
Citation: Hao, R.; Wei, Z.; He, X.;

Zhu, K.; Wang, J.; He, J.; Zhang, L.

Multistage Adaptive Point-Growth

Network for Dense Point Cloud

Completion. Remote Sens. 2022, 14,

5214. https://doi.org/10.3390/

rs14205214

Academic Editors: Pawel Rotter,

Wojciech Chmiel and

Sławomir Mikrut

Received: 13 September 2022

Accepted: 14 October 2022

Published: 18 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Multistage Adaptive Point-Growth Network for Dense Point
Cloud Completion
Ruidong Hao 1,2, Zhonghui Wei 1,*, Xu He 3, Kaifeng Zhu 1,2, Jun Wang 1, Jiawei He 1 and Lei Zhang 1

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Electronic and Information Engineering, Suzhou University of Science and Technology,

Suzhou 215009, China
* Correspondence: weizhonghui@ciomp.ac.cn

Abstract: The point cloud data from actual measurements are often sparse and incomplete, making it
difficult to apply them directly to visual processing and 3D reconstruction. The point cloud comple-
tion task can predict missing parts based on a sparse and incomplete point cloud model. However,
the disordered and unstructured characteristics of point clouds make it difficult for neural networks
to obtain detailed spatial structures and topological relationships, resulting in a challenging point
cloud completion task. Existing point cloud completion methods can only predict the rough geometry
of the point cloud, but cannot accurately predict the local details. To address the shortcomings of
existing point cloud complementation methods, this paper describes a novel network for adaptive
point cloud growth, MAPGNet, which generates a sparse skeletal point cloud using the skeletal
features in the composite encoder, and then adaptively grows the local point cloud in the spherical
neighborhood of each point using the growth features to complement the details of the point cloud in
two steps. In this paper, the Offset Transformer module is added in the process of complementation
to enhance the contextual connection between point clouds. As a result, MAPGNet improves the
quality of the generated point clouds and recovers more local detail information. Comparing our
algorithm with other state-of-the-art algorithms in different datasets, experimental results show that
our algorithm has advantages in dense point cloud completion.

Keywords: point cloud; dense point cloud completion; point growth; composite encoder;
Offset Transformer

1. Introduction

Dense point cloud complementation is a task to estimate and predict a dense and
complete point cloud based on a sparse and incomplete point cloud. With the development
of remote sensing technology, LiDAR, depth cameras and other 3D scanning devices are
applied to various industries, and they can easily acquire massive point cloud data [1–4].
The simple format, versatility and small memory footprint of point cloud data [5] are
heavily used in 3D reconstruction, autopilots, virtual reality, map drawing and machine
vision [6–10]. However, due to the resolution limitation of the sensor, the occlusion of other
objects, the surface light reflection of the object itself, the manual error and the perspective
problems, the quality of the original point cloud data will decrease. The low quality of the
point cloud is reflected in the sparse distribution and the incomplete structure. A complete
and dense point cloud is the fundamental condition for 3D computer vision applications
such as point cloud classification, segmentation and other 3D analysis and evaluation
methods [11–15]. In practical applications, a dense and complete point cloud helps to better
reconstruct the 3D model of a physical object, which can be better applied to industry and
production [16,17]. Therefore, it is of great theoretical significance and application value to
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study the recovery of dense and complete point clouds from the observed incomplete point
cloud data.

Incomplete, disordered and unstructured point cloud data make point cloud learning
a challenge. Thanks to the development of deep learning, the method of point cloud
learning has made great progress. With the successful application of the famous pioneer
work PointNet [11] and its improved PointNet++ [18] to point cloud learning, various point
cloud learning methods that rely on PointNet and PointNet++ as the encoder design are
emerging [19,20]. Recently, this encoder–decoder architecture has also been successfully ap-
plied to the point cloud completion task, such as representative FoldingNet [21], PCN [22],
TopNet [23], etc., which can extract the features of incomplete point clouds and predict the
generation of complete point clouds. However, its encoder–decoder capability is limited,
which cannot fully analyze and generate accurate point cloud models. The later developed
GRNet [24], PFNet [25], PMP [26] and other algorithms further improved the generated
performance indicators, but the results still have the problem of distortion. Especially when
the structure of the point cloud is complex and the number of generated points is large,
the existing completion algorithms may fail to depict the local details and smooth surfaces
of the point cloud model, sometimes having rough edges and scattered points. In serious
cases, there may even be some failure results. Therefore, it is still a very difficult task to use
neural networks to accurately complete the dense point cloud.

