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a b s t r a c t 

The realization of high-quality imaging under low sampling is an effective way to solve the practical application 

of ghost imaging. In this paper, we present an advanced framework of compressed ghost imaging under low 

sampling. During the imaging process, the regularization and mutual structure filtering operations are performed 

alternately, which we call mutual structure ghost imaging (MSGI). In the joint filtering of our proposed scheme, 

the mutual-structural information contained in both the reference image and the target one is applied to enhance 

the capability of important edge preserving. Thus, high-resolution ghost imaging results can be obtained under 

low sampling. Moreover, we have adopted a fast-converging iterative format to obtain better imaging results with 

fewer iterations. Simulation and experimental results show that the proposed method can achieve high-quality 

imaging results from the random speckle patterns under low sampling and promote the practical process of ghost 

imaging. 
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. Introduction 

Ghost imaging (GI) is a novel kind of non-localized imaging which is

ifferent from traditional imaging, and it realizes the separation of de-

ection and imaging [1–4] . This new technology has received extensive

ttention from researchers for its features such as fewer photons, non-

ocality, and anti interference. In recent years, GI has been used in non-

estructive testing, biological tissue imaging, image optical encryption,

edical detection, 3D remote sensing imaging [5–8] . This novel imag-

ng technology has also shown very attractive application prospects in

efense and military fields [8,9] . To improve the imaging quality and

maging efficiency of GI, various methods have been proposed, such as

terative GI [10] , differential GI [11] , compressed GI [12] , and so on

13–15] . In particular, the compressed GI shows superiority for the tar-

et imaging under low sampling numbers and has great development in

mage optical encryption, remote sensing imaging, three-dimensional

econstruction, and other practical applications [16–19] . 

The compressed GI reconstructs image through optimization of a for-

ard model between the scene and image. And, this inverse problem is

ll-posed. To obtain a reasonable image estimation, some regularization

ethods of exploiting the geometrical structure of sparse images need

o be utilized. In this paper, we present an advanced framework of com-

ressed ghost imaging based on joint filtering with low sampling num-
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ers. In the imaging process, we perform the regularization and joint

ltering operations alternately to reduce the under-sampling noise and

mprove the quality of a reconstructed image. The joint filtering with

utual structure takes the possible difference between the reference

nd target images into account, and estimates their mutual structures

s a new reference for the joint filtering. This operation can enhance

he capability of joint processing in restoring structure based on com-

on information in target and reference images [20] . We introduce this

oint filtering in our proposed ghost imaging scheme to enhance the ca-

ability of important edge-preserving and obtain high-quality imaging

esults. 

The separate-variable method that decouples regularization and de-

oising is a commonly used algorithm for solving the reconstruction

roblems in compressed sensing. So, we alternately perform regular-

zation and mutual structure filtering operations in this paper to solve

he ill-conditioned problem in compressed ghost imaging. The proposed

cheme has the following benefits: 1) ghost imaging under low sam-

ling: the proposed method can obtain ghost imaging results with fewer

ampling numbers, and reduce the detection time; 2) accelerated iter-

tion: in the regularization iterative step, the imaging results can be

btained with fewer iterations by designing a fast-converging iterative

ormat, thereby improving the imaging efficiency; 3) high-quality imag-

ng results: incorporating the mutual structural filtering into a two-step
ong) . 
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terative format can improve imaging resolution while removing noise,

hereby improving the resolution of ghost imaging. 

. Theoretical analysis 

In GI system, the 𝑚 -th Gaussian random speckle pattern (size 𝑟 ×
) pre-generated by the computer is denoted as 𝐼 ( 𝑚 ) ( 𝑥, 𝑦 ) , and 𝑚 =
 , 2 , 3 , … , 𝑀 . Here, 𝑀 is the total number of sampling. Meanwhile, the

bject beam illuminates the object with transmission coefficient 𝑂( 𝑥, 𝑦 ) ,
nd the speckle field transmitted by an object is measured with the

ucket detector. The detection value obtained from the 𝑚 -th sampling

s recorded as 𝐵 

( 𝑚 ) . 

