption signal to the high-frequency 
region, thereby greatly suppressing 1/f noise, it also has disadvantages, 
such as high cost, complexity of the system and nonlinearity at high 
concentrations. Therefore, in such application, as the full-range con-
centration measurement, triggering alarm at certain level of methane 
content and in consideration of the required costs, the DAS is more 
suitable. The concentration of the absorbing gas molecules can be 
directly derived by calculating the integral area of the absorption signal 
in appropriately selected spectral interval. However, the sensitivity and 
resolution of the DAS technique is more seriously affected by different 
types of noise (intrinsic laser, white noise, 1/f and interference noise, 
etc. [19]). Therefore, a highly precise and efficient processing of the 
measured spectra is crucial. 

Software based filtering techniques have become a preferable choice 
because of their simplicity of implementation and low cost. Among a 
variety of filtering techniques that have been applied to process gas 
absorption spectra, only a few are considered effective for online 
filtering. Multi-signal average filtering (MAF) can decrease white noise 
by a factor of 1/

̅̅̅̅
N

√
by averaging N spectra. Although widely used, this 

method is very time-consuming, and it can only suppress white noise 
[20,21]. Savitzky-Golay (S-G) filtering is a smoothing technique, 
requiring selection of the smoothing window size and the order of the 
polynomial. However, it is designed for filtering high frequency noise, 
but not low frequency noise [22,23]. Kaltman filtering (KF) algorithm 
uses state space equations to optimally estimate the system state from a 
series of data with known normal distributed noise covariance [24,25]. 
Its performance is satisfactory for white noise with known statistical 
characteristics, whereas KF may cause a serious distortion of the signal 
in a nonlinear system. Wavelet transform (WT) denoising technique is a 
signal time-frequency analysis method for processing local or transient 
signals. Such analysis method focuses on the low-frequency trend and 
high-frequency details of the signal and can effectively filter out 
Gaussian white noise and interference noise [26,27]. However, the WT 
method still has obvious shortcomings, including a large number of 
preset parameters, such as wavelet basis functions, decomposition level, 
threshold, etc., strong subjectivity in parameter selection, reduced by 
required calculations processing speed and weak protection against 
external noise interferences [28]. Currently, the state-of-the-art filtering 
method is the dual-optimized BP adaptive Kalman filter (BP-KF), which 
is based on the back propagation (BP) neural network and variance 
compensation [29,30]. Although this novel filtering method optimizes 
the parameters of the Kalman filter by using the BP neural network and 
eliminates the variations in the parameters of dynamic systems through 
variance compensation, it is still based on the accurate set of the state 
space equations and evaluation of the system noise. Therefore, the ac-
curacy under different detection conditions and the applicability of 
different application scenarios are greatly limited. 

In addition, a kind of near-infrared spectrum preprocessing algo-
rithm based on orthogonal signal correction (OSC) has been widely 
developed in chemometrics [31]. The OSC is mainly used for the pre-
processing of near-infrared spectral matrix. Its basic idea is to filter out 
the information not related to the property Y to be measured in the 
original spectra matrix X by means of mathematical orthogonality. 
Therefore, the OSC method can ensure that the filtered information is 
independent of the property to be measured such as absorption peaks of 
non-target components or noise etc. It is reasonable that different 
chemical components should be orthogonal and OSC can effectively 
eliminate the interference of other non-target components and realize 
the decoupling of mixed spectra through the physical properties Y and 
spectra matrix X when spectral analysis is carried out for some chemical 
multi-components. However, the filtering performance of OSC and its 
variants, such as direct orthogonal signal correction (DOSC) [32], is 
barely satisfactory when the spectral signal-to-noise ratio (SNR) is very 
low and the noise is not strictly orthogonal to the concentration matrix. 

Based on the above background, we build a neural network filter 
(NNF) to achieve the efficient and authentic signal extraction from the 
noise spectrum. To date, deep learning algorithms represented by neural 
networks have achieved exciting results in hyperspectral imaging clas-
sification [33], ultrashort pulse reconstruction [34], material discovery 
[35] and gas concentration retrieval [36]. Through a large number of 
input and output training samples, the neural network searches the 
mapping relationship between the input and output without prior 
knowledge. In this paper, the NNF follows a Frequency Principle [37], 
which is different from the artificially preset filtering algorithms. It ex-
tracts different frequency components in different extend in the order 
from the fundamental frequency to high frequency, and the extraction 
degree decreases in turn. As a result, NNF could retain the low-frequency 
components as much as possible, but not completely. At the same time, it 
keeps partial high-frequency components rather than discarding all the 
high-frequency parts. Subsequently NNF restores the extracted fre-
quency components to the filtered signal. The reason why this is more 
effective than the direct high-frequency cut-off is that the real signal is 
not completely in the low-frequency region, and complex signals often 
have high-frequency components. NNF can restore the signal to the 
greatest extent to avoid signal distortion and loss of information. The 
sensor configuration is introduced in Section 2. We described in detail in 
Section 3 how we constructed and trained our NNF, and in Section 4 we 
showed the comparison of the filtering effect of the NNF and other 
filtering algorithms mentioned above. With the excellent filtering per-
formance of the NNF, the methane sensor performance has been 
enhanced achieving lower detection limit of the column density of 
2.93 ppm•m and better detection stability. We carried out a detailed 
evaluation of the performance of the methane sensor enhanced by the 
NNF in Section 4. In Section 5, from the perspective of the frequency 
domain, we discuss the advantages and underlying properties of our 
NNF, comparing it with other filtering algorithms. 