In this paper, to solve the above problem, we propose a new neural network named
MAPGNet, which generates complete and dense point clouds in a coarse-to-fine form step
by step. Different from the existing point cloud completion algorithm, the network we
designed focuses more on generating local details of dense point clouds. In the process
of expanding point clouds after generating skeleton point clouds, the local detail point
clouds are generated in a more free way. The proposed algorithm is divided into three
modules: composite encoder feature extraction module, skeleton point cloud generation
module and point cloud growth module. The feature extraction module of the composite
encoder extracts three different stages of point cloud features, which are skeleton feature,
growth feature 1 and growth feature 2. The three different features extracted are responsible
for three different completion stages. The skeleton features extracted from the composite
encoder generate sparse and complete skeleton point clouds using the skeleton point
cloud generation module. Next, based on growth feature 1/2, local point cloud details are
generated adaptively in the sphere neighborhood by using the point cloud growth module
in two stages on the basis of the previous generated point cloud. The point cloud growth
module combines the growth features with the Offset Transformer structure and the global
features of the skeleton point cloud, which better correlates the topological relationship and
context information of the point cloud. The two-stage point cloud growth module refines
the local geometry information of the point cloud step by step and finally obtains a complete
and dense point cloud model. We conducted experiments on the PCN dataset [22] and the
Completion3D dataset [23] to analyze the effectiveness of the module and to demonstrate
the state-of-the-art quantitative and visualization results of the method. The experimental
results on different datasets show that our network outperforms existing algorithms in the
dense point cloud completion task, demonstrating its superior performance. In all, the
main contributions can be summarized as follows:

• A new point cloud completion network, MAPGNet, is proposed, which completes
missing point clouds in a phased manner into complete dense high-quality point
clouds in an adaptive point cloud growth manner. Compared with previous point
cloud completion tasks, our method can preserve the details of the input missing point
cloud and generate the missing point cloud parts with high quality.

• A composite encoder structure is proposed in which different encoding structures
in the composite encoder can focus on different complementary phases. Different
from the previous single encoder, the composite encoder with Offset Transformer fully
extracts the global frame information, local detail information and context information
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associated with the input missing point cloud, which further improves the ability of
the point cloud completion task.

• The point cloud growth module proposed combines the features of the missing point
cloud and complete skeleton point cloud to grow dense point clouds adaptively in the
predetermined spherical neighborhood. The resultant point cloud surface is smoother
and the edge is sharper.

• It is shown on different datasets that our neural network is superior to the existing
algorithm in the dense point cloud completion task.

2. Related Work

Traditional Methods. Traditional point cloud completion methods are usually di-
vided into those based on geometric structure information [27] and those based on template
retrieval [28]. The method based on geometric structure usually reconstructs the surface of
the point cloud manifold to repair the incomplete mesh or fills the hole by using the neigh-
borhood information of the missing point cloud [29]. Template-based retrieval completes
shape repair by matching missing point clouds from input to templates in the database. [30]
The method based on geometric structure loses the topological relationship and cannot be
applied to large-scale missing point clouds, while the method based on template retrieval
requires a lot of prior knowledge and manual operations, and cannot complete the shape
of unknown objects.

Learning Methods. With the booming development of deep neural networks, a
lot of research has been carried out on related tasks such as point cloud classification,
segmentation and recognition [11,18]. These tasks respectively attempt to represent the
geometrical information of point cloud with high-dimensional features. Currently, learning-
based point cloud completion methods mainly include multiview, voxel-based and direct
point cloud-based methods.

Many early works projected point clouds onto 2D planes and used common 2D
convolution operations to extract features of several new plane views [31,32], but this
method completely ignored the spatial structure of point clouds and the complementary
point clouds were not satisfactory.

In order to make the point cloud as uniform and ordered as images, the method of 3D
voxelization of point clouds has been created. This method uses 3D convolution to convolve
the cubic units after voxelization, such as 3D-ResGAN [33], 3D-EPN [34], 3D-ED-GAN [35].
However, voxelization will irreversibly lose a large number of geometric features and
texture details. To address this, GR-NET [24] maps voxels back to point clouds, which
preserves details to a certain extent, but voxel-based methods are limited by resolution,
which requires a lot of memory and computational costs, and recent research has gradually
abandoned them.

As the pioneer of point cloud learning, PointNet [11] solved the problem of point
cloud disorder. A number of variations of point cloud-based learning algorithms have
been derived such as PointNet++ [18], DGCNN [36], PointCNN [37], which has also
led to the further development of point cloud-based completion methods. As a starting
point for folding a 2D mesh into a 3D point cloud, FoldingNet [21] uses a 2D manifold to
reconstruct a 3D point cloud by multiple folding. As the first algorithm dedicated to point
cloud completion, PCN [22] generates a coarse point cloud through an encoding–decoding
framework, and then maps to a 3D point cloud using a small-scale 2D grid. Thereafter, in
order to restore more accurate geometrical shape information, the proposed TopNet [23]
tree decoder does not include any topological structure on the point set, and more generally
generates point clouds with arbitrary shapes. PF-Net [25] uses a multiscale encoder and
pyramid decoder to extract and recover more information to a certain extent by multilevel
generation of point clouds. Although the recent work on point cloud remediation such as
MSN [38], SoftPoolNet [39], PMP [26], etc. has greatly improved the capability of point
cloud completion, there are still a series of problems in the task of dense point clouds, such
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as inaccurate structure remediation, insufficient smoothness and completeness of surface
remediation, loss of details and generation of scattered points.

