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Abstract— Recently, satellite video has become an emerging
means of earth observation, providing the possibility of tracking
moving objects. However, the existing multi-object trackers
are commonly designed for natural scenes without considering
the characteristics of remotely sensed data. In addition, most
trackers are composed of two independent stages of detection
and reidentification (ReID), which means that they cannot be
mutually promoted. To this end, we propose an end-to-end online
framework, which is called TGraM, for multi-object tracking
in satellite videos. It models multi-object tracking as a graph
information reasoning procedure from the multitask learning
perspective. Specifically, a graph-based spatiotemporal reasoning
module is presented to mine the potential high-order correlations
between video frames. Furthermore, considering the inconsis-
tency of optimization objectives between detection and ReID,
a multitask gradient adversarial learning strategy is designed to
regularize each task-specific network. In addition, aiming at the
data scarcity in this field, a large-scale and high-resolution Jilin-
1 satellite video dataset for multi-object tracking (AIR-MOT) is
built for the experiments. Compared with state-of-the-art multi-
object trackers, TGraM achieves efficient collaborative learning
between detection and ReID, improving the tracking accuracy
by 1.2 multiple object tracking accuracy. The code and dataset
will be available online (https://github.com/HeQibin/TGraM).

Index Terms— Graph reasoning, multi-object tracking, multi-
task learning (MTL), satellite video.

I. INTRODUCTION

MULTI-OBJECT tracking, aimed at detecting objects and
associating them in time series, is essential in many

fields, such as security monitoring, motion analysis, and traffic
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Fig. 1. Example of moving object detection and tracking in the AIR-MOT
dataset. (a) Local area of Sanya in a frame of the satellite video. (b) Partially
enlarged image of (a). Local area often contains multiple objects, but tracking
methods in remote sensing mainly focus on single object. (c) Ground truth of
moving object. (d) Result of [19], where the correct detections are in green,
the missed detections are illustrated in pink and the false detections are in
white (best viewed in color). Most previous multi-object trackers in computer
vision only use spatial features and perform detection independently, making
it difficult to detect objects with motion blur and dense distribution.

control [1], [2]. With the development of aerospace technol-
ogy, spaceborne remote sensing has become an effective means
of earth observation, especially the high-resolution satellite
videos that can provide the possibility of tracking ground
moving objects.

In recent years, several methods have been proposed for
object tracking in satellite videos [4]–[11]. However, these
methods mainly focus on a single object, which contradicts the
multi-object characteristics of remotely sensed data, as shown
in Fig. 1(a) and (b). High-resolution videos taken by satellites
usually cover a wide area with multiple moving objects.
Parallel tracking of multiple objects can help analyze video
content and improve the efficiency of earth observation.

Although there are a few mature multi-object tracking
methods in remote sensing, some cases in computer vision
can provide a reference. Advanced online multi-object track-
ing methods can be roughly divided into two categories:
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Fig. 2. Comparison of different online multi-object tracking pipelines.
Our TGraM belongs to the JDT paradigm. Different from the traditional
JDT methods, the proposed STeRe module in TGraM uses motion clues to
improve detection, by modeling multitemporal features as an undirected graph.
In addition, the designed MAGra strategy introduces adversarial learning to
promote the similarity of the loss gradient distribution between detection and
ReID tasks. (a) DBT. (b) JDT. (c) TGraM (ours).

detection-based-tracking (DBT) [12]–[15], [17], [25] and
joint-detection-and-tracking (JDT) [18]–[26]. As shown in
Fig. 2(a), the DBT paradigm treats detection and tracking as
two independent tasks. It employs an off-the-shelf detector
to generate detections and then applies another network to
associate. This two-stage processing makes the DBT system
inefficient and difficult to achieve real-time tracking. Since low
latency is significant for spaceborne remote sensing, DBT is
mostly not applicable. To settle this problem, the JDT methods
are designed to perform detection and tracking simultaneously
in a single-forward inference, as shown in Fig. 2(b).

However, directly applying the existing JDT methods to
satellite videos will have some limitations: 1) although most
JDT methods share the backbone network, the tracking
clues are not utilized during the detection stage, which may
lead to poor performance in satellite videos. As shown in
Fig. 1(c) and (d), the objects in satellite videos tend to be
small, motion blur, and dense distribution due to the long-
distance bird’s view. Only relying on the spatial appearance
features is insufficient for accurate detection. We believe that
appropriate use of tracking clues (i.e., the predicted tracking
offset of each object) will be a benefit to detection, and,
in turn, reliable detection is the basis for a consistent and stable
tracklet. 2) The JDT method essentially models multi-object
tracking as a multitask learning (MTL) problem, composed
of detection and ReID tracking. But the common detection
loss is not compatible with ReID loss in jointly training the
shared network. The optimization objective of the training
detection task is to expand interclass variance, while ReID
pays more attention to intraclass variance [27]. Most existing
JDT methods ignore such a phenomenon, leading to poor
tracking performance to some extent. In the training phase,

if the gradients of the two task losses are indistinguishable for
the shared network, the problem can be effectively improved.