Then, each of the speckle intensity 𝐼 ( 𝑚 ) ( 𝑥, 𝑦 ) is rearranged as a row

ector Ψ𝑚 of size 1 ×𝑁 ( 𝑁 = 𝑟 × 𝑐). After 𝑀 samples, we get an 𝑀 ×𝑁

atrix 𝐴 with the following form: 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

Ψ1 
Ψ2 
⋮ 

Ψ𝑀 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝐼 1 (1 , 1) 𝐼 1 (1 , 2) … 𝐼 1 ( 𝑟, 𝑐) 
𝐼 2 (1 , 1) 𝐼 2 (1 , 2) … 𝐼 2 ( 𝑟, 𝑐) 

⋮ ⋮ ⋱ ⋮ 
𝐼 𝑀 

(1 , 1) 𝐼 𝑀 

(1 , 2) … 𝐼 𝑀 

( 𝑟, 𝑐) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (1)

The 𝑀 detection values from the bucket detector can be permutated

nto a 𝑀 × 1 column vector 𝑔: 

 = [ 𝐵 1 , 𝐵 2 , … , 𝐵 𝑀 

] 𝑇 . (2)

e rearrange the unknown object 𝑂( 𝑥, 𝑦 ) as an 𝑁-dimensional column

ector 𝑢 ( 𝑁 × 1), then we will have the following framework: 

 = 𝐴𝑢. (3)

As we all know, Eq. (3) is a typical mathematical inverse problem

ue to the interference of environmental noise, background noise, and

ther noise, and the regularization method is generally used to suppress

he noise. A reasonable and effective solution to Eq. (3) can be obtained

y solving the following optimization problem: 

̂ = arg min 
𝑢 

‖𝑔 − 𝐴𝑢 ‖2 2 + 𝜆‖𝑢 ‖𝑟𝑒𝑔 , (4)

here, ‖𝑔 − 𝐴𝑢 ‖2 2 is the fidelity term and ‖𝑢 ‖𝑟𝑒𝑔 is the regularization

erm, and 𝜆 > 0 is called the regularization parameter. For the above

ptimization model Eq. (3) , the iterative method is generally used to

olve. The core idea of this iterative method is to regard the estimation

f the clear image as an optimal solution to the optimization problem

nd to solve this optimization problem by designing an iterative format

o achieve the purpose of image reconstruction. 

.1. Mutual structure ghost imaging 

In this paper, we decompose the compressed ghost imaging problem

q. (3) into two steps of regularization and denoising, and apply an it-

rative approach to achieve high-quality ghost imaging under low sam-

ling. To improve imaging efficiency, we adopt a fast iterative format

o reduce the number of iterations and thus speed up the convergence.

he projected Landweber regularization with accelerated iteration and

oint filtering with mutual structure are utilized alternately to obtain the

maging results. Fig. 1 shows the flowchart of ghost imaging implemen-

ation in this paper. The entire imaging scheme is an iterative process

y alternating regularization and denoising steps. Next, we will describe

he implementation of our proposed ghost imaging in detail. 

Step 1: accelerated projected Landweber iteration 

To solve Eq. (3) , some effective regularization methods are uti-

ized to get reasonable imaging results, such as Tikhonov regularization,

andweber regularization, and some other iterative methods [21–23] .

he projected Landweber iteration regularization (PLIR) [24,25] is easy

o implement and has advantages for solving large inverse problems. In

articular, this regularization method can get better imaging results in

host imaging [14,26] . The PLIR format of Eq. (3) is as follows: 