Transformer. Transformer originated from natural language processing and was
gradually applied to computer vision [40]. Transformer is usually an encoder–decoder
structure whose self-attention mechanism provides context information. Pioneer work
on PCT [41] and Point Transformer [42] has already shown excellent results in point
cloud classification and segmentation tasks. Transformer can effectively notice the local
information and context information of the point cloud, which is particularly important in
the point cloud completion task that requires more feature information.

3. Methods
3.1. Overview

The proposed MAPGNet aims to complete a sparse incomplete point cloud as a dense
and complete point cloud in a coarse-to-fine manner. The network inputs a missing point
cloud and outputs a complete and dense point cloud through an encoder–decoder frame
structure. The framework of MAPGNet is shown in Figure 1. The framework is divided
into three modules, namely the composite encoder feature extraction module, the skeleton
point cloud generation module and the point cloud growth module. The details of each
module and the loss function will be introduced separately below.

Figure 1. Overall framework structure of MAPGNet, composed of a composite encoder feature
extraction module, a skeleton generation module and a point cloud growth module. FPS denotes
the farthest point sampling. PWP is to extract the feature structure from the skeleton point cloud.
®denotes the copy operation. © denotes concatenation operation. ⊕ denotes add operation. Tile ×3
denotes copying the skeleton point cloud three times to form an NC × 3 vector.

3.2. Composite Encoder Feature Extraction Module

The task of the feature extraction module is to extract the geometric information and
local structure information of the input missing point cloud, and collect and summarize
the information into the generated feature vector. Different from tasks such as classification
and segmentation, point cloud completion tasks need to extract more features to recover
the complex morphological structure and texture details of dense point clouds. Most of
the completion tasks focus too much on the point cloud decoding process and ignore the
importance of obtaining more features from the input missing point cloud. In this paper,
we innovatively propose a composite encoder feature extraction module, which can extract
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a large number of point cloud features in different phases to complete a more accurate and
dense point cloud.

As shown in the Feature Extraction section of Figure 1, the module consists of three
encoders, Skeleton Feature Extraction, Growth 1 Feature Extraction and Growth 2 Feature
Extraction. Each encoder is responsible for encoding tasks in different point cloud gener-
ation stages, where the two encoders in Growth Feature Extraction are similarly used to
extract the relational features of the skeleton point cloud to the growing point cloud, and
the features of the local geometry and texture. The difference is that the Growth 2 Feature
Extraction task extracts deeper details in a smaller area, so higher-resolution point clouds
need to be input to extract more relevant local features.

The Skeleton Feature Extraction task is to extract the features of the initial skeleton
shape point cloud. Since only the roughly complete shape of the point cloud and a small
number of point clouds need to be recovered, the Skeleton Feature Extraction does not
adopt a complex encoding structure. As shown in the Skeleton Feature Extraction section in
Figure 2, the vector C is simply expanded and fused with the feature matrix in the PointNet,
which is eventually extracted by max-pooling to the features that generate the skeleton
point cloud.

Figure 2. The structure of the composite encoder, including the skeleton point cloud feature extraction
module and the dense point cloud feature extraction module. It converts the input incomplete point
cloud to feature vectors for three different completion stages.

The next stage in the Growth Feature Extraction is to extract more complex geometric
structure information at a small scale from the input point cloud, which is eventually
assembled into a feature vector FG. As shown in the Growth Feature Extraction section
in Figure 2, in order to extract the local geometric structure information and context
information of the point cloud more effectively, a local neighborhood map and Offset
Transformer structure are introduced to enhance its ability to encode local point clouds. A
local neighborhood graph is first constructed in the input point cloud, as shown in Figure 2
at Graph KNN, which consists of point pi and directed edge vij. vij is the directed edge of
the pi relative to the neighboring point pik of pi:

G = (P, V) (1)
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Among :
{

P = {pi|i = 1, 2, . . . , n}
V = {vi = (vi1, . . . , vik), |i = 1, 2, 3, . . . , n} (2)

Among :vij = pij − pi
∣∣j = 1, 2, . . . k, (3)

where k is the number of neighboring points selected, and n is the number of point clouds.
By expanding the feature P and splicing it with feature V in the neighborhood graph, a
feature matrix containing local neighborhood information is obtained, and then the fusion
feature FK of the input point cloud is obtained after max-pooling.

Figure 3 shows the Offset Transformer structure introduced in the encoder. The
purpose of introducing offset–attention in the feature expansion stage is to enhance the
ability of feature relationship perception. While paying attention to the connection between
the local structural features of the point cloud and the context, we also focus on the
connection between the skeleton point clouds and the generation of denser point clouds.
As shown in Figure 3, given a feature graph H, a new feature graph H’ with an offset and
attention mechanism is generated using the transformer with residual form.

H′ = Offset-Attention(H) = VH −Attention(QH , KH , VH). (4)

Among :

 Attention(Q, K, V) = softmax(
QKT
√

dk

)
V,

QH , KH , VH = H · (WQ, WK, WV)
(5)

where Q, K, V, in the formula denote the query matrix, the key matrix and the value
matrix computed from the input original characteristic linear transformation matrix WQ,
WK, WV. Attention (Q, K, V) is the attention mechanism transformer, softmax (·) is a
normalized exponential function. The inner product of each row vector of the matrix
Q and K is calculated. In order to prevent the inner product from being too large, a
scaling factor 1/

√
dk is added. dk denotes the dimensions of the K matrix. The offset–

attention further biases the feature map on this basis, focusing more on the structural and
spatial relationships between the skeleton point cloud and the generated point cloud, and
mitigating the influence of noise points and unimportant similar features on the overall
features, so as to recover a more accurate point cloud model.