In this article, we propose a novel end-to-end online
framework for accurate yet efficient multi-object tracking in
satellite video, called Tracking via Graph-based Multitask
Reasoning (TGraM). TGraM models multi-object tracking as
a message reasoning-based graph information fusion process
from an MTL perspective. By integrating tracking clues
into the detection and designing a specially designed mul-
titask training scheme, the above-mentioned two problems
can be well-solved. Concretely, we propose a graph-based
spatiotemporal reasoning (STeRe) module and a multitask
adversarial gradient (MAGra) learning strategy. STeRe con-
structs a fully connected graph based on each video frame and
performs graph reasoning on the stored explicit semantics to
capture the matching similarity. Semantic similarity is treated
as the motion clue, which assists the object feature propagation
through message aggregation, thus forming spatiotemporal
long-range dependencies. Then, MAGra conducts gradient
adaptation for detection and ReID tasks in the training phase.
After adaptation, the gradient tensor returned by each task
loss function is indistinguishable, facilitating the collaborative
learning of all shared layers.

In the STeRe module, the video frames are indicated as
nodes, while the pairwise relations between two frames are
expressed as the edge between the corresponding nodes. Graph
convolution is applied to perform Laplacian smoothing on the
graph. Such reasoning cannot only extract the joint seman-
tics in the embedding space but also build spatiotemporal
long-range dependencies. This guarantees that the input of
detection and ReID incorporates temporal motion clues. Then,
MAGra trains the gradient discriminator between the shared
network and head network (i.e., detection and ReID); thus,
the gradient distribution of each task tends to be similar,
as shown in Fig. 2(c). The discriminator employs gradient
backpropagation to pass the adversarial signal back to the
main network to regularize its weights, similar to double
backpropagation [28]. Therefore, the performance degradation
caused by different learning objectives of detection and ReID
task can be alleviated.

In summary, the main contributions are as follows.
1) We present a novel end-to-end online framework,

called TGraM, for accurate yet efficient tracking in
high-resolution satellite videos. Compared with other
trackers, it achieves efficient collaborative learning
between detection and ReID and realizes parallel
real-time tracking for multiple objects.

2) The STeRe module is proposed to mine the poten-
tial high-order correlations through graph reasoning
and construct spatiotemporal long-range dependencies.
In this way, the tracking performance for tough scenarios
(i.e., the objects with motion blur and dense distribution)
can be improved effectively.

3) Considering the inconsistency of learning objectives
between detection and ReID, the MAGra strategy is
designed to eliminate discriminative information of
gradient sources and regularize the task-specific network
via adversarial signal.
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4) To verify the effectiveness of the proposed frame-
work, we build a large-scale and high-resolution satellite
video dataset for multi-object tracking (i.e., AIR-MOT),
including two types of objects: aircrafts and ships. AIR-
MOT will be opened to the community, which is one of
the earliest public datasets in this field.

The experimental results on AIR-MOT demonstrate that our
TGraM achieves better tracking performance than previous
methods, proving the superiority.

II. PRELIMINARIES AND RELATED WORKS

TGraM applies graph reasoning to construct spatiotemporal
dependencies and models multi-object tracking from the per-
spective of MTL. In this section, we will review the relevant
basic principles.

A. Graph Reasoning

Graph convolution is a reasoning operation similar to con-
volution that performs on graph structure data [32]. Given an
undirected graph G = (V, E) and its adjacency matrix A, its
degree matrix D is the diagonal of A. Correspondingly, the
normalized Laplacian matrix L of graph G can be defined as

L = I − D−
1
2 AD−

1
2 (1)

where I is the identity matrix. L is a positive semidefinite
matrix, including a complete set of eigenvectors V , determined
by L = V�V T . Using V to perform the Fourier transform
of the graph (i.e., ŝ = V T s), the graph signal s ∈ R

n can be
converted to the spectral domain.

Extending the convolution to the structured space of the
graph, it can be understood as decomposing s in the spectral
domain and then multiplying the corresponding frequencies by
the spectral filter gθ (parameterized by θ ∈ R

n), namely

gθ � s = V gθ V T s. (2)

Equation (2) needs to explicitly calculate the Laplacian eigen-
vectors, causing a lot of computational burden. To improve
this problem, Defferrard et al. [33] try to use Chebyshev
polynomials to approximate gθ to the K th order. Thus, the
convolution of the graph signal s can be expressed as

gθ � s ≈
K�

k=0

θ k T k s (3)

where {θ k} is the Chebyshev coefficient vector and {T k}
is the Chebyshev polynomial. Later, Kipf and Welling [32]
further simplify (3) by restricting K = 1, and approximate
the maximum eigenvalue of L to 2. Based on this, the graph
convolution is transformed into

gθ � s = θ
�

I + D−
1
2 AD−

1
2

�
s. (4)

Equation (4) is further normalized by the following equation:
I + D−

1
2 AD−

1
2 → D̃

− 1
2 ÃD̃

− 1
2 (5)

where Ã = A + I and D̃ii = �
j D̃ j j . Thus, the layerwise

propagation rules of graph convolutional network (GCN) are
as follows:

H(l+1) = σ
�

D̃
− 1

2 ÃD̃
− 1

2 H (l)θ (l)
�

(6)

where H (l) and H (l+1) are the vertex features of the lth layer
and l+1th layer, respectively, θ (l) is the weight matrix of layer
l, and σ is nonlinearity activation function.

Equation (6) clarifies the details of the convolution of
the graph structure data. Some works have applied it to
multi-object tracking to improve feature representation, but
they mainly focus on the postprocessing, i.e., formulating
the data association as a graph matching problem [57], [63].
Differently, our STeRe module applies (6) to reason spatiotem-
poral long-range dependencies, and then assists detection
and ReID instead of postprocessing. In addition, we design
a data-driven approximate adjacency matrix A to facilitate
learning contextual patterns.