 = 𝑢 + 𝛽𝑃 𝐴 

𝑇 ( 𝑔 − 𝐴𝑢 ) , 𝑘 = 1 , 2 , 3 , … , (5)
𝑘 𝑘 −1 𝑘 −1 

2 
here 𝑃 is the pseudo-inverse of 𝐴 

𝑇 𝐴 , 𝛽 is the parameter that controls

he speed of convergence, 𝑢 𝑘 and 𝑢 𝑘 −1 are the current iteration result

nd the previous iteration result respectively. This projected Landweber

esult is recorded as 𝑢 𝑘 = PLIR ( 𝐴, 𝑔, 𝑢 𝑘 −1 ) . 
In this paper, we proposed an accelerated projected Landweber iter-

tion (APLIR) inspired by the fast iterative shrinkage-thresholding algo-

ithm (FISTA) [27,28] . The FISTA selects the iteration sequence more

martly, and its iterative process based on the idea of gradient descent

pproaches the minimum value of the problem more quickly [28] . In

ur iteration process, we add an intermediate variable 𝑣 , and this se-

uence 𝑣 𝑘 is updated by a simple linear combination of the previous

wo iterations 𝑢 𝑘 −1 , 𝑢 𝑘 −2 . The specific approximate form is as follows: 

 

 

 

 

 

 

 

𝑡 𝑘 = 𝛼
1+ 
√

1+4 𝑡 2 
𝑘 −1 

2 
𝑣 𝑘 = 𝑢 𝑘 −1 + ( 𝑡 𝑘 −1 −1 

𝑡 𝑘 
)( 𝑢 𝑘 −1 − 𝑢 𝑘 −2 ) 

𝑢 𝑘 = 𝑣 𝑘 + 𝛽𝑃 𝐴 

𝑇 ( 𝑔 − 𝐴𝑣 𝑘 ) . 

(6) 

ere, 𝑃 is the pseudo-inverse of 𝐴 

𝑇 𝐴 , 𝛼 is the gain factor to control the

rror between two consecutive iterations, 𝛽 is the parameter to decide

ow much information is obtained from the residual image, 𝑡 𝑘 is the

inear combination parameter, and 𝑢 𝑘 is the approximate solution of

q. (3) . The initial supposition: 𝑢 0 = 𝑢 1 = [0 , 0 , … , 0] 𝑇 , 𝑡 1 = 1 . 
Through the above regularization step, we obtain an initial ap-

roximate image 𝑢 𝑘 with the artifacts and noise introduced by

he effect of Eq. (6) . This regularization step is recorded as 𝑢 𝑘 =
PLIR ( 𝐴, 𝑔, 𝑢 𝑘 −1 , 𝑢 𝑘 −2 ) , 𝑘 > 1 . To suppress the amplified artifacts and

oise introduced in Eq. (6) , we apply the joint filtering with mutual

tructure to denoise image 𝑢 𝑘 in the following denoising step, and utilize

his filtering to obtain high-quality imaging results with few sampling

umbers. 

Step 2: joint filtering with mutual-structure 

By observing the regularization results (shown in Fig. 1 ), we can

nd that the initial imaging result obtained by the above regularization

ontains a lot of noise and the imaging quality is relatively poor. We

ntroduce joint filtering to denoise the regularization result and improve

he imaging quality. The mutual structure for joint filtering has shown

romising performance in edge-preserving denoising problems. Hence,

e integrate it into our ghost imaging scheme for high-quality imaging

esults. 

The mutual structure filtering guides the joint filtering process by

nding the mutual structure between the reference image and the target

mage, and both the target image and reference image are filtered in

he filtering process [20] . Thus the resulting image can be enhanced by

his joint filtering. In paper [20] , the joint filtering measure structure

imilarity between corresponding patches in filtering output image 𝑈

nd updated reference image 𝐺. The result of joint filtering with mutual

tructure is obtained by minimizing the following objective function for

lternately estimating 𝑈 and 𝐺: 

( 𝑈, 𝐺, 𝑎, 𝑏 ) = 𝐸 𝑆 ( 𝑈, 𝐺, 𝑎, 𝑏 ) + 𝐸 𝑑 ( 𝑈, 𝐺) + 𝐸 𝑟 ( 𝑎, 𝑏 ) , (7)

here 𝐸 𝑆 ( 𝑈, 𝐺, 𝑎, 𝑏 ) is the image structure similarity, 𝑎 and 𝑏 are regres-

ion coefficient sets, which also need to be optimized. The term 𝐸 𝑑 ( 𝑈, 𝐺)
s the regular term to avoid trivial solutions, and the term 𝐸 𝑟 ( 𝑎, 𝑏 ) is
resented to reduce patch intensity variance, so it can improve the rea-

onable ability to smooth the target image by removing noise and other

isual artifacts [20] . 