Figure 3. Details of the Offset Transformer structure. ⊕ denotes add operation. 
 denotes
subtraction operation.

3.3. Skeleton Point Cloud Generation Module

The goal of the skeleton point cloud generation module is to generate a sparse and
complete point cloud. As shown in Skeleton Completion of Figure 1, the module uses
FC extracted by Skeleton Feature Extraction Encoder to generate a complete and accurate
geometric shape of the point cloud. The PCN network [22] confirms that the fully connected
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decoder is better at predicting the global geometry. The skeleton point cloud generation
module first adopts a fully connected network and reshapes it into a point cloud PC0 of
NC × 3. In order to make full use of the input information of the missing point cloud and
effectively add only accurate point clouds to the skeleton point cloud, we merge the PC0
with the missing point cloud, and then sample the merged point cloud to the new skeleton
point cloud PC of NC × 3 through farthest point sampling (FPS). PC is the skeleton point
cloud to be extended on this basis.

3.4. Point Cloud Growth Module

The task of the point cloud growth module is to grow new local point clouds based
on the skeleton point cloud, so as to expand the number of point clouds and refine the
point cloud details. Networks such as FoldingNet [21] and PCN [22] expand the number
of point clouds based on folding, which expands the number of point clouds by adding a
fixed 2D mesh that is slightly perturbed to deviate from the original point cloud position,
but the dense point clouds they generate are not uniform and smooth, and even multiple
mesh facets overlap each other at locations with complex point cloud structures. In order
to solve the problems based on the folding approach, a new point cloud growth method
is proposed in this paper. The point cloud adaptively grows new point clouds within the
spherical neighborhood of each skeleton point. The method as in Figure 4 increases the
number of point clouds by the two-step point cloud growth module as a way to achieve
accurate recovery of dense target point clouds.

Figure 4. Two-step growth illustration in point cloud neighborhood.

Specifically, the point cloud growth module is based on the skeleton point cloud PC,
using each independent skeleton point as the starting point pi, and adaptively growing the
required points pk

i (k represents the point cloud expansion multiplier) around the limited
sphere neighborhood of the starting point pi. Different from the folding-based method,
the point cloud growth module fully considers the geometric features of the generated
skeleton point cloud. Thus, as in the Point Growth section of Figure 1, we use the PointNet
structure without pooling (PWP) to upgrade the feature of the skeleton point cloud to
obtain the feature map FS of the skeleton point cloud. Higher-dimensional features help
predict the relationship between the skeleton point cloud and its corresponding growth
point cloud. The feature vector extracted by the Growth 1/2 Feature Extraction Encoder
is repeated k times (FD) and then concatenated with the feature map FS of the skeleton
point cloud. Meanwhile, the point cloud growth module also introduces different direction
perturbation coordinates xk

i , which ensure that the point cloud grows in different directions,
and solves the problem of point overlap. Then, a shared-MLP and tanh are used to generate
offset vectors:

∆pk
i = l × tanh(MLP( concat(FD, FS, xk

i ))), (6)
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where tanh (·) denotes the hyper-tangent activation, MLP (·) denotes multilayer percep-
tron, concat (·) denotes the concatenation operation, l denotes the radius of the sphere’s
neighborhood.

The coordinates of the final growing point pk
i are:

pk
i = pi + ∆pk

i . (7)

On the basis of the skeleton point cloud, the point cloud is grown adaptively in k
different directions in a predefined spherical neighborhood each time. Within the surface,
fitting to the surface, in the edge area, the point cloud grows in the direction of the inside
of the object. As shown in Figure 4, the point cloud growth module designed in this paper
is divided into two stages, with the neighborhood radius of the two growth stages being
reduced step by step to grow local point clouds of different resolutions. The skeleton point
cloud utilized in the second stage is the point cloud generated in the previous stage. The
two-stage point cloud growth does not restrict the specific direction and distance of the
point cloud growth, and grows the local detail point cloud in a more free manner based on
the already generated point cloud.

3.5. Training Loss

Point cloud completion tasks usually employ chamfer distance (CD) and Earth mover
distance (EMD) as loss functions to calculate the difference between point clouds [22,24,26].
Since the design is a multilevel generation module, we sample (FPS) the ground truth point
cloud into point cloud {GC,G1,G2} with the same resolution as the multilevel generated
point cloud {PC,P1,P2}. Compared with the CD, the EMD is more sensitive to the geometric
integrity of the point cloud, but it also has limitations such as a large amount of calculation
and the same sized point cloud. Therefore, in the initially generated skeleton point cloud
PC, the EMD is used as the loss function, and the EMD is defined as:

LEMD(PC, GC) = min
φ:Pc→Gc

1
|Pc| ∑

x∈Pc
||x− φ(x)||, (8)

where φ is a bijection that minimizes the distance between the corresponding point of the
generated point cloud PC and the ground truth point cloud GC. The EMD is the minimum
cost of converting two point clouds, but the cost of finding the optimal φ is too expensive,
so iterative (1 + ε) is used to approximate [22].