B. Multitask Learning

MTL means that the model can infer the output of multiple
tasks under a given input. Specifically, in the era of deep
learning, MTL attempts to design a neural network that can
learn shared representations from supervision signals of mul-
tiple tasks. Compared with the single-task situation, the MTL
network benefits from inherent layer sharing, which can reduce
memory usage and increase inference speed. In addition, the
shared information of related tasks can also be adjusted to
complement each other to improve performance. The current
mainstream MTL network design technology can be divided
into: soft parameter sharing [36]–[38] and hard parameter
sharing [30], [39].

However, when the training optimization objectives of each
task are inconsistent (e.g., detection and ReID in multi-object
tracking), the joint learning of multiple different tasks is
likely to negative transfer [40]. To address this problem, one
idea is to explicitly construct complementary task-specific
representations [41], [42], but the complexity raises with the
number of tasks. Another idea is to eliminate factors that
may hurt the performance of other tasks from the current
task training [43], [44]. Bousmalis et al. [45] use similarity or
orthogonality constraints to decouple network sharing or task-
specific features. Ganin and Lempitsky [46] and Liu et al. [47]
propose using adversarial training for domain adaptation in the
feature space so that the discriminator cannot distinguish the
source domain.

We understand that this training setting can promote
network partition learning. Compared with previous work,
the designed MAGra strategy hopes that the loss gradient
of each task has a similar static distribution. It introduces a
gradient discriminator into the training to add extra capacity
to the network, instead of directly assigning weights. The
discriminator is only active in backpropagation and will not
affect the inference speed.

III. METHODOLOGY

Our goal is to integrate motion clues into detection to
improve the tracking in tough scenes, and to alleviate the
inconsistency of optimization objectives between detection and
ReID based on MTL. To this end, we propose a graph-based
STeRe module (Section III-B) to construct spatiotemporal
dependencies and derive object motion, and an MAGra
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Fig. 3. Overview of the proposed TGraM framework. TGraM employs the STeRe module to build multitemporal (i.e., T > 1) content into an undirected
graph, and then extracts the joint semantics in the embedding space to generate spatiotemporal feature ot . In the training phase, the MAGra strategy introduces
the adversarial signal produced by the gradient discriminator to regularize the head network of each task, so that the gradient distribution tends to be similar.
(a) Video graph. (b) Feature extraction. (c) Initial node and edge states. (d) Message reasoning and gated aggregation. (e) Node states update. (f) Readout.
(g) Task-specific output. (h) Compute loss for each task. (i) Gradient adaptation.

learning strategy (Section III-C) for gradient adaptation and
task-specific network regularization.

A. Overview

The proposed TGraM employs a point-based approach to
object tracking, regarding each point on the feature map
as the object center or background. Given a video I =
{I t ∈ R

HI×WI×3}Nt=1 with N frames, the tracker first uses
the backbone network to generate corresponding feature maps
F = {Ft ∈ R

H×W×C}Nt=1, where H = (HI/8), W = (WI /8),
C = 96. As shown in Fig. 3, the STeRe module models
{Ft−T+1, Ft−T+2, . . . , Ft} as an undirected graph G = (V, E),
in which t and T , respectively, indicate the current time
and the total selected times (i.e., the number of nodes). The
node vi ∈ V indicates the feature map of the i th frame
Fi , and the edge ei, j = (vi , v j) ∈ E indicates the relation
between Fi and F j . The adjacency matrix element ai, j ∈ A
indicates the concrete weight of the edge ei, j . For each node
vi , we apply graph convolution to reason the message mi (i.e.,
the information summary from its neighbor N i ) and update its
state si

mi =
�

v j∈N i

mi, j =
�

v j∈N i

M
�
s j , ai, j

� ∈ R
H×W×C (7)

si = U
�
s0

i , mi
� ∈ R

H×W×C (8)

where the initial state s0
i = vi . M(·) and U(·) are, respectively,

message function and state update function. After updating, the
spatiotemporal long-range dependency is constructed. Then

the readout function O(·) is used to map the node representa-
tion at the current time to the node output

ot = O(st) ∈ R
H×W×C . (9)

ot is the output of the tracker’s shared network Ns(·; θ s)
(parameterized by θ s ). On this basis, the detection and ReID
head networks {Ni

h(·; θ i
h)}1i=0 (parameterized by θ i

h) are built
separately, and the corresponding task-specific output is gen-
erated.

Then, training the tracker derives the following optimization
problem:

min
θ s ,θ

0
h ,θ 1

h

1

2

1�
i=0

Li
h

�
θ s, θ

i
h

�+ λ · R�
θ0

h, θ
1
h

�
(10)

where {Li
h}1i=0 indicate the loss function of each task (similar

to the setting in [48]), and R is an optional regularizer. Due to
the inconsistency of optimization objectives between detection
and ReID, the MAGra strategy is designed to promote the
loss gradients of these two tasks Gd ∈ R

n and Gr ∈ R
n

(n = H × W × C) to have similar statistical distribution.
Based on [49], the empirical H-divergence between Gd and
Gr is used to estimate the distribution similarity

d̂H(Gd , Gr ) = 2

⎛
⎝1−min

η

1

n

⎡
⎣ �

x∈Gd

I [η(x) = 0]

+
�
x∈Gr

I [η(x) = 1]

⎤
⎦

⎞
⎠ (11)
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Fig. 4. Computation procedures of the similarity matrix ai, j and message
mi, j . ai, j is calculated as an attention mechanism of node state si and s j ,
while mi, j is reasoned through graph convolution.

where η(·) is the binary classifier, and I [·] is the indicator
function. Specifically, MAGra estimates the “min” part of (11)
through a gradient discriminator network Nd (·; θd) (parameter-
ized by θd). The learning of θd allows us to add a distribution
adaptation term (i.e., regularizer R) to (10), and compete with
{θ i

h}1i=0 over the objective in an adversarial manner.