2. Sensor configuration 

2.1. Selection of the absorption line 

The optimal target absorption line of methane should assure high 
sensitivity and avoid cross interference with other atmospheric species. 
The assessment of the interference of water vapor and carbon dioxide in 
the air to methane detection is contained in the Supplementary. The 
strong R(3) absorption line near 1653.7 nm, depicted in Fig. 1, satisfies 
these requirements and is selected for methane detection. We note that 
the cost of the required 1653 nm near-infrared laser is much lower than 

Fig. 1. Absorption lines of CH4 in the spectral range of 1650–1664 nm based on 
HITRAN database. Inset: absorption spectra of 1000 ppm CH4 near 1653.7 nm 
with L= 130 cm, P = 1 atm and T = 296 K. 
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that of the mid-infrared laser. The parameters for the simulation in the 
inset of Fig. 1 as well as the conditions for the experiments described in 
this paper are as follows: temperature T = 296 K, pressure P = 1 atm 
and optical path length L= 130 cm. 

2.2. Sensor system configuration 

The setup of the methane detection system is depicted as Fig. 2. The 
distributed feedback laser diode (DFB-LD) (SWLD-165310S22–01, All-
wave Devices Inc., China) with a wavelength near 1653 nm was 
employed. The DFB-LD was controlled by a laser diode controller 
(LDC501, Stanford Research Systems Inc., USA), and its driving signal 
was sawtooth wave signal of 0.9 Hz generated by signal generator 
(FY2300A, Feel Tech, China). The output beam of the DFB-LD was 
coupled into an optical fiber and propagated to a fiber-coupled Herriott 
cell. 100 sets of methane gas of different concentrations diluted with 
high-purity nitrogen were produced with a gas mixing system and 
introduced into the Herriott cell, as shown in the dashed box in Fig. 2. 
Among them, the Mass Flow Controller 1 and the Mass Flow Controller 2 
(CS200A, Beijing Sevenstar Flow Co.,Ltd., China) were employed to 
control the flows in the two gas paths to enable the configuration of 
samples with different CH4 concentrations. The errors of sample gas 
configuration are less than 2%. The method of concentration configu-
ration and error evaluation of mass flow controller are shown in the 
Supplementary. The output light intensity from the Herriott cell was 
converted to a voltage signal by a photodetector (BF14-PD300-F-N, 
Wuhan 69 Sensor Technology, China) with a pre-amplifier. Finally, the 
experimental data processing was completed by the PC. 

3. Methodology 

3.1. Dataset 

Despite excellent performance in a variety of fields, the deep learning 
is often under criticism, since the quality of deep learning model pre-
dictions often depends on the quantity of datasets. However, in the field 

of gas absorption spectroscopy, it is extremely time-consuming and 
laborious to experimentally obtain a large number of datasets that can 
meet the requirements of deep learning training. In the present study, 
the method to solve scarce data problem is to generate a large simulated 
dataset from the same distribution as the target data, which are applied 
to train the NNF. Such model-agnostic, physics-informed data 
augmentation strategy has gradually become the mainstream method to 
solve the problem of data scarcity in the fields where the information is 
scarce, and has been proved effective [34,38]. Therefore, with simulated 
experimental conditions, we created a set of 10,000 spectra for different 
concentrations of methane and used it for the training and evaluation of 
the neural network. The simulated methane concentrations range from 
0 to 1000 ppm and other parameters correspond to experimental con-
ditions. In order to mimic the noisy distribution of real measurements, 
we added the Gaussian white noise (with the mean of 0 and the variance 
of 9.71886 ×10− 5) and the interference noise (simulated by an Airy 
function) [39] to the generated pure absorption spectra to simulate the 
detector circuit noise and optical device noise in the sensor system. 
Therefore, in our study, the simulation dataset is composed of data pairs 
which consist of noisy absorption spectra (input data) and de-noised 
absorption spectra (ground truth). Each input data and ground truth 
are composed of 1111 sampling points, corresponding to the 1111 
neurons in the input and output layers in the neural network. The more 
detailed description of the simulated spectral dataset is provided in the 
Supplementary. 