In the point cloud growth phase, we adopt a symmetric version of the chamfer distance
(CD), defined as:

LCD(Pi, Gi) =
1
Pi ∑

x∈Pi
min
y∈Gi
||x− y||+ 1

Gi ∑
y∈Gi

min
x∈Pi
||y− x||, (9)

where CD is the average shortest point distance between the generated point cloud and
the ground truth point cloud. The first half ensures the minimum distance between the
generated point cloud and the ground truth point cloud, and the second half ensures the
coverage of the ground truth point cloud in the generated point cloud.

Therefore, we define the total training loss as:

L = LEMD(PC, GC) +
2

∑
i=1
LCD(Pi, Gi) (10)

4. Experiments

In this section, in order to verify the effectiveness of our algorithm, we conduct analysis
experiments on two standard point cloud completion datasets, PCN and Completion3D.
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4.1. Dataset

PCN dataset. The PCN dataset is derived from the article on PCN [22], which is
the most commonly used benchmark for dense point cloud completion. There are eight
categories and 30,974 models in PCN. Each model generates point clouds of eight missing
parts from eight randomly distributed perspectives. The input missing point cloud contains
2048 points, and the corresponding complete point cloud contains 16,384 points. For
uniform evaluation, we adopt the same L1-CD as the previous completion method.

Completion3D dataset. The Completion3D dataset is derived from the article on
TopNet [23] and is a subset of the ShapeNet dataset. In Completion3D, part of the point
cloud is generated by projecting the 2.5D depth image in the reverse direction into 3D, and
the input point cloud and the ground truth point cloud are obtained by random sampling,
and there are 2048. To perform a uniform evaluation on this dataset, we used the same
L2-CD as in the previous completion methods.

4.2. Metrics

In order to compare with the previous completion algorithm at the same scale, we
choose the same measurement scale L1/L2 chamfer distance as the previous study as the
evaluation criterion. Assuming that the predicted point cloud set is X, the ground truth is
Y and the number of points in the point cloud is n, the L1-CD formula is:

LCD−L1(X, Y) =
1

nX ∑
x∈X

min
y∈Y
||x− y||+ 1

nY ∑
y∈Y

min
x∈X
||y− x||. (11)

The L2-CD version replaces Equation (11) with the L2 norm.

F-Score(d) =
2P(d)R(d)

P(d) + R(d)
(12)

However, it is pointed out in [43] that the chamfering distance is sometimes insufficient
to describe the difference between the two point clouds, so we introduce the F-score as a
supplementary measure.

P(d), R(d) denote precision and recall under the threshold value d:

P(d) =
1

nX ∑
x∈X

[
min
y∈Y
||x− y|| < d

]
(13)

R(d) =
1

nY ∑
x∈Y

[
min
x∈X
||x− y|| < d

]
(14)

4.3. Implementation Details

The proposed framework is implemented in Pytorch in Python and is trained on an
NVDIA 3080TI GPU. The Adam optimizer is adopted for the model with 300 epochs, and
the initialization learning rate is 0.0001. The learning rate is decayed by 0.8 every 50 epochs.
The batch size is set to 16. On the PCN dataset, we generate 1024 skeleton points, and then
generate 16,384 points in two steps. On the Completion3D dataset, 512 skeleton points are
generated, and 2048 points are generated in two steps.

4.4. Completion Results on PCN

On the PCN dataset, our results are compared with those of other advanced point
cloud completion methods, the quantitative comparison results are shown in Tables 1 and 2
and Figure 5 shows the visualization comparison results.
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Table 1. Point completion results on PCN dataset in terms of per-point chamfer distance (CD) with
L1 norm computed on 16,384 points and multiplied by 103. The best results are highlighted in bold
(lower is better).

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft

3D-EPN [34] 20.15 13.16 21.8 20.31 18.81 25.75 21.09 21.72 18.54
POINTNET++ [18] 14 10.3 14.74 12.19 15.78 17.62 16.18 11.68 13.52
FOLDINGNET [21] 14.31 9.49 15.8 12.61 15.55 16.41 15.97 13.65 14.99

TOPNET [23] 12.15 7.61 13.31 10.9 13.82 14.44 14.78 11.22 11.12
ATLASNET [44] 10.85 6.37 11.94 10.1 12.06 12.37 12.99 10.33 10.61

PCN [22] 9.64 5.5 22.7 10.63 10.99 11 11.34 11.68 8.59
SOFTPOOLNET [39] 9.205 6.93 10.91 9.78 9.56 8.59 11.22 8.51 8.14

MSN [38] 9.97 5.6 11.96 10.78 10.62 10.71 11.9 8.7 9.49
GRNET [24] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04

PMP [26] 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25

OURS 8.59 4.85 10.44 8.32 9.95 7.56 11.15 8.31 8.18

Table 2. Point completion results on PCN dataset in terms of F-score computed on 16,384 points. The
best results are highlighted in bold (higher is better).