B. Graph-Based Spatiotemporal Reasoning

The key idea of the STeRe module is to perform message
reasoning and passing on G to mine the rich high-order
spatiotemporal relations within I. This assists to capture video
content from a global perspective, thereby improving dense
and motion blurred objects in some frames. To fully model
the basic relations between video frames, G is assumed to
be fully connected, and each node includes self-connections.
SteRe essentially extends the traditional connected GNNs, not
only preserving spatial information but also extracting paired
relations (edges) through a differentiable attention mechanism.

The edge ei, j ∈ E connects the nodes vi and v j , and the
corresponding ai, j is used to mine the semantic relation in
the embedding space. For the case of i = j , ei,i connects
the node to itself. ai,i is used to capture the internal corre-
lation of the node state si (i.e., the internal representation
of the frame). As shown in Fig. 4, ai, j is calculated as an
attention mechanism, convenient for modeling multilevel and
long-range dependencies across regions

ai, j = Fatt
�
si , s j

� = si W csT
j ∈ R

(H W )×(H W ) (12)

where W c ∈ R
C×C indicates the learnable weight, si ∈

R
(HW)×C and s j ∈ R

(HW)×C are flattened into matrix forms.
Since G is an undirected graph, A is a symmetric matrix
(i.e., ai, j = aT

j,i ). Each element of ai, j reflects the similarity
between each row in si and each column of sT

j . ai, j explores

the joint semantic representation by paying attention to each
node pair (vi , v j).

For the message mi, j received from the node v j , we apply
graph convolution [i.e., (6)] to reason

mi, j = M
�
s j , ai, j

� = σ
�
ai, j s j W m

� ∈ R
(H W )×C (13)

where σ is the logistic sigmoid function, and Wm ∈ R
C×C

indicates the weight matrix. In previous studies [29], [34],
the adjacency matrix is mostly data-independent parameters.
To better preserve the internal spatial structure, our ai, j is care-
fully designed to ensure that the learning long-range context
pattern depends on the input features. The message function
M(·) allocates the edge-weighted feature (i.e., message) of a
node to its neighbors. The long-range dependencies between
objects at different time (frames) are, thus, constructed. Then,
mi, j is reshaped into a 3-D tensor of H × W × C .

Besides, some nodes produce noise because of motion blur
or dense distribution, so their messages may be useless or even
deleterious. We present the learnable gate G(·) to evaluate the
confidence of message mi, j

pi, j=G
�
mi, j

�=σ
�
FGAP

�
W g ∗ mi, j+bg

�� ∈ [0, 1]C (14)

where “*” indicates convolution operation, FGAP(·) indicates
channel response generated by global average pool, and W g

and bg are learnable convolution filters and bias, respectively.
Following (7), node vi uses gated summarization to collect

messages from neighbors and itself

mi =
�

v j∈N i

pi, j � mi, j ∈ R
H×W×C (15)

where “�” indicates the channelwise Hadamard product. Here,
the gate mechanism is utilized to filter irrelevant information
from node noise. After aggregating all the information from
itself and neighbor nodes, vi obtains a new state si based on
the prior state s0

i and the received message mi

si = U
�
s0

i , mi
�= tanh

�
Wu ∗ FCAT

�
s0

i , mi
�� ∈ R

H×W×C (16)

where tanh is the hyperbolic tangent function, FCAT(·) indi-
cates channel concatenation, and Wu is the convolution filter.

After the message reasoning and passing, we obtain the
node output at the current time t from st by readout function
O(·). Slightly different from (9), we also feed the initial state
s0

t to O(·)
ot = OFCN

��
st , s0

t

�� ∈ R
H×W×C . (17)

To preserve the spatial information, the readout function is
realized as a tiny FCN network, including two convolutional
layers and a sigmoid function.

STeRe formulates the feature map of each frame as the node,
where each pixel is regarded as a potential object. Compared
with employing tracklets as nodes [23], our method is more
robust, because the detection of previous frames does not affect
the current frame. STeRe constructs the long-range dependen-
cies of the objects at different times (frames) through message
reasoning, and then propagates past features to update the
current node. What is more, the above-mentioned functions are
meticulously devised to avoid spatial information interference,
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Fig. 5. Influence of MAGra on the distribution of the gradients on the
AIR-MOT training set (best viewed in color). This illustrates t-SNE [52]
visualization of the gradient tensor (a) in circumstance as no adaptation is
performed and (b) in circumstance as our MAGra is incorporated into training.
Red points represent the examples from the detection head, while blue ones
correspond to the ReID head. The adaptation in our MAGra promotes the two
distributions of gradients much closer.

and weights are shared among all nodes. This is essential
for TGraM because it needs to complete real-time tracking
of multiple objects.

