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Featured Application: In this paper, we put forward a novel modulation format identification
(MFI) technique for a free-space optical (FSO) communication system based on a convolution
neural network (CNN). The random parameters training method we use can improve the robust-
ness against atmospheric optical turbulence and additive Gaussian white noise (AWGN). The
proposed MFI scheme in this paper is a viable solution in the application of an FSO communica-
tion simulation channel, which can easily deal with the scene of fast modulation format switch-
ing and accurate identification to satisfy system requirements. Therefore, we hope that the MFI
scheme we proposed is able to find a practical application in satellite-to-ground FSO systems.

Abstract: The satellite-to-ground communication system is a significant part of future space commu-
nication networks. The free-space optical (FSO) communication technique is a prospective solution
for satellite-to-ground communication. However, atmospheric optical turbulence is a major impair-
ment in FSO communication systems. In this paper, to improve the performance and flexibility
of a satellite-to-ground laser communication system, we put forward a novel modulation format
identification (MFI) technique for an FSO communication system based on a convolution neural
network (CNN). The results indicate that our CNN model can blindly and accurately identify the
modulation format with classification accuracy up to 99.98% for random channel condition, including
the strength of turbulence and signal-to-noise ratio (SNR) of additive Gaussian white noise (AWGN)
ranging from 10dB to 30dB. Moreover, the CNN demonstrated robustness against atmospheric op-
tical turbulence and suggested immunity to additive noise. Therefore, the proposed methodology
proved to be a viable solution in the application of an FSO communication simulation channel, which
can easily deal with the scene of fast modulation format switching and accurate identification to
satisfy system requirements. Therefore, we hope this scheme can find a practical implementation in
satellite-to-ground optical wireless systems.

Keywords: modulation format identification; convolution neural network; free-space optical
communication

1. Introduction

The satellite-to-ground communication system is a significant part of future space
communication networks. Radio frequency (RF) communication links for inter-satellite or
satellite-to-ground communication are increasingly limited due to the unideal spectrum
availability and limited data rate. A free-space optical (FSO) communication system has
become one of the most promising technologies in future communication systems because
of it being superior to the traditional RF system [1]. At present, FSO communication
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links are beginning to take over RF communication links in the field of high bandwidth
applications [2]. The requirement tendency of forthcoming satellite data transmission has
grown to become a critical boost to the progress of communication technology. Gigantic
amounts of information and complicated channel circumstances require high data speed
and flexibility at the same time. FSO communication has been taking part in a more vital
role in the satellite-to-ground communication step by step [3]. For the flexibility of services
and applications, the next-generation FSO network is expected to adjust the modulation
format dynamically according to the link conditions and terminal equipment configuration
to meet the different requirements of the terminal system and service [4,5]. The traditional
method needs to spend time and data processing prior information from the transmitter in
the recognition process, which is a great waste in the short connection time of a satellite-to-
earth link. To promote demodulation efficiency, it is a challenging requirement for an FSO
receiver to realize blind modulation format identification (MFI). Over the last few years,
several classical MFI techniques for optical communication have been proposed [6–8].

Machine learning (ML) is a powerful interdisciplinary subject combining mathematics,
computing, and biological sciences. In recent years, it has been successfully applied in the
fields of pattern recognition, computer vision, personalized technology, and data analysis
and mining [9]. Recently, techniques from ML have also performed well in some intelligent
expansion directions in the field of optical communication, such as optical performance
monitoring (OPM), MFI, and nonlinear impairments compensation [4,9,10]. Compared
with traditional methods, the advantage of ML methods for MFI is that it completes the
training of the model before practical application [11]. It only needs to let the model
know all possible modulation formats during training. In practical use, it can quickly
obtain reliable recognition results without sacrificing the processing of prior information.
Before that, if the results are not satisfactory in the training process, the model parameters
can be adjusted repeatedly before actual communication without adjusting in the time
after the actual link is established. As a representative algorithm of machine learning,
convolutional neural networks (CNN) have made great achievements in image recognition.
Sparse connectivity allows CNN to recognize the local features of input images without all
connected feature engineering, which makes CNN distinctly efficient from conventional
machine learning techniques [12]. Also, the results of paper [9] show that CNN achieves
optimal accuracy and is significantly superior to other ML methods.

However, previous research on MFI has focused mainly on radio and fiber-optic com-
munication networks, and not as much work has been done for MFI in FSO communication
networks [13,14]. In this paper, we focus on the performance of the CNN algorithm in
modulation format recognition in an FSO communication system. Here, we mainly illus-
trate an FSO optical communication system under the random channel condition including
the strength of atmosphere turbulence and signal-to-noise ratio (SNR) of AWGN. Four
modulation formats were adopted in this paper: (1) On-Off Keying (OOK), (2) Binary Phase
Shift Keying (BPSK), (3) Quadrature Phase Shift Keying (QPSK), and (4) 16-Quadrature
Amplitude Modulation (16-QAM).