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft

ATLASNET [44] 0.616 0.845 0.552 0.630 0.552 0.565 0.500 0.660 0.624
PCN [22] 0.695 0.881 0.651 0.725 0.625 0.638 0.581 0.765 0.697

FOLDINGNET [21] 0.322 0.642 0.237 0.382 0.236 0.219 0.197 0.361 0.299
TOPNET [23] 0.503 0.771 0.404 0.544 0.413 0.408 0.350 0.572 0.560

MSN [38] 0.705 0.885 0.644 0.665 0.657 0.699 0.604 0.782 0.708
GRNET [24] 0.708 0.843 0.618 0.682 0.673 0.761 0.605 0.751 0.750

OURS 0.729 0.913 0.650 0.749 0.680 0.749 0.612 0.788 0.754

Quantitative Comparison. The comparison between MAPGNet and other advanced
methods for point cloud completion is shown in Tables 1 and 2. Ours is superior to
other methods on the average L1-CD of all categories in the PCN dataset, improving 1.6%
over the second best PMP algorithm, which proves that ours has certain generalization
ability in completing different shape categories and has the best performance index. In
the categories of plane, car and table, ours achieved the best results in the measurement
of L1-CD. MAPGNet achieved better results in four categories compared to PMP. Overall,
ours has better performance. Compared with GRNet, GRNet’s cabinet and couch are better
than ours in indicators, because GRNet is based on 3DCNN, which is more suitable for
completing some planar and cubic objects. PCN, SoftpoolNet, MSN and MAPGNet are all
coarse-to-fine point cloud completion methods, in which we also show better performance
indicators. Meanwhile, in the supplementary measure of F-score in Table 2, ours improved
3% over GRNet and achieved the best of the six categories and average results, which
shows that our algorithm performs better. Therefore, the best results are achieved in the
task of completing dense point clouds of PCN datasets.

Visual Comparison. To further evaluate MAPGNet’s ability to complete missing point
clouds, in Figure 5, an intuitive visualization compares MAPGNet with other advanced
algorithms, and our method achieves better visual effects. The dense point cloud completed
by MAPGNet has more accurate local structure, smoother surface and less scattered points.
At the same time, the edge of the predicted point cloud is sharper and can accurately
describe the range of the edge. The example we selected is the more complex missing
point cloud. Our method can accurately predict the complex details such as the blade of
the aircraft, the armrest of the chair and the leg of the table while retaining the missing
point cloud. Meanwhile, the generated point cloud distribution is very uniform and dense.
However, PCN and GRNet have been unable to predict the part of the local missing detail
point cloud. Essentially, PMP increases the number of points by multiple moving points,
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which will have many overlapping points when generating dense point clouds, and the
distribution of point clouds is very sparse, which can also be confirmed in the visual
comparison in Figure 5.

Figure 5. Comparison of visualization results on PCN dataset. Compared with other advanced
algorithms, MAPGNet (Ours) has better visualization completion effect and can produce more
accurate geometric structures and smoother surfaces. Ground Truth is the real complete point cloud
corresponding to the Input.

4.5. Completion Results on Completion3D

With the Completion3D dataset, we visually compare our completion results with
other advanced methods, and the results of the comparison are shown in Table 3 and
specifically in Figure 6.

Quantitative Comparison and Visual Comparison. The comparison of MAPGNet
with other advanced algorithms on the Completion3D dataset is shown in Table 3. Our
method is mainly aimed at the completion of dense point clouds. Since the point cloud
volume of Completion3D is 2048, it cannot fully demonstrate the ability of our algorithm to
predict surfaces. However, it still shows good performance in the overall average value
and L2-CD of airplane, cabinet, car, couch and watercraft. In Figure 6, the input point cloud
with a large missing area is selected. We can see that when PMP (the second best algorithm
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in Table 3) cannot accurately predict the geometric structure of the object, our algorithm can
still accurately predict it. This is because the PMP method is based on the complementation
of moving points. In the case of wide-range missing, the predicted point of original point
cloud movement cannot reach the missing position accurately, which is the reason why
PMP failed to forecast under the complex large-range missing point cloud. Our method
has a natural advantage over PMP because it can cover the whole missing part and make
up the geometric details when predicting large-scale missing. Therefore, our method also
achieves the best result on Completion3D.

Table 3. Point completion results on Completion3D dataset in terms of per-point chamfer distance
(CD) with L2 norm computed on 2048 points and multiplied by 104. The best results are highlighted
in bold (lower is better).