C. Multitask Adversarial Gradient Learning

To ensure that no discriminative information about the gra-
dient source (i.e., detection or ReID) is included in the shared
network training, while keeping the risk low, the MAGra
strategy is proposed. The gradient distributions from different
tasks are expected to be sufficiently similar, i.e., the empirical
H-divergence [i.e., (11)] is sufficiently small, as shown in
Fig. 5. Ben-David et al. [50] point out that when d̂H is difficult
to accurately calculate, an algorithm that distinguishes the
source of the distribution can be used for estimation. Inspired
by this, MAGra employs the risk of training gradient dis-
criminator Nd (·; θd) :→ {0, 1} to approximate the “min” part
of (11). Nd (·; θd) receives the gradient tensor g ∈ R

H×W×C

from each task as input, and classifies the source. We define
the loss as

Ld(Nd (g; θd), d) = d log
1

Nd (g; θd)

+ (1− d) log
1

1− Nd (g; θd)
(18)

where d is the binary label for distribution of g, indicating that
g is the loss gradient from detection (g ∼ Gd if d = 0) or
ReID (g ∼ Gr if d = 1). This allows us to add the following
regularizer to (10):

R
�
θ0

h, θ
1
h

�=max
θd

⎧⎨
⎩−1

2

⎡
⎣ �

g∈Gd

Ld
�
θ0

h, θd
�+�

g∈Gr

Ld
�
θ1

h, θ d
�⎤⎦

⎫⎬
⎭

(19)

where Ld(θ
i
h, θd) = Ld(Nd (g(θ i

h); θd), d), and g(θ i
h)

indicates the gradient of task i calculated by θ i
h . The regular-

izer seeks to approximate the H-divergence within (11), i.e.,
2−R(θ0

h, θ
1
h) is a substitute for d̂H(Gd , Gr ). The optimization

problem given by (10) and (19) achieves a compromise
between the minimization of distribution divergence and risk.
The hyperparameter λ is used to adjust this tradeoff during
the learning phase.

Algorithm 1 MAGra
Require: Inputs x, labels for each task
{ yi }1i=0

1: Initialize tracker parameters {θ s, θ
0
h, θ

1
h}, discriminator

parameters θd , along with α and λ.
2: for k = 0 to maxEpoch do
3: Sample a mini-batch.
4: Obtain the output {T i}1i=0 of each task via Ns(·; θ s)

and {Ni
h(·; θ i

h)}1i=0.
5: Calculate the gradient tensor g returned by each task

based on {T i }1i=0.
6: Calculate the optimization objective on Eq. 20.
7: Update {θ s , θ

0
h, θ

1
h, θd} via Eq. 23-25.

8: end for
Ensure: Ns (·; θ s) and {Ni

h(·; θ i
h)}1i=0

For learning, we can rewrite the complete optimization
objective of (10) as

E
�
θ s, θ

0
h, θ

1
h, θd

� = 1

2

1�
i=0

Li
h

�
θ s, θ

i
h

�

−λ

2

⎡
⎣ �

g∈Gd

Ld
�
θ0

h, θd
�+ �

g∈Gr

Ld
�
θ1

h, θd
�⎤⎦

(20)

where the saddle point parameters θ̂ s , θ̂
0
h , θ̂

1
h , and θ̂d are

determined by the following equations:�
θ̂ s, θ̂

0
h, θ̂

1
h

�
= arg min

θ s ,θ
1
h ,θ0

h

E
�
θ s, θ

1
h, θ

1
h, θ̂d

�
(21)

θ̂d = arg max
θd

E
�
θ̂ s , θ̂

0
h, θ̂

1
h, θd

�
. (22)

Therefore, the optimization problem involves the maximiza-
tion of certain parameters and the minimization of other
parameters.

To address this problem, MAGra updates the maximization
parameters in the positive direction of the gradient through
backpropagation, and vice versa. Thus, the saddle point
defined by (21) and (22) can be transformed into the stationary
point of the gradient update

θ s ← θ s − α

2

1�
i=0

∂Li
h

∂θ s
(23)

�
θ i

h

�1

i=0 ←
�

θ i
h − α

�
∂Li

h

∂θ i
h

− λ
∂Ld

∂θ i
h

��1

i=0

(24)

θd ← θd − αλ
∂Ld

∂θd
(25)

where α is the learning rate. Algorithm 1 provides the
pseudocode of this learning process. In the training procedure,
the tracker (parameterized by θ s , θ0

h , and θ1
h) and the gradient

discriminator (parameterized by θd) compete and optimize
each other on the objective of (20) in an adversarial manner.
MAGra effectively trains the head network of each task
{Ni

h(·; θ i
h)}1i=0, which generates the corresponding gradient
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Fig. 6. Architecture of the detection head and ReID head. The detection head
is composed of heat map branch and box size branch. The heat map branch
generates a H × W × N classwise confidence map (H × W × 2 by default),
where the peaks are regarded as the object centers. The box branch outputs
the center coordinates, height, and width of the corresponding bounding box.
ReID head produces 128-D embedding for each object.

distribution, allowing equal and accurate representation learn-
ing for the shared network Ns (·; θ s). While it weakens the
ability of the gradient discriminator Nd (·; θd) to judge whether
the gradient comes from the detection or ReID task.

D. Tracklet Generation

The holistic architecture of TGraM is demonstrated in
Fig. 3. Based on the spatiotemporal feature ot , TGraM gen-
erates the bounding box of the object through the detection
head. Then, the embedding output from the ReID head is used
for data association, connecting the detection to the previous
tracklet. As shown in Fig. 6, each head network is made up
of lightweight convolution to ensure real-time requirements.