The objective function Eq. (7) is optimized alternatively to get filter-

ng result 𝑈 and mutual structure 𝐺 from the initial inputs 𝑈 0 and 𝐺 0 
fter reasonable smoothing. In this paper, we denote this joint filtering

s 𝑈 = MSfilter ( 𝑈 0 , 𝐺 0 ) . The detailed instructions for the numerical so-

ution of minimizing the objective function Eq. (7) and the source code

f mutual structure filtering can be found in the paper [20] . 

For the ghost imaging scheme proposed in this paper, the resulting

mage 𝑢 𝑘 ( 𝑁 × 1 ) obtained from step 1 is reshaped into a matrix of 𝑟 × 𝑐

imensions, then the joint filtering with mutual structure is utilized to
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Fig. 1. The flowchart of our proposed ghost imaging. 
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uppress the amplified noise. Here, we denote this joint filter as 

 𝑘 = MSfilter ( 𝑢 𝑘 , 𝑢 
𝑟𝑒𝑓 

𝑘 
) , (8)

here 𝑢 𝑘 is input image (i.e., the reconstruction result of APLIR), 𝑢 
𝑟𝑒𝑓 

𝑘 
is

he reference image, which is set as the median filtering result of 𝑢 𝑘 in

ur paper to achieve fast convergence [20] , 𝑞 𝑘 is the filtered image. 

In the iterative process, we will feed back the filtered results 𝑞 𝑘 in the

ext regularization, it makes that the result of regularization not only

epend on the speckle matrix 𝐴 and bucket values 𝑔, it is also closer

o the result of the previous denoising. By decoupling regularization

 step 1 ) and denoising ( step 2 ), we alternately perform these two steps

teratively to obtain imaging results. As a result, after repeated iterations

n this way, the final converged result can be obtained. The whole ghost

maging algorithm is summarized in Algorithm 1 , and is recorded as

SGI in this paper. 

lgorithm 1 Mutual structure ghost imaging algorithm. 

nput: Bucket values : 𝑔, random speckle matrix: 𝐴 , parameters 𝛼, 𝛽, the

aximum number of iterations 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 . 

: Initialize: 𝑢 0 = 0 , 𝑢 1 = 0 . 

: for 𝑘 = 2 : 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 do 

: 𝑢 𝑘 = APLIR ( 𝐴, 𝑔, 𝑢 𝑘 −1 , 𝑢 𝑘 −2 ) 
: 𝑢 

𝑟𝑒𝑓 

𝑘 
= medfilter ( 𝑢 𝑘 ) 

: Image update: perform the joint filtering: 𝑞 𝑘 = MSfilter ( 𝑢 𝑘 , 𝑢 
𝑟𝑒𝑓 

𝑘 
) , and

et 𝑢 𝑘 = 𝑞 𝑘 . 

: end for 

utput : Reconstructed image 𝑞 𝑘 . 

. Result 

In this section, we will test the effects of our proposed scheme on

ifferent target objects. We demonstrate the performance via numerical

imulation and experimental results, and compare our method (MSGI)

ith the TV-based GI (TVAL3) [29] , joint iteration compressed ghost

maging (JIGI) [14,26] . The original images tested in numerical simula-

ion, Gaussian speckle patterns, and imaging results all have resolutions

f 128 × 128 pixels. We select the plane model as the real target object for

he actual experiment. In the imaging processing, all the simulations are

erformed in MATLAB R2013a on an Intel(R) Core i5-8250U 1.6 GHz

PU (one thread used) and 32 GB memory. 