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft

FOLDINGNET [21] 19.07 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51
PCN [22] 18.22 9.79 22.7 12.43 25.14 22.72 20.26 20.27 11.73

POINTSETV [45] 18.18 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16
ATLASNET [44] 17.77 10.36 23.4 13.4 24.16 20.24 20.82 17.52 11.62

SOFTPOOLNET [39] 16.15 5.81 24.53 11.35 23.63 18.54 20.34 16.89 7.14
TOPNET [23] 14.25 7.32 18.77 12.88 19.82 14.6 16.29 14.89 8.82
SA-NET [46] 11.22 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84
GRNET [24]

PMP [26]
10.64
9.23

6.13
3.99

16.9
14.7

8.27
8.55

12.23
10.21

10.22
9.27

14.93
12.43

10.08
8.51

5.86
5.77

OURS 8.87 2.92 13.53 6.01 11.05 10.76 9.15 11.87 5.71

Figure 6. Visual comparison with PMP (the second best algorithm) on the Completion3D dataset.
The visualizations completed by MAPGNet (OURS) have a more accurate geometry. Ground Truth is
the real complete point cloud corresponding to the Input.

5. Model Analysis

In order to verify the impact of each part of our algorithm on the overall network
system, we analyze the modules of the different parts proposed. Aircraft, car, couch and
watercraft were selected for verification experiments in the PCN dataset. By default, we
only remove or change the structure of the part that needs to be analyzed, while the network
structure of other parts remains unchanged.
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5.1. Analysis of Composite Encoder Module

We analyze the effectiveness of the composite encoder by changing the composite
encoding (CE) to a single encoder and changing the type of encoder. The experiments on
encoder modules are divided in the following ways:

(1) Change encoder to PointNet [11].
(2) Change the encoder to PointNet++ [18].
(3) Change encoder to DGCNN [36].

By comparing the impact of different encoders on the final results, it can be seen
from Table 4 that the final L1-CD metric can be improved significantly with the composite
encoder. Utilizing the same features at different stages can lose information about the point
cloud details. Compared with other encoders, the composite encoder uses different features
at different stages, which enables the encoder to focus more on that part of the features at
that stage, thus recovering more accurate details of the point cloud.

Table 4. Analysis and comparison results of different encoders in terms of per-point chamfer distance
(CD) with L1 norm computed on 16,384 points and multiplied by 103. The best results are highlighted
in bold (lower is better).

Evaluate Avg. Airplane Car Couch Watercraft

PointNet 9.125 5.72 9.32 12.15 9.23
PointNet++ 8.53 5.50 8.97 11.43 8.22

DGCNN 8.57 5.53 8.78 11.46 8.51

CE 8.13 4.85 8.32 11.15 8.18

5.2. Analysis of Limited Sphere Neighborhood Radius

The size of the radius of the ball neighborhood of the point cloud growth module has
an impact on the final generated results. In the process of growing the dense point cloud in
two stages after generating the skeleton point cloud, the radius of the point cloud grown in
the first stage is r1, and the radius of the point cloud grown in the second stage is r2. The
following experiments are conducted with spherical neighborhoods of different radii.

According to Table 5 and Figure 7, when the sphere neighborhood radius is set too
large, some of the points growing near the skeleton point will deviate from other skeleton
points, which will eventually result in a non-smooth surface, and even a slight shadow
and scattering of points. When the radius of the sphere neighborhood is set too small, the
points growing near the skeleton points will appear aggregated, and there are irregular
holes on the generated surface. In serious cases, there will be problems such as sparse and
uneven distribution of point clouds caused by point cloud overlap. Therefore, considering
that the model needs to be suitable for multiple types of problems, we finally select the
radius of the two-level spherical neighborhood with the best index as [0.2, 0.1].

Table 5. Comparison of results for different radii in the sphere neighborhood in terms of per-point
chamfer distance (CD) with L1 norm computed on 16,384 points and multiplied by 103. The best
results are highlighted in bold (lower is better).

Radius Avg. Airplane Car Couch Watercraft

[0.5, 0.25] 8.46 5.05 8.9 11.51 8.39
[0.4, 0.2] 8.26 5.07 8.7 11.02 8.27
[0.2, 0.1] 8.13 4.85 8.32 11.15 8.18
[0.1, 0.05] 8.29 5.11 8.27 11.32 8.46

[0.02, 0.01] 8.61 5.32 8.86 11.63 8.59
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Figure 7. Visualization results for different neighborhood radii. The radius of (a) is too large, (b) too
small, (c) applicable.

5.3. Analysis of Offset Transformer Structure

Four groups of Offset Transformer are added to the network structure. In order to
evaluate the impact of Offset Transformer, we designed the following three experiments:

(1) Remove Offset Transformer.
(2) Replace Offset Transformer with channel-attention mechanism SE-Net [47].
(3) Replace Offset Transformer with normal Transformer.

In Table 6, by removing the attention mechanism module, it is found that Offset
Transformer can improve the performance indicators of the model, which should be related
to the fact that Transformer can notice the local information and contact context of the
point cloud. By comparing the results of different attention mechanism modules in the
above table, we can also find that Offset Transformer has better results than the other two
attention mechanisms, which also confirms the effectiveness of Offset Transformer. The
Offset Transformer module in the Growth Feature Extraction can focus on more useful
local features and associate them with the features of the skeleton point cloud, so that it can
extract more useful detail information in the encoding process.

Table 6. The effect of Offset Transformer on network performance in terms of per-point chamfer
distance (CD) with L1 norm computed on 16,384 points and multiplied by 103. The best results are
highlighted in bold (lower is better).