In this study, we employed the 10-fold cross –validation (CV) and 
hold-out (HO) as approaches to tune and evaluate the architecture and 
hyperparameters with respect to the neural network. Specifically, we 
first execute the HO by randomly divide the whole dataset into 90% 
training set and 10% test set. Subsequently using the simulated training 
set, the neural network architecture with the optimal combination of 
hyper-parameters is obtained through CV, in which the training set is 
divided into 10 subsets evenly, and take 9 subsets as training data and 1 
subset as validation data in turn to carry out the experiment. The final 
model performance metrics are computed to determine the optimal 
combination of hyperparameters of the neural network in this particular 

Fig. 2. Schematic diagram of the experimental setup.  
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task. In Section 3.3 we explicitly show the influence of different archi-
tectures on the de-noising effect in detail. Once the optimal architecture 
parameters as well as hyperparameters have been determined, we 
retrain the neural network through the complete training set to generate 
the NNF. In Section 4, we demonstrate the effect of several filtering al-
gorithms (including our NNF) on the test set, as an objective evaluation 
of the filtering performance. In order to keep the correctness of the 
implementation of the BP-KF filtering model, we keep its’ original ar-
chitecture as described in [30]. For a fair comparison, the BP-KF is also 
trained on our training set and its filtering performance is evaluated on 
our test set. Furthermore, we experimentally collected 100 sets of 
methane absorption spectra for concentrations ranging from 0 to 
1000 ppm with the sensor system shown in Fig. 2 to compare the 
filtering performance of various filtering algorithms under practical 
application conditions. The complete algorithm development process is 
shown in Fig. 3. 

3.2. Neural network concept 

Many applications of deep learning use feed forward neural network 
architectures, which aim to map a fixed-size input to a fixed-size output. 
Such property is suitable for us to achieve the de-noising function while 
maintaining the consistency of the input and output spectra. To go from 
one layer to the next, a set of units in each layer computes a weighted 
sum of their inputs from the previous layer and passes the results 
through a non-linear function as expressed in the following equations: 

z(l) = W(l) • a(l− 1) + b(l), (1)  

a(l) = g(z(l)), (2)  

where z(l) represents the hidden vectors that are linearly related to the 
weights matrix W(l), the bias vectors b(l) with respect to the l-th layer and 
the activation vector a(l− 1) from the previous layer; g(•) stands for the 
non-linear activation function. At present, the most popular non-linear 
function is the rectified linear unit (ReLU), which is simplified as the 
half-wave rectifier g

(
z(l)

)
= max(z(l), 0). The adjustable parameters 

(W(l), b(l)), also called weights, are the keys to achieve the optimal input- 
output function of the neural network. To properly adjust the weight 
vector, the learning algorithm is introduced to backward propagate the 
calculation error of the objective function from the output layer all the 
way to the input layer. To optimize the trainable parameters the 
gradient of weights with respect to each layer is computed. The process 
is iteratively performed during training until the objective function 
converges [40]. The objective function (loss function) in our de-noising 
task is the mean squared error function (MSE) expressed as 

L = argmin
W

{
loss

(
y(i), ŷ

(i)) }

= argmin
W

{
1
m

∑m

i=1

[
y(i) − NN(x(i);W)

]2

}

, (3)  

where x(i), y(i), ŷ
(i)

represent the i-th input data, label and neural 
network prediction respectively. NN(•) represents the neural network 
mapping function and m is the index of samples. 

3.3. Neural network optimization 

The noisy signal is formed as the interference of noises from the 

Fig. 3. The schematic diagram of the developed algorithm framework. (1) Hyper-parameters tuning: the simulated data set is divided into training set and test set by 
HO. Using the simulated training set, the neural network architecture of the optimal combination of hyper-parameters is obtained through 10-fold CV. (2) Training 
phase: once the optimal architecture is determined, the simulated training set is used to retrain the model and realize the learning of trainable parameters by 
continuously reducing the loss function through forward and backward-propagation. (3) Testing phase: the generalization performance of the well-trained neural 
network filter is finally verified on the test dataset. 
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optical devices as well as electronic noises from the detector super-
imposed on the initial pure signal. In this study, we aim to achieve an 
accurate approximation of the mapping function between noisy signal 
and de-noised signal through the construction of an adequate neural 
network architecture. 

Generally, our NNF is based on a neural network composed of mul-
tiple consecutive layers of neurons. To find the best model for the 
filtering performance in terms of the SNR of the de-noised spectrum 
obtained with NNF, we carry out an extensive search for the best neural 
network architecture including optimal hyperparameters. 