In our experimental, 𝛼 is used to control the error of two adjacent

terations not to be large. If the parameter 𝛼 is too large, the error in-

ormation of the iteration will dominate, which will cause the iterative

esult to contain more noise information, and if the parameter 𝛼 is set

oo small, the error information of the two previous iterations will be

emoved in the iteration, and the imaging result will deviate from the

riginal image. The parameter 𝛽 controls the speed of convergence and

lays an extremely important balancing role in suppressing noise and
3 
etaining more effective frequency domain information in the iteration

rocess. We manually adjust the best imaging results, and after many

epeated experiments, the value ranges of 𝛼 and 𝛽 are respectively set

o [0.65, 0.85], [2,5]. 

.1. Numerical simulation results 

In this section, we measure the imaging quality quantitatively in

erms of peak signal-to-noise ratio (PSNR) and structural similarity index

SSIM) [30,31] to objectively evaluate the performance of our proposed

ethod. The PSNR is defined as following: 

SNR = 10 log 10 
[ 
max 𝑉 𝑎𝑙 2 

MSE 

] 
. (9) 

ere, MSE = 

1 
𝑟 ×𝑐 

∑𝑟 

𝑖 =1 
∑𝑐 

𝑗=1 [ 𝑢 ( 𝑖, 𝑗) − 𝑞( 𝑖, 𝑗)] 2 , and max 𝑉 𝑎𝑙 is the maxi-

um pixel value of an image. The definition of SSIM is as follows: 

SIM ( 𝑢, 𝑞) = 

(2 𝜇𝑢 𝜇𝑞 + 𝐶 1 )(2 𝜎𝑢𝑞 + 𝐶 2 ) 
( 𝜇2 

𝑢 
+ 𝜇2 

𝑞 
+ 𝐶 1 )( 𝜎2 

𝑢 
+ 𝜎2 

𝑞 
+ 𝐶 2 ) 

, (10) 

here 𝑢 and 𝑞 represent the original image and the reconstructed image

espectively, which have 𝑟 × 𝑐 pixels. 𝜇𝑢 and 𝜇𝑞 are (respectively) the

eans of 𝑢 and 𝑞, 𝜎𝑢 and 𝜎𝑞 are (respectively) the standard deviations of

 and 𝑞, and 𝜎𝑢𝑞 is the cross-correlation of 𝑢 and 𝑞 after removing their

eans. The terms 𝐶 1 and 𝐶 2 are small positive constants that stabilize

ach term. In our paper, we set 𝐶 1 = 𝐶 2 = (0 . 05 𝐿 ) 2 , 𝐿 is the dynamic

ange of image pixels, which is set 𝐿 = 255 in our paper. Naturally, the

SNR and SSIM values increase as the quality of reconstructed image

ecomes better. 

Fig. 2 shows simulation results of the “gong ” image with TVAL3,

IGI, and MSGI methods under different sampling numbers. By observ-

ng Fig. 2 , we can find that under the same sampling numbers, our pro-

osed method MSGI can obtain better imaging results compared with

VAL3 and JIGI. When the sampling number is 350 ( 𝑀 = 350 , the sam-

ling rate is lower than 2.2%), our method MSGI can obtain the overall

utline of the object, which indicates the superiority of our ghost imag-

ng under low sampling. 

In order to numerically compare these three kinds of ghost imag-

ng results, we also list the PSNR and SSIM values below the corre-

ponding reconstructed images in Fig. 2 , which are obtained by dif-

erent imaging methods with the same sampling numbers. From these

alues, we can see that, when the number of sampling is less than 550

 𝑀 = 350 , 400 , 450 , 500 ), the PSNR values of MSGI are about 4 dB larger

han JIGI, and about 6 dB larger than TVAL3, while the SSIM values

f MSGI are relatively larger than the other two algorithms. When the

umber of sampling reaches 550 ( 𝑀 = 550 ), the PSNR and SSIM values

btained by MSGI are still higher than the other two methods. Through

he comparison of the results presented in Fig. 2 , we can find that our

roposed method in this paper can obtain high-quality imaging results

nder low sampling, both visually and numerically. 
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Fig. 2. Simulation results of “gong ” image with TVAL3, JIGI and MSGI under 𝑀 sampling and original object. 