Evaluate Avg. Airplane Car Couch Watercraft

w/o Attention 8.35 4.94 8.55 11.53 8.38
SE 8.26 5.01 8.33 11.46 8.22

Normal Transformer 8.16 4.92 8.37 11.32 8.06

Offset Transformer 8.13 4.85 8.32 11.15 8.18
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5.4. Analysis of PWP Decoding Structure

The point cloud generation module needs to expand the number of point clouds
exponentially, where the features of the skeleton point cloud need to be spliced and fused
with the features in dense feature extraction (DFE). Each point of the skeleton point cloud
is up-dimensioned with a PointNet structure without pooling and then stitched. We
replace the structure of PWP with the three-dimensional coordinates of the skeleton point
cloud and the local folding operation in PCN. The following three experiments were
designed separately.

(1) Splicing directly with the skeleton point coordinates and DFE features.
(2) Splicing DFE features using folding in PCN.
(3) No disturbance vector.

In Table 7, it is obvious that up-dimensioning the skeleton point cloud by using the
PWP structure to up-dimension the features can substantially improve the final perfor-
mance metrics. Compared to replacing it with a folding structure in PCN, our method
improves 7.8% in L1-CD and 13.9% in metrics compared to the direct stitching with coordi-
nates of points. The disturbance vector added by the growth module can slightly improve
the final results, because different disturbance vectors can avoid excessive overlapping of
points grown in the neighborhood of the sphere. The point cloud growth module allows
point clouds to be grown freely in the spherical neighborhood, rather than folding into
three-dimensional point coordinates as two-dimensional grid points. In Figure 8, it is clear
that our method is more flexible and versatile compared to the folding decoding structure,
sharper at the edges of the point cloud model and smoother and more uniform where the
point clouds are distributed over large surfaces.

Table 7. Analysis and comparison of PWP in the point cloud growth module in terms of per-point
chamfer distance (CD) with L1 norm computed on 16,384 points and multiplied by 103. The best
results are highlighted in bold (lower is better).

Evaluate Avg. Airplane Car Couch Watercraft

Point cloud
coordinates 9.26 5.76 10.65 11.88 8.74

PCN-FOLDING 8.82 5.25 10.37 11.24 8.42
w/o disturb 8.21 4.96 8.43 11.25 8.19

PWP 8.13 4.85 8.32 11.15 8.18

Figure 8. Visual comparison of our PWP structure and folding structure. (a) Folding, (b) PWP.

5.5. Ablation Experiments

The improved performance of MAPGNet is mainly attributed to three key components:
the design of the composite encoder (CE), the PWP structure in the growth module and the
Offset Transformer. By comparing and analyzing the data in Tables 4, 6 and 7, we can prove
the effectiveness of each component, and the indicator is the specific improvement percentage.

From Table 8, we can see that the PWP can be improved by 8.49% compared with
the traditional folding structure, which shows that the decoding is very important for the
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characterization of local details. The composite encoder can extract more missing features
from the input point cloud, which is 4.8% higher than that of PointNet++. As an attention
mechanism structure, Offset Transformer can also improve the performance by 2.71%. All
in all, these three modules improve the performance of the system to a certain extent and
play an indispensable role.

Table 8. Ablation experiments on dataset PCN, the results in terms of per-point chamfer distance (CD)
with L1 norm computed on 16,384 points and multiplied by 103. Enhance percent is the influence of
the module on the overall promotion.

MAPGNet w/o
Offset Transformer

MAPGNet w/o
CE + POINTNET++

MAPGNet w/o
PWP + FOLDING MAPGNet

Avg. 8.35 8.53 8.82 8.13

Enhance Percent 2.71% 4.82% 8.49% /

6. Discussion

We visualized all completed objects in the test set, and we found that the MAPGNet
did not predict accurately in both cases.

The input point cloud is too small in Figure 9, resulting in too little 3D feature informa-
tion. Multiple similar objects may contain a common part. When the input point cloud is
the common part, the completed result will be confused, and it may be completed as other
similar objects. Currently, almost all algorithms cannot solve this problem.

Figure 9. Failure example of the part of the input point cloud being too small.

In Figure 10, the independent structures in the same object are not connected, and
the independent parts may be very close to each other. Our method sometimes connects
adjacent independent structures together incorrectly, so the effect of complementing objects
with independent structures is not good. In this case, there may be too few objects with
independent structures in the training set, and the prior knowledge cannot be fully learned.

Figure 10. Failure example of objects containing independent structures.
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7. Conclusions

In this paper, we propose a novel adaptive point-growth network MAPGNet for dense
point cloud completion, which extracts the features of missing point clouds sufficiently
by designing multiple encoders, and then generates dense and complete point clouds in
spherical neighborhoods adaptively through two-stage point cloud growth modules. It
solves the problems of inaccurate completion of complex structures, insufficient smoothness
and completeness of surface completion, loss of details and scattered points in dense point
cloud completion tasks. We analyze several existing advanced point cloud completion algo-
rithms. The experimental results prove that our method achieves better results in different
point cloud completion tasks, and shows that our method has excellent reconstruction and
completion capabilities for different kinds of point cloud objects.
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