Concretely, the data association includes two steps, which
will be explained by taking the detection dt with the center
position at (i, j) as an example. Step 1): We first associate
dt with the latest unmatched detection in the area centered at
(i, j) at time t − 1. The area radius is the quadratic mean of
the height and width of the detection box. Step 2): If dt does
not match any object in the first step, the embedding output
of the ReID head ebt

i, j will be used to calculate the Euclidean
distance with all historical or unmatched tracklets. dt will be
assigned to the tracklet with the highest similarity and greater
than a certain threshold. dt will start a new tracklet if it is still
not matched. Step 3) realizes long-term tracking via ebt

i, j .

IV. EXPERIMENTAL RESULTS

In this section, we will conduct a comprehensive evaluation
of the presented TGraM on the AIR-MOT dataset. Specifically,
the dataset and implementation details are briefly introduced
first. Then, our ablation study on the key components of
TGraM is carried out. At last, the holistic performance of the
method is analyzed qualitatively and quantitatively.

Fig. 7. Details of AIR-MOT dataset. (a) Some data with complex and diverse
backgrounds. (b) Statistics of the dataset: the left histogram shows the number
of videos per area; the right one shows the number of instances.

A. Experimental Data

To promote the research of multi-object tracking in satellite
video, we have built a brand-new dataset, namely, AIR-MOT.
Specifically, the samples in AIR-MOT are motion examples
from different regions observed by satellites, so similar exam-
ples often have diverse and complex backgrounds. In addition,
the samples in AIR-MOT cover multiple complete trajectories
without sensor changes. These two characteristics ensure the
applicability of the study of multi-object tracking because the
potential interference is clearly avoided. AIR-MOT will be
opened to the community in the near future, one of the earliest
public datasets in this field. Next, we will first introduce
the collection process, and then analyze the statistics of the
dataset.

1) Dataset Collection: To obtain samples in AIR-MOT,
we first collect multiple videos taken by the Jilin-1 satellite.
Each collected video is divided into a group of shots by
shot detection [55]. For the samples in the shot, we employ
crowdsourcing services to conduct two rounds of annotation
and inspection. In the first round, shots that are irrelevant and
contain incomplete objects are filtered out. In the remaining
shots, the object is annotated with location (i.e., detection
label) and instance (i.e., ReID label) information. Before
the second round, the experts are provided with explanatory
descriptions and examples, to guide them in inspecting and
correcting the labels generated in the previous round. The
annotations of the final version are presented in the form of a
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TABLE I

BASIC ATTRIBUTES OF AIR-MOT

text file, where each line represents an object instance, similar
to [14]. Each line contains nine values, such as

1, 1, 587, 141, 27, 34, 1, 1, 1

1, 2, 103, 801, 16, 14, 1, 2, 1

2, 4, 869, 684, 59, 76, 1, 2, 1.

The first value indicates which frame the object appears in,
while the second value indicates the tracklet ID to which the
object belongs. Each object can only be assigned to one unique
tracklet. The next four values indicate the position of the
object’s bounding box in 2-D frame coordinates. The position
is indicated by the upper left corner and the width and height of
the bounding box. The next value indicates whether the object
is considered (1) or ignored (0). The eighth value indicates the
category of the object, i.e., aircraft (1) or ship (2). The last
value indicates the visibility of the object, between 0 and 1.
Some objects may not be visible because of the frame border
cropping and occlusion.

2) Dataset Statistics: AIR-MOT contains a total of
5736 instances, across 149 videos, ten full scenes collected
from different regions of the world by Jilin-1 satellite from
October 2017 to October 2020. As shown in Table I, the
videos have more than 70 timestamps, with a frame rate of
5–10 FPS and a size of 1920 × 1080 pixels. In addition,
since the videos are shot on a global scale, the background is
complex and diverse even for similar objects, and the objects
have multiscale characteristics. As shown in Fig. 7, while
the number of instances in each video reflects the natural
distribution of objects in the area, the changes in instances
(including duration and position shifts) reflect the variety of
object motions, helpful to verify the robustness of the tracker.

In the experiment, 70% of the original videos are randomly
selected as the training set, and the remaining 30% are as the
test set.

B. Implementation Details

1) Evaluation Metrics: To evaluate the performance of
different methods in multi-object tracking in satellite video,

TABLE II

EFFECTIVENESS OF EACH PROPOSED MODULE ON THE AIR-MOT TEST
SET. THE PROPOSED STERE, MAGRA, AND OVERALL TGRAM ARE

EVALUATED. “BASELINE+ STERE+ MAGRA” IS REPRESENTED

BY “TGRAM.” “↓” INDICATES LOWER IS BETTER.
“↑” INDICATES HIGHER IS BETTER

we choose 12 common quantitative metrics, including multi-
ple object tracking accuracy (MOTA), ID F1 score (IDF1),
ID precision (IDP), ID recall (IDR), the number of false
positives (FP), false negatives (FN), identity switches (IDs),
the percentage of mostly tracked trajectories (MT), mostly lost
trajectories (ML), overall parameters (Params), calculations
(number of multi-adds), and frames per second (FPS) [14],
[62]. Note that MOTA, IDF1, IDP, IDR, FP, FN, IDs, MT,
and ML are used to evaluate accuracy; Params, Multi-adds,
and FPS are used for efficiency.