In this search, we start with architecture of one hidden layer and 
incrementally increase the depth (the number of layers) to improve the 
fitting capacity of our model until it converges. We also gradually in-
crease the width (the number of neurons) in each layer along with the 
increase of the model’s depth. The SNRs of the predicted outputs of the 
NNF corresponding to the different combinations of the number of 
neurons per layer and the number of network layers are shown in Fig. 4 
(a). In the experiment, the observation is that a three hidden layer ar-
chitecture is able to achieve good enough generalization model in terms 
of SNR. Of most concern, however, is the trade-off between the fitting 
power of the NNF and the overfitting. In this case, the NNF tends to 
overfit when more than three hidden layers are used, which leads to the 
risk of a decline in generalization capability. Fig. 4(a) explicitly shows 
this trend: with the increase of the network depth, the performance of 
the NNF that extracts signal components from noise has improved, 
whereas the SNR of predicted signals decrease gradually with the in-
crease of the number of neurons when the NNF reaches four layers. On 
the other hand, concerning each hidden layer, the number of neurons, 
which are variables rather than constants has significant effect on the 
SNR of the output signals predicted by the NNF. Based on the grid search 
optimization, the numbers of neurons in the hidden layer were finally 
determined as 500, 100, and 1000 respectively. 

A dropout layer was added whenever the number of neurons be-
tween consecutive layers changed to avoid overfitting. We explored 
different dropout rates on the last hidden layer as shown in Fig. 4(b). 
Increasing dropout rate significantly damages the SNR performance of 
the NNF and results in under fitting when the model is narrow. By 
contrast, when the NNF begins to widen, the generalization of the NNF is 
improved by randomly deactivating some neurons, which forces the 
network to reduce the dependence on specific neurons. The results of 
different combinations of the number of neurons and the dropout rate in 
the last hidden layer in terms of SNR are compared in Fig. 4(b). The 
optimal effect is achieved for the combination of 1000 units and 0.2 
dropout rate. Therefore, the final model architecture was determined 
with the total of five layers, including three hidden layers as shown in  
Fig. 5. 

The other hyperparameters of NNF model were also tuned by per-
forming an extensive search explained below rather than a grid search 
that would be unfeasible due to time and computational resource cost. 

We started with a small range of values for each hyperparameters based 
on preliminary trials. The search space comprised of different values of 
momentum, learning rate, optimization algorithms and other hyper-
parameters. Learning rate values from 0.1 to 10− 6 were tried, decreasing 
by a factor of 10. In terms of momentum, we tested values [0.05, 0.9, 
0.99] and 0.9 performed the best. The Adam (Adaptive moment esti-
mation) outperformed other optimization algorithms in our study. 
Similarly, we experimented with a range of values for other 
hyperparameters. 

4. Experimental results and analysis 

4.1. Results and analysis of simulated data 

As described in Section 2, we first demonstrate and compare the 
performance of our NNF with various widely used filtering algorithms 
on the simulated test set. We first show the filtering effect qualitatively 
in time domain and compare the SNR of de-noised spectra 
quantitatively. 

Concerning the hyperparameter selection of the filter algorithms 
with respect to the S-G filter, we optimized the window length as well as 
the given polynomial order [23]. Similarly, the selection of wavelet 
basis, decomposition level and threshold in the process of wavelet 
de-noising were also optimized, as reported in [26]. We established the 
state space equations of the system for the KF and BP-KF based on [30], 
and evaluated the covariance matrix of noise according to the simulated 
and experimental spectra. The DOSC is selected as the representative of 
the OSC variants and has been trained on the same dataset. The number 
of components regarding to the DOSC has been selected carefully. 
Although it was suggested in Ref. [32] that one or two components were 
sufficient, we found in practice that fewer components could hardly 
filter out noise on our dataset. When it reaches 300, the performance is 
the best, and the filtering performance starts to decline when it is less 
than or more than that number. It is also worth noting that we have 
adjusted the original dataset, that is, we have reduced the number of 
simulated spectra set from 10,000–1000 to meet the N (number of 
samples) < K (the number of X-variables) requirement. We trained the 
OSC as well as our NNF using the reduced version of the dataset for fair 
comparison. (For the full code implementation of the algorithms 
mentioned above, see the Supplementary). 