Fig. 3. Simulation results of “aircraft ” image with TVAL3, JIGI and MSGI under 𝑀 sampling and original object. 
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Fig. 3 shows “aircraft ” imaging results of TVAL3, JIGI, and MSGI

ith different sampling numbers, the PSNR and SSIM values of the re-

onstructed images are listed below the corresponding results. From this

gure, we can see that the images obtained by our proposed method

SGI are clearer and smoother than the other two methods under the

ame sampling numbers. And, numerical results of MSGI below imaging

esults are also higher than others. Both the visual and numerical results

emonstrate that our method can obtain higher quality imaging results

nder low sampling numbers. Even at a relatively low sampling number

 𝑀 = 200 , the sampling ratio is lower than 1.3%), the imaging result of

SGI is still relatively close to the original images. 

To verify the performance of the MSIG scheme under background

ight noise, we calculate the PSNRs of imaging results under different
 i  

4 
ignal power to the background noise power ratio (DSNR) [26] , which

s defined as 

𝑆𝑁𝑅 = 10 log 10 
⟨𝐵 

( 𝑚 ) ⟩⟨𝑁𝑜𝑖𝑠𝑒 ( 𝑚 ) ⟩ , (11)

here ⟨𝐵 

( 𝑚 ) ⟩, ⟨𝑁𝑜𝑖𝑠𝑒 ( 𝑚 ) ⟩ are the average bucket detection values and

verage background noise power with 𝑚 sampling number, respectively.

ig. 4 shows the curve of PSNR with the change of DSNR value when

he sampling number is 200 for an “aircraft ” object. By looking at the

urve, we can find that when different degrees of Gaussian noise are

dded to the bucket detection values, the PSNR increases as the DSNR

ncreases. And, when DSNR > −10 dB, the PSNR of the imaging results
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Fig. 4. The PSNR performance of imaging result against DSNR with MSGI 

method. 

Fig. 5. Experiment schematic diagram of MSGI. 
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Fig. 7. Enlarged comparison of imaging results of “plane ” object with different 

sampling numbers ( 𝑀 = 2000 , 𝑀 = 3000 , 𝑀 = 4000 ) and the original enlarged 

object. 
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g  
btained by our method is greater than 16 dB. It shows that the MSGI

maging method has good robustness. 

.2. Experimental results 

In this subsection, we conduct the actual experiment to demon-

trate the feasibility of MSGI scheme. Fig. 5 shows the schematic of

he experimental system. In this experimental system, the Gaussian

andom speckle matrix is applied to obtain the ghost imaging results.

nd, the commercial digital light projector (DLP, Hitachi HCP-3050X,

024 × 768 pixels with pixel size 12 . 5 × 12 . 5 μm 

2 , 3000 lumens) is used

s the light source to illuminate the object. The object to be imaged is

 “plane ” printed on the A4 sheet of paper. We select the 128 × 128 pix-
5 
ls for each random speckle pattern. We collect the reflected signal light

ith a Si transimpedance amplified photo detector (Thorlabs, PDA100A-

C, 320–1100 nm, 2.4 MHz BW, 100 mm 

2 ). 

The comparison of imaging results with TVAL3, JIGI, and MSGI un-

er different sampling numbers are shown in Fig. 6 . And, in order to

ee the experimental results of our algorithm more clearly, we have en-

arged the part of the experimental “plane ” diagram, as shown in Fig. 7 .