2) Comparison Methods: The proposed method is com-
pared with representative online trackers, including Deep-
SORT [12], RAN [56], HOGM [57], DAN [58], Tracktor +
CTdet [20], CKDNet + SMTNet [11], TubeTK [59],
CTracker [21], JDE [22], UMA [61], CenterTrack [19],
GSDT [23], FairMOT [48], and TraDeS [24]. DeepSORT [12],
RAN [56], HOGM [57], DAN [58], Tracktor + CTdet [20],
and CKDNet + SMTNet [11] belong to the DBT paradigm,
and the rest belong to JDT. We use faster-RCNN [54] to pro-
vide detections of each frame for DeepSORT [12], RAN [56],
and HOGM [57]. To be fair, other details of each tracker are
set according to the corresponding original article.

3) Experimental Setting: In the experiment, the compact
model MobilenetV3-Small [53] is employed as the backbone
to fully verify the effectiveness of the proposed framework.
TGraM without STeRe and MAGra is set as the baseline
tracker. Each frame of the original video is scaled to 1088 ×
608 pixels, of which 32 are randomly selected as input batch.
We use the Adam optimizer [60] to train our model for
70 epochs. Specifically, relevant hyperparameters are set to
β1 = 0.9, β2 = 0.999 and ε = 10−8. The initial learning
rate is set to 1.25e−4, and then it drops to e−5 at 60 epochs.
Rotation, flipping, and color jittering are applied to augment
the image. We set the number of nodes in the graph G as
T = 3. Inference speed (i.e., FPS) is tested on an NVIDIA
Titan RTX GPU. The experiment is executed five times and
the average is used as the final result.

C. Ablation Studies

1) Effectiveness of TGraM: As shown in Table II, we com-
pare the proposed STeRe, MAGra, and TGraM with our
baseline tracker and CenterTrack [30]. Compared with the
baseline, STeRe achieves better detection by reducing the FN
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Fig. 8. Visualization of the attention maps for the STeRe module. The images
in the first row illustrate the input images; the ones in the second row illustrate
the attention maps generated by the input of STeRe; the ones in the third row
illustrate the attention maps generated by the message reasoning via STeRe,
i.e., (15); and the images in the last row illustrate the corresponding attention
maps generated by the spatiotemporal feature, i.e., (17). Best viewed in color.

by 31.8% (i.e., recovering more missed objects), which verifies
the effectiveness of our graph structure, tracking clues, and
spatiotemporal dependencies. For MAGra, we directly add
it to the baseline tracker. Since the spatiotemporal feature
ot is not available in the baseline, we only use the current
node (frame) as the input of the head network. Compared with
the baseline, MAGra implements better tracking by improving
0.8 IDF1 and reducing IDs by 11.9%. In addition, we observe
that MAGra also reduces FN by 19.6%, confirming that stable
tracking will assist detection. With the help of STeRe, TGraM
reduces IDs from 263 to 182. What is more, in TGraM,
the gradient adaptation from MAGra guides the passing of
spatiotemporal messages in STeRe, which greatly reduces FN
from 6459 to 3764. The recovery of missed objects and better
IDs together improve the overall tracking performance, achiev-
ing 65.7 MOTA and 66.8 IDF1. The performance of TGraM
is also better than the recent JDT method CenterTrack [19].

2) Effectiveness of STeRe: We visualize the information
propagated in the STeRe module and the predicted spatiotem-
poral feature ot in Fig. 8. After aggregating the reasoned
message [(13)–(16)], the central feature of the object is sig-
nificantly enhanced. In the case of a low frame rate, STeRe
can accurately predict the tracking deviation of the object.
In addition, ot can even accurately track partially missed
objects in intermediate frames. Even if the objects are blurred
or dense in the intermediate frame, STeRe can successfully
sample the central feature through the previous frames. These
examples show that STeRe can predict the spatial information
of objects in a wide range and provide robust motion clues.
In addition, we also evaluate the influence of the number
of nodes T on inference. The performance of different T
values is shown in Table III. We find that with more input
frames (1 → 3 ), the performance improves accordingly.
While considering even more frames (3 → 5 ), the final

TABLE III

PERFORMANCE IN COMPARISON ON THE AIR-MOT TEST SET WITH
DIFFERENT NUMBER OF NODES. “T ” REPRESENTS THE NUMBER OF

NODES (I.E., FRAMES) EMPLOYED IN THE STERE MODULE

TABLE IV

ABLATION FOR OUR MAGRA STRATEGY ON THE AIR-MOT TEST SET.
“TGRAM WITHOUT MAGRA” REPRESENTS THE TRAINING

PROCEDURE WITHOUT ADVERSARIAL SIGNALS

(i.e., REMOVING THE REGULARIZER R(θ0
h , θ1

h))

TABLE V

PERFORMANCE IN COMPARISON ON THE AIR-MOT TEST SET
WITH GRADNORM [35] AND UNCERTAINTY WEIGHT [51]

performance does not change significantly, possibly due to
redundant information in the video sequence.

3) Effectiveness of MAGra: As shown in Fig. 5, after
training with the MAGra strategy, the gradient distribution
returned by the head network is basically similar. This indi-
cates that discriminative information about the task source in
the gradient is eliminated. As shown in Table IV, MAGra can
reduce IDs and boost IDF1, helping to achieve long-term data
association. MAGra not only learns effective ReID embed-
ding but also improves detection performance, especially on
MOTA. To fully verify the effectiveness of MAGra, we also
use different MTL methods to train the tracker. As shown
in Table V, the performance improvement brought by our
MAGra is more obvious. We believe this is because the ReID
loss in other methods still only focuses on the intraclass
variance, inconsistent with the detection loss in joint training.
However, our MAGra introduces R(θ0

h, θ
1
h) in (20) to generate

adversarial signals to regularize each head network, to realize
adaptive and equal learning between different tasks.