As shown in Fig. 6, the S-G filter shows the worst filtering perfor-
mance, even though it improves the low SNR original signal by around 
3.3303 dB. As a direct method that is solely based on least squares steps, 
DOSC can only remove the projection in the direction orthogonal to the 
concentration matrix, and there are still some noise residues. The SNR of 
DOSC is 4.3155 dB. By contrast, the filtering effects of KF and BP-KF are 
much more obvious, and the SNR is increased to 4.4424 dB and 
6.0022 dB respectively. Despite its better performance with added 
neural network to dual-optimize the spectra rather than using plain KF, 

Fig. 4. (a) The effect of the model width and depth on the SNR of output signals. (b) The effect of the dropout in the last hidden layer on the SNR of output signals.  
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BP-KF is still not as good as reported in [30]. It is worth noting that the 
performance of the optimized WT is better than that of BP-KF. Although 
the original waveform is distorted to a certain extent, the SNR of 
de-noised spectra reach 7.5257 dB after WT. Standing out from the 
above algorithms, our proposed NNF shows the best performance and 
the highest SNR among all filter algorithms. The SNR of the original 
spectrum is improved by about 21.2756 dB. The differences are statis-
tically important (P < 0.001), thus the filtered results of NNF signifi-
cantly outperformed other filters. Thus, Fig. 6 depicts the effects of the 
various filtering algorithms, showing that NNF largely retains the orig-
inal signal waveform and extracts the informative signals from the noise. 

In addition, we performed discrete-time Fourier transform (DFT) on 
the noisy and de-noised transmission spectra to observe the changes of 
different frequency components in the spectra before and after filtering 
through the frequency domain distribution as shown in Fig. 7. The 
original noisy spectra are composed of the dominant low-frequency 
absorption signal and a large amount of irregular low-power broad 
frequency range noise. The S-G filter obviously suppresses the high 
frequency regions on the basis of the original frequency distribution, 
while the effect is not satisfactory, which corresponds to the poor 
filtering effect in the time domain. The spectral frequency response after 

DOSC filtering is similar to that of S-G and the filtering performance is 
very limited, which is mainly because the noise condition is complicated 
and is only partially orthogonal to the target property. By contrast, the 
KF, BP-KF and WT gradually improve the effect of noise suppression. 
Compared with KF and BP-KF, WT filter not only simply eliminates the 
high-frequency components, but also makes an effort to retain the fre-
quency distribution characteristics of the informative signals. Same as 
the explicit results in time domain, the NNF shows the best filtering 
performance in the process of extracting the signals from noise, and 
maintains the frequency distribution characteristics of the signal to the 
maximum extent. The features of NNF are discussed in more details in 
Section 5. 

4.2. Results and analysis of experimental data 

In order to verify the performance of our NNF under practical 
experimental conditions, we experimentally collected 100 sets of 
methane transmitted signals with concentration ranging from 0 to 
1000 ppm with the plain methane sensor shown in Fig. 2 and then 
converted the transmitted signals to transmission spectra to verify the 
effect of the filtering algorithms. 

Fig. 5. The schematic architecture of neural network filter.  

Fig. 6. Filtering effect of several filtering algorithms (for the background comprised of a Gaussian white and an interference noises).  
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Here, we selected the typical methane transmission spectrum with a 
concentration of 500 ppm to intuitively compare the noise suppression 
effects of different filtering algorithms, as shown in Fig. 8. Although KF, 
BP-KF, DOSC and S-G filters can restrain the noise in the absorption 
region, the distortions of the peaks caused by noise still exist. This will 
undoubtedly greatly reduce the accuracy of identification and fitting of 
absorption spectrum, thus affecting the precision and stability of con-
centration detection. In contrast, WT and our NNF significantly 
smoothed the fluctuating original noisy spectrum, especially in the re-
gion of the absorption peak. Furthermore, although our NNF is trained 
by simulation data, it still outperforms all other listed filters in pro-
cessing of experimental data and Wilcoxon signed rank tests are statis-
tically significant at P < 0.005 for all cases, which proves the feasibility 
and generalization power of the model in the practical application sce-
nario. Fig. 9 shows the filtering effect of NNF on the transmission spectra 
with respect to the complete 100 sets under experimental conditions. 

4.3. Assessment of NNF-assisted methane sensor 

After comparison, we retrained the NNF using 90% of complete 
simulation data set (10,000 spectra) and integrated the well-trained 
NNF with plain methane sensor and assessed this improvement in a 
series of experiments. In order to evaluate the detection accuracy of the 
proposed NNF-assisted methane sensor in concentration retrieval task, 
we retrieved the corresponding methane concentration from 100 sets of 
transmission spectra filtered by NNF and verified with the standard gas 
concentration preset by the mass flow controller (MFC). The measured 
concentration results of the plain methane sensor (without the NNF 
enhancement) are considered as the baseline to compare. As illustrated 
in Fig. 10, the linearity of the methane sensor optimized by the NNF is 
relatively higher than that of the plain methane sensor without the NNF 
in terms of the coefficient of determination 
R2 = 1 −

∑
(y − ŷ)2

/
∑

(y − y)2 (0.9995 and 0.9971 respectively), 
indicating that the performance as well as the detection accuracy of the 
methane sensor are significantly improved with the NNF support, where 

Fig. 7. Frequency domain distributions of the original transmission spectrum and filtered transmission spectra.  