By observing the experimental results ( Fig. 6 ), we can find that under

he same sampling numbers, the MSGI method can obtain better imaging

esults compared with TVAL3 and JIGI. When the sampling number is

ow ( 𝑀 = 500 ), our proposed method in this paper can roughly obtain

he outline of the object, although there is some blurring of the right-

ing and tail (the third row of Fig. 6 (a)). When the sampling number

ises to 1000 ( 𝑀 = 1000 , the sampling ratio is about 6 . 1% ), the outline of

he entire object has been gradually and completely displayed (the third

ow of Fig. 6 (b)). As the number of sampling increases, some detailed

nformation about the object is gradually reconstructed (the third row

f Fig. 6 (c) and (d)). Through observation and comparison, we can find

hat under the same sampling times, the imaging results obtained by

SGI are clearer and the PSNR and SSIM are higher than the other two

ethods, which can provide strong support for subsequent applications

uch as accurate identification of targets. The experimental results verify

he feasibility of MSGI method proposed in this paper, that is, high-

uality imaging results can be obtained under low sampling. 

.3. Accelerated iterative format 

In the regularization step, inspired by the fast iterative shrinkage al-

orithm with backtracking [27,28] , we adopt a similar iterative format
Fig. 6. Experimental reconstructed results of 

“plane ” object with different sampling num- 

bers ( 𝑀 = 500 , 𝑀 = 1000 , 𝑀 = 2000 , 𝑀 = 
3000 , 𝑀 = 4000 ) and the original object. 
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Fig. 8. Comparison of PSNRs under different iterations with and without accel- 

eration PLIR for “gong ” image ( 𝑀 = 500 ). 
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n the projected Landweber iteration and make a smarter choice during

he reconstruction process to achieve faster iterative speed. In the pro-

ess of iteration, we introduce an intermediate iterative sequence 𝑣 𝑘 ,

hich is generated by the combination of the previous two iterations

 𝑘 −1 , 𝑢 𝑘 −2 . Unlike the PLIR method ( Eq. (5) ), the next iteration sequence

 𝑘 is obtained by Eq. (6) . This method is very simple, but it works well.

Fig. 8 shows the comparison of PSNRs under different iterations with

nd without acceleration of PLIR for the “gong ” image (the sampling

umber 𝑀 = 500 ). The blue curve represents the result of general pro-

ected Landweber iteration (PLIR, Eq. (5) ), and the red curve represents

he accelerated iteration format(APLIR, Eq. (6) ). From this figure, we

an see that the PSNRs are both increased with iterations increasing.

y comparing the change curves of PSNR under different iterations, we

an find that under the same iteration numbers, the PSNR values of the

estored image obtained by the APLIR are relatively higher than PLIR.

hen the number of iterations is close to 500, the PSNR obtained by

he unaccelerated PILR method tends to be stable, while the PSNR ob-

ained by APLIR tends to be stable when the iteration number is less

han 350. Moreover, the accelerated PILR can obtain a higher PSNR

alue than PILR under the same iteration number. By observing Fig. 8 ,

e can find that the accelerated PILR method proposed in this paper can

btain a stable solution with fewer iterations, and the imaging quality is

elatively high. In addition, for the complexity of our algorithm, taking

he “gong ” image with a size of 128 × 128 pixels (the sampling number

 = 500 ) as an example, each iteration (one regularization plus one fil-

ering) is about 0.02 s on average. 

. Conclusion 

This paper presents a compressed ghost imaging method under low

ampling. The whole imaging method is decomposed into two steps of

egularization and denoising, which are performed alternately and iter-

tively in the imaging process. In the iterative process, the accelerated

LIR is adopted to obtain higher-quality imaging results with fewer iter-

tions. The mutual structure filtering is applied to extract effective im-

ge edges and texture information, thus resulting in high-quality imag-

ng results with fewer sampling numbers. We compare our method with

VAL3 and JIGI in terms of PSNR, SSIM, and visual quality. Simula-

ions and experiments demonstrate that our method has better perfor-

ance under low sampling and good robustness against noise. In our

host imaging scheme, the regularization and denoising steps are iter-

tively executed, and the final converged results can achieve a balance

etween regularization and denoising through repeated iterations. So

any methods with superior noise filtering performance may be used

n the iterative ghost imaging scheme. The introduction of these filter-

ng or denoising methods also improves the imaging quality of ghost

maging with low sampling numbers. 
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