D. Comparison With the State-of-the-Arts

1) Quantitative Analysis: As shown in Table VI, we com-
pare the proposed TGraM with the state-of-the-art trackers on
the test set of AIR-MOT. The two best results in Table VI are
highlighted in red and blue, respectively. The performance of
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Fig. 9. Visualization that TGraM tracks objects on the AIR-MOT test set. Each row represents an independent sequence of satellite video frames. The results
show that TGraM has excellent capability for tracking multiscale objects with complex backgrounds.

our TGraM tracker on AIR-MOT is 1.2 MOTA higher than
the second-best tracker. Compared with the trackers of the
JDT paradigm (i.e., TubeTK [59], CTracker [21], JDE [22],
UMA [61], CenterTrack [19], GSDT [23], FairMOT [48], and
TraDeS [24]), we have achieved the best results on MOTA,
IDF1, FN, MT, and other metrics. The superiority of our
TGraM is not only reflected in accuracy, but also efficiency,
as shown in Table VII. Because the trackers of the DBT
paradigm (i.e., DeepSORT [12], RAN [56], HOGM [57],
DAN [58], Tracktor + CTdet [20], and CKDNet + SMT-
Net [11]) run detection and tracking separately, their process-
ing speed obviously cannot meet the real-time requirements.
However, the inference speed of our TGraM is greater than the
frame rate of Jilin-1 satellite video, suitable for satellite on-
orbit processing. What is more, TGraM also has significant
advantages in terms of calculation and parameters, which
reduces the resource requirements for the spaceborne com-
puting platform.

2) Qualitative Analysis: Fig. 9 demonstrates part of the
visualization results of our TGraM on AIR-MOT. We find
that TGraM can accurately track multiscale objects in diverse
and complex backgrounds. Even TGraM can detect difficult
samples in some intermediate frames (e.g., dense or blurred
objects). We believe this is due to the graph structure con-
structed by STeRe, which propagates motion clues from pre-
vious frames to generate spatiotemporal features. In addition,
the proposed MAGra strategy ensures that the tracker learns
the detection and ReID fairly and accurately and realizes the
mutual improvement between the two tasks.

E. Discussion
1) Hyperparameter Analysis: Hyperparameter λ should be

carefully tuned to achieve an excellent performance of TGraM.
λ adjusts the tradeoff between the minimization of distribution
divergence and risk in the optimization problem given by (20).
To analyze the influence of λ value on the performance of
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TABLE VI

ACCURACY COMPARISON ON THE AIR-MOT TEST SET. THE TOP TWO RESULTS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

TABLE VII

EFFICIENCY COMPARISON ON THE AIR-MOT TEST SET. MULTI-ADDS

AND FPS ARE ESTIMATED ON AN NVIDIA TITAN RTX GPU

TABLE VIII

PERFORMANCE IN COMPARISON ON THE AIR-MOT TEST SET

WITH DIFFERENT VALUE OF THE HYPERPARAMETER λ

TGraM, we perform multi-object tracking with λ in the range
of {0.05, 0.1, 0.5, 1, 5, 10} on AIR-MOT. The experimental
results are shown in Table VIII and Fig. 10. As λ increases
(0.05 → 1), the tracking performance is improved due to
the greater penalty of distribution divergence. In addition,
it can be seen from the curves of FN and FP that the
detection has also been slightly improved. While λ continues

Fig. 10. Sensitivity analysis of hyperparameter λ for TGraM on the
AIR-MOT test set, when λ = 0.05, 0.1, 0.5, 1, 5, 10.

Fig. 11. Failure cases of point-like objects on the AIR-MOT test set. The
first and third rows show failure tracking results by TGraM. The second and
fourth rows label ground-truth objects.

to increase (1 → 10), the tracking performance does not
change significantly and even slightly decreases. We believe
that this is due to the neglect of minimizing the training risk of
the tracker and the excessive focus on the gradient classifier.
Therefore, to implement a balanced performance between
the minimization of distribution divergence and source risk,
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λ cannot be too small or too large. In our experiments, we set
λ to 1 based on experience and obtain good performance.

2) Limitations: TGraM can achieve good multi-object
tracking performance in harsh environments, but there are still
some errors in point-like object tracking. Point-like objects
are usually recognizable visually but occupy very few pixels.
Most point-like objects are very similar to the background
in space, easily leading to omissions in detection. Especially
for point-like objects with short trajectories, this problem is
even more serious due to the limited temporal information.
Fig. 11 shows two typical cases of point-like object tracking
errors, including several missed detections. In the future,
we aim to improve the model to further improve the robustness
of point-like object detection and tracking.

V. CONCLUSION

This article presents a novel online JDT framework TGraM
for multi-object tracking in satellite video. Compared with
previous methods, TGraM realizes real-time parallel tracking
of multiple objects in complex environments. Concretely, the
STeRe module employs graph structure to capture the rela-
tions between video frames and explore potential high-order
spatiotemporal correlations. The MAGra strategy introduces
the adversarial signal to regularize task-specific networks
and eliminates discriminative information of gradient sources.
In future work, we will pay more attention to the tracking of
point-like objects in wide-area scenarios and further improve
our TGraM to make it more fault-tolerant. In addition, we will
continue to expand the dataset to build AIR-MOT 2.0, includ-
ing adding more videos and more labeled objects (e.g., moving
vehicles).
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