Fig. 8. Effects of various filtering algorithms on processing experimental data.  

Fig. 9. Filtered by NNF experimental transmission spectra.  
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y is the mean of the standard concentration y and ŷ represents the 
measured concentration. Moreover, the results of error analysis also 
prove the high detection precision of our methane sensor: despite the 
relatively poor performance in the extreme low concentration region 
(meaning that even with the NNF it is difficult to extract the weak ab-
sorption signal from the noise), the overall errors remain in a satisfac-
tory range (under 4.8%). On the other hand, the absolute errors of the 
system are also maintained in a satisfactory range from 0.02 ppm to 
11.54 ppm, which shows that the enhancement of methane sensor by 
NNF is consistent within different concentrations. 

In addition, by setting appropriate MFC flow rates we produced a gas 
mixture with 460 ppm methane concentration for real-time measure-
ments to further evaluate the proposed sensor. The methane concen-
trations are computed from the fitted peak region of the acquired 
spectra. Fig. 11 (a) illustrates the concentration retrieval of the methane 
sensor with and without NNF enhancement. The mean concentration of 
the plain sensor is 458.58 ppm with the standard deviation of 
11.12 ppm, while the mean concentration of methane sensor optimized 
by NNF is 458.69 ppm with the standard deviation of 2.26 ppm. The 
unstable power of laser output, interference noise in optical devices and 
the electric noise in the detector and subsequent circuit greatly affect the 
stability of measurement, which shows irregular large-scale fluctuations 
in Fig. 11 (a). In contrast, the NNF-assisted methane sensor is more 
robust to the noisy conditions and system instability resulting in more 
stable detection. It should be noted that some deviation between the 
measured with optimized detection and the preset concentrations was 
also observed, which is partly due small variations of the gas flow rate 
controlled by the MFC. Nevertheless, Fig. 11 (b) shows the statistical 
histogram of the real-time measurements, which can be well fitted by a 
Gaussian distribution with the HWHM of 2.16 ppm. This demonstrates 
the good stability of our NNF-assisted methane sensor in the real-time 
detection. Since the minimum detection limit of the NNF-assisted 

methane sensor is 2.26 ppm (1σ) at room temperature and the optical 
path length is about 1.3 m, a minimum detectable column density of 
2.26 ppm × 1.3 m = 2.93 ppm m is achieved. In Table 1 we compared 
our results with three other methane sensors that have been reported 
and were using the R(3) absorption line near 1653.7 nm. We indicated 
the detectable column density, which is the most important evaluation 
parameter, and it can be clearly seen that the NNF-based methane sensor 
proposed in this paper has the lowest detectable column density. 
Moreover, our sensor employing the NNF shows ultra-high filtering 
performance, thus improving the DAS technique and realizing the full- 
range concentration detection with low cost and simpler system 
compared with the three other sensors employing WMS technology. In 
addition, to make our conclusions even more justified, we have added 
in-situ measurement results. Since our original design intention of 
methane sensor is to deal with scenarios such as mine and natural gas 
pipeline transmission leakage. Therefore, we made a special trip to a 
coal mine in Yan’an city, Shaanxi Province, China for one-day under-
ground real-time measurement. Fig. S5 shows the filtering results of NNF 
on the transmission spectrum of methane in underground coal mine and 
the concentration results of real-time measurement. The results show 

Fig. 10. (a) The coefficients of determination comparison for results with and without NNF (for the sake of clarity, only 10 are plotted out of 100 results). (b) The 
error analysis of the measured results using NNF: relative error (RE) and absolute error (AE) vs. concentration. 

Fig. 11. (a) Real-time measured and filtered methane concentrations. (b) Statistical histogram for real-time measurements.  

Table 1 
Comparison of our sensor with three other reported sensors.  

Technique Detectable 
range 

Optical path 
length 

Detectable column 
density 

Refs. 

WMS 0–5 × 104 

ppm 
40 cm ∽11.8 ppm m [41] 

DAS+WMS Full range 10 cm ∽6.48 ppm m [42] 
WMS Unavailable 52.2 m ∽5.22 ppm m [43] 
DAS Full range 130 cm ∽2.93 ppm m This 

paper  
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that NNF can indeed filter noise from the real-world methane trans-
mission spectra, as shown in Fig. S5 (a). The methane concentration 
detection results optimized by NNF show more stability and less vari-
ance than those unprocessed as shown in Fig. S5 (b), the difference are 
also statistically significant at P < 0.005. We believe that the above re-
sults are sufficient to prove that the performance of NNF and NNF- 
assisted methane sensor proposed in our manuscript is feasible for 
practical application requirements rather than just exist in the 
laboratory. 

5. Discussion of the frequency behavior underlying the NNF 

Here we analyze in detail the underlying mechanisms of various 
filtering algorithms to systematically discuss why our NNF shows much 
better results in signal filtering compared with other filtering algo-
rithms. S-G filter is a filtering algorithm based on local polynomial least 
square fitting in time domain. Therefore, the selection of the moving 
window width and polynomial order of the algorithm determine the 
smoothing effect of the filtering results. If the polynomial order is set to 
be higher, the S-G filter would be more inclined to fit the abrupt noise 
points, while if the order is set to be lower, it will be difficult to accu-
rately reproduce the long-term trend of the signal. The OSC method is 
almost always used together with a latent variable method such as 
partial least squares (PLS) or principal component regression (PCR) to 
build the calibration model. When the background noise of our spectral 
matrix is too large (the SNR of the unprocessed noisy transmission 
spectrum is as low as 0.86 dB, which is worse at lower concentration 
level), the spectral loading matrices corresponding to the first several 
main components usually are not the concentration matrix information, 
but the spectral signals that are independent of the concentration ma-
trix. When the spectral matrix filters out this part of information, it 
distorts the useful absorption information. We suspect that this is the 
reason why the noise reduction effect of OSC is not ideal and even makes 
worse the absorption signal when filtering our spectral data. Moreover, 
we believe that the noise with respect to the gas absorption spectra 
obtained by such kind of methane sensor presented in this manuscript, in 
fact, is not strictly orthogonal to the concentration matrix. Therefore, 
the noise conditions of such kind of spectra are more complex than those 
obtained by high-resolution precision spectrometers, such as Fourier 
transform spectrometer commonly used in chemometrics. KF is an 
optimal recursive data processing algorithm based on the idea of data 
fusion, and its accuracy depends on the accurate representation of the 
system state space equation and the accurate evaluation of the mea-
surement noise. Although BP-KF applies neural network and variance 
compensation to dually optimize the output of KF filter, its optimization 
premise still depends on the output of KF, and thereby it is limited by the 
assessment of the hyperparameters, such as state matrix, control matrix 
and noise covariance matrix. Moreover, BP-KF optimizes the filtering 
result of KF step by step, that is, the neural network only takes the output 
of KF in each time step rather than predicting the trend of the signal and 
noise of the complete spectra, which greatly limits its practical appli-
cability and robustness at different experimental conditions. For this 
reason, in our study the BP-KF did not perform as well as reported in 
[30]. In contrast to the above algorithm based on time domain data 
optimization, WT is a time-frequency signal analysis method, which has 
the features of multi-resolution analysis and the ability to address the 
local characteristics of the signal in both time and frequency domains. 
However, the selection of wavelet basis, decomposition level and 
threshold in the process of WT de-noising are the key factors affecting 
the final effect and limiting the range of practical applications. While the 
WT filtering results in superior de-noising, this comes at the price of the 
increased measurement time caused by the selection of the optimal 
wavelet basis functions, the decomposition level and the wavelet 
threshold. 

By contrast with the filtering algorithms above, NNF is based on the 
global learning of the signal behavior. Specifically, we trained the NNF 

model with the dataset comprised of the pure spectra with noise, testing 
the ability of this model to learn and realize the best transformation 
function from the noisy signal to the de-noised one. Although the ar-
chitecture of the neural network, including the specific number of layers 
and the number of nodes in each layer as well as the weight values of 
each node and the activation results are completely transparent, the 
neural network is unable to exactly express the mapping function it has 
learned. Therefore, below we describe an approach for the better 
interpretability of our NNF and explain the underlying mechanism of the 
filtering function. 

For a particular training sample {xj; yj}, where xj ∈ [0,1]Nin is the j-th 
transmission spectrum with noise as input data in the training dataset, 
Nin is the dimension (the number of sampling points) of the transmission 
spectrum, and the corresponding ground truth yj ∈ [0,1]Nin is the j-th de- 
noised spectrum in the dataset, using the DFT we obtain 

F
(
yj
)
[k] = y[k](j) =

1
Nin

∑Nin − 1

n=0
yjexp

(
− 2πi
Nin

nk
)

, (4)  

where k is the frequency index. For the NNF output D(xj), similarly, we 
obtain 

F
(
D(xj)

)
[k] = D[k](j) =

∑Nin − 1

n=0
D(xj)exp(

− 2πi
Nin

nk). (5) 

To examine the convergence behavior of different frequency com-
ponents during the training of an NNF, we compute the residual of 

F

(
yj

)
and F

(
D(xj)

)
at each recording epochs, i.e., 

ΔF (k) = F
(
yj
)
[k] − F

(
D(xj)

)
[k]|, (6)  

where | • | denotes the absolute value. 
As shown in the Fig. 12 (a), the transmission spectrum is dominated 

by low-frequency components along the frequency index. In the 
following, we only focus on the convergence behavior of the frequency 
peaks during the training. By examining the residual of the certain 
selected key frequency components shown in Fig. 12 (a)), one can 
clearly observe that NNF tends to capture the training data in an order 
from low to high frequencies, as stated by Frequency-Principle [37] and is 
shown in Fig. 12 (b) and Fig. 12 (c). In this case, NNF is equivalent to a 
multi-channel band-pass filter, which first captures the dominant low 
frequency components in the noisy spectrum, and then gradually cap-
tures the high frequency part in the efficient frequency range. From this 
perspective, NNF can retain the effective information in the spectra from 
the frequency domain and keep the complete data trend spontaneously 
without the influence of manual intervention. Meanwhile, NNF does not 
simply conduct a high frequency truncation to eliminate the frequency 
components outside the cutoff frequency, but in contrast, the residual of 
the high frequency region is also gradually reduced during training, 
which explains the reason why the NNF filter can realize the full fre-
quency range filtering. Based on such an excellent filtering performance 
of the NNF, the methane sensor has been enhanced in the detectable 
column density as well as in the detection stability. 

6. Conclusion 

In this paper, a novel methane sensor based on DAS assisted by NNF 
is proposed. We overcome the scarce data problem by training the NNF 
on the simulated data set which is highly consistent with the experi-
mental conditions. The developed digital filter based on the neural 
network outperforms other widely applied filtering algorithms. Even 
under the situation of non-orthogonal random noise or interference ef-
fects in the practical application scenarios, the NNF can still effectively 
extract informational signals under the condition of extreme low SNR, 
helping sensors to have significant improvements in analytical perfor-
mance. With the NNF assistance, the enhanced sensor achieves higher 
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precision of the concentration detection and more stable real-time 
detection performance compared to the plain methane sensor. Consid-
ering other reported DAS applications of near-infrared methane sensors, 
our proposed technique reveals the further improvement of the detect-
able column density, showing the prospect of practical implementation 
in various application scenarios. Therefore, the NNF is expected to 
perform well in signal processing of various gas species and sensors. 
Although neural network is often criticized as a black box, we analyze 
the NNF systematically from the perspective of frequency domain, 
which adds to the interpretability of the inner workings of the NNF. 
Based on the successes of deep learning in concentration retrieval and 
filtering in the field of absorption spectroscopy, we believe that deep 
learning can effectively contribute to the research of identification and 
quantitative determination of concentrations of gas components in a gas 
mixture. We plan to carry out such work in the future. 
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LED-based sensor for monitoring the lower explosion limit of methane, Sens. 
Actuators B: Chem. 247 (2017) 930–939. 

[4] L. Shi, J. Wang, G. Zhang, X. Cheng, X. Zhao, A risk assessment method to 
quantitatively investigate the methane explosion in underground coal mine, 
Process Saf. Environ. Prot. 107 (2017) 317–333. 

[5] J. Dang, L. Kong, C. Zheng, Y. Wang, Y. Sun, H. Yu, An open-path sensor for 
simultaneous atmospheric pressure detection of CO and CH4 around 2.33 μm, Opt. 
Lasers Eng. 123 (2019) 1–7. 

[6] X. Cui, F. Dong, Z. Zhang, P. Sun, H. Xia, E. Fertein, W. Chen, Simultaneous 
detection of ambient methane, nitrous oxide, and water vapor using an external- 
cavity quantum cascade laser, Atmos. Environ. 189 (2018) 125–132. 

[7] P.K. Sekhar, J. Kysar, E.L. Brosha, C.R. Kreller, Development and testing of an 
electrochemical methane sensor, Sens. Actuators B: Chem. 228 (2016) 162–167. 

[8] George Fedorenko, et al., Semiconductor gas sensors based on Pd/SnO2 
nanomaterials for methane detection in air, 12.1, Nanoscale Res. Lett. (2017) 1–9. 

Fig. 12. Frequency analysis of NNF output function showing characteristics of frequency components during the training. (a) The selected frequency peaks in the 
frequency domain. (b) Evolution of residuals of the selected frequency components during training for increasing numbers of epochs. (c) Similar to (b), but shown as 
a density plot of the residuals of the frequency components for different epoch numbers. 

L. Tian et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/j.snb.2021.131207
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref1
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref1
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref2
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref2
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref2
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref3
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref3
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref3
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref4
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref4
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref4
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref5
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref5
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref5
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref6
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref6
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref6
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref7
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref7
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref8
http://refhub.elsevier.com/S0925-4005(21)01775-5/sbref8


Sensors and Actuators: B. Chemical 354 (2022) 131207

11
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