The rest of this paper is organized as follows: Section 2 indicates an overview of CNN’s
theoretical background. Channel statistics with a gamma-gamma model is dissected
in Section 3. The experimental process and the structure of network we designed are
introduced in detail in Section 4. Finally, some results and discussions are maintained in
Section 5, and conclusions are in Section 6.

2. CNN Theoretical Background

CNN is a kind of deep neural network (DNN) that is composed of input layer, hidden
layer, and Full-Connected (FC) layer [15]. The hidden layer is a layer with different function,
such as convolution layer, Batch Normalization (BN) layer, activation layer, and pooling
layer. Generally, a typical structure of CNN is composed of many blocks connected between
input and output, in which each block comprises one or several hidden layers [16,17]. An
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FC layer and a classification layer follow the last block and are finally connected to the
output layer. A basic network structure is shown in Figure 1.
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Figure 1. Typical fully connected CNN network architecture.

The convolution layer extracts the feature data from the input data by convolution, to
change the data processing of the neural network from a single point to different regions
and complete data dimensionality reduction. It contains many convolution kernels, which
can be regarded as filters. Each element of convolution kernels corresponds to a weight
and a bias. When the convolution kernel windows slide on the input data matrix, the filter
can convolute with the local data.

Next, the matrix enters the BN layer to convert the data to the same order of magnitude.
Then, the matrix enters the activation layer to increase the nonlinearity of the neural network
model, so that the neural network can better fit with more kinds of curves and better solve
more complex problems. In this paper, we use the rectified linear unit (ReLU) function as
the activation function. For the pooling layer, after the input data is divided into many
rectangular regions, the output value of each subregion is represented as one point to
reduce the dimension for feature extraction. Here, we use the two most common pooling
layers, the maximum pooling layer, and the average pooling layer.

Before the final classification decision, the FC layer is used to connect each neuron
with each neuron in the previous layer. After the feature map is generated to an appropriate
dimension, all neurons are weighted into the FC layer, which can ignore the impact of
spatial structure and reduce the impact of location on classification. By activating the
classification, the output layer can output the calculated classification results. This article
uses the most common Softmax function here, therefore, the probability of each type is
mapped to the positive range, and then normalized to (0,1) to obtain the probability of each
category. Finally, the output layer outputs the classification decision.

3. Channel Statistics with Gamma-Gamma Model

In FSO system, one of the main impairments is atmospheric optical turbulence, which
can cause scintillation. Scintillation-induced fading adversely affects FSO links and dam-
ages its communication performance. The scintillation results from the index of refraction
fluctuations in the atmosphere, which can cause random fluctuations of the received signal
intensity and severely reduce the level of the optical signal. The statistics of the scintillation
strength is usually regarded as following the gamma-gamma distribution, which is applica-
ble to all turbulence situations from weak to strong. This model, proposed in [18], is based
on the modulation process, in which the optical radiation fluctuation through turbulent at-
mosphere is assumed to be composed of small-scale (scattering) and large-scale (refraction)
effects. Therefore, the normalized received irradiance It is defined as the product of two
statistically independent random processes Ix and Iy.

It = Ix Iy (1)
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Ix and Iy are generated by the large-scale and small-scale turbulent eddies, respectively,
and both obey the gamma distribution given by [19]. Consequently, their probability density
functions (PDF) are given by

p(Ix) =
α(αIx)

α−1

Γ(α)
exp(−αIx); Ix > 0; α > 0 (2)

p
(

Iy
)
=

β
(

βIy
)α−1

Γ(β)
exp(−βIy); Iy > 0; β > 0 (3)

By fixing Ix and using the change of variable, Iy = It/Ix, the conditional PDF given by
Equation (4) is obtained, in which Ix is the (conditional) mean value of It.

p(It/Ix) =
β
(

βIt/Iy
)β−1

IxΓ(β)
exp(−βIt/Ix); It > 0 (4)

To obtain the unconditional irradiance distribution, the conditional probability p(It/Ix)
is averaged over the statistical distribution of Ix given by Equation (2) to obtain the follow-
ing gamma-gamma irradiance distribution function.

p(It) =
∫ ∞

0 p(It/Ix)p(Ix)dIx

= 2(αβ)(α+β)/2

Γ(α)Γ(β)
It
(

α+β
2 )−1Kα−β

(
2
√

αβIt
)
, It > 0

(5)

where α and β represent the effective number of large-scale and small-scale eddies in
the scattering process, respectively. Γ(·) represents the gamma function, and Kn(·) is the
modified Bessel function of the second kind of order n. If the optical radiation at the
receiver is assumed to be a plane wave, then the two parameters α and β that characterize
the irradiance fluctuation PDF are related to the atmospheric conditions [18], as follows:

α =

[
exp

(
0.49σl

2(
1 + 1.11σl

12/5
)7/6

)
− 1

]−1

(6)

β =

[
exp

(
0.51σl

2(
1 + 0.69σl

12/5
)5/6

)
− 1

]−1

(7)

while the scintillation index is given by

σ2
N = exp

 0.49σ2
l(

1 + 1.11σ12/5
l

)7/6 +
0.51σ2

l(
1 + 0.69σ12/5

l

)5/6

− 1 (8)

Often, σl is the log irradiance variance for a plane wave [19], which is defined as

σ2
l = 1.23C2

nk7/6L11/6 (9)

In Equation (9), C2
n is the refractive index structure parameter, which characterizes the

atmospheric optical turbulence effect. Generally, the C2
n range varies from 10−15 m−2/3 to

10−12 m−2/3 for the weak to strong turbulence regime, respectively. The gamma-gamma
turbulence model given by Equation (5), which is applicable to all turbulence strengths
from weak to strong. The values of α and β under different turbulence regimes are depicted
in Figure 2.
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Figure 2. Values of α and β under different turbulence regimes: weak, moderate to strong,
and saturation.

In this work, we use three different turbulence regimes: weak, moderate to strong,
and saturation, as depicted in Figure 3, with the parameters given in [19]. The α, β, and
σ2

l values for weak turbulence are 11.6, 10.1, and 0.2, respectively. The α, β, and σ2
l values

for moderate turbulence are 4, 1.9, and 1.6, respectively. The α, β, and σ2
l values for strong

turbulence are 4.2, 1.4, and 3.5, respectively.
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l values, respectively.

4. Simulation Setup

In this paper, the architecture of our system can be seen in Figure 4. The Communica-
tion and Deep Learning Toolbox in MATLAB Software is used for simulation. We chose
four typical and promising modulation formats, OOK, BPSK, QPSK, and 16 QAM. A total
of 20,000 frames are generated for each modulation format with a length of 1024 samples.
Since the network makes each decision based on a single frame rather than multiple con-
secutive frames, such as video, each frame must pass through a separate channel. In
the transmitter side, the input symbols to the system are sampled and transmitted by a
gamma-gamma atmospheric channel with random strength, which ranges from weak to
strong added to AWGN whose SNR is generated randomly. At the receiver, the received
signal is

y(t) = x(t)× h(t) + w(t) (10)

where, x(t) is the transmitted signal, h(t) is the gamma-gamma atmospheric channel,
and w(t) is AWGN. Each frame contains 256 symbols, eight sampling points per symbol,
and uses a gamma-gamma random variate. Therefore, a coherent time of atmospheric
turbulence can be simulated. However, the AWGN is generated for each time step.
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Figure 4. Proposed optical communication system.

A random number of samples is removed from the beginning of each frame to remove
transients and ensure that the frame has a random starting point relative to the symbol
boundary. To improve the robustness against atmospheric optical turbulence and AWGN,
random parameters are used to ensure the applicability of training data. We set the σ2

l
equals as 0.2, 1.6, and 3.5, representing the strength of turbulence of weak, moderate, and
strong, respectively, for which the three parameter values have been used in most cases [18].
Additionally, we set the SNR of AWGN ranges from 10 to 30 dB. For a given turbulence
regime, random fluctuations were added to the signal corresponding to σ2

l of a particular
turbulent regime to make sure all the data of every situation can be considered.

For the subsequent circumstance, the complex input is used as the input dimension of
two real inputs, and y(t) is introduced into a narrow two-dimensional convolution network
as a set of 2 × 1024 vectors, in which in-phase and quadrature sampling (I/Q) constitute
this two-row data, which can be regarded as a two-dimensional image. Figures 5 and 6
show the time domain diagrams and spectrograms of processed data for four modulation
formats at present, respectively.

In addition, Figure 7 shows the modulation constellation of the four modulation
schemes when the SNR is 10 dB in the case of the weak turbulent channel as a typical
example. It can be seen from the constellation points that the modulated signal has been
disturbed by turbulence fluctuation and channel additive noise.

Next, the input data were separated into 80% for training, 20% for validation label
accordingly. By ensuring that the number of tags for each modulation format is the same,
class imbalance in training data is avoided. In this way, frames of four modulation formats
were generated and channel-faded, and their corresponding tags stored and provided to
the CNN network.
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In the network structure adopted in this paper, six directly connected blocks are used.
Each block is directly connected with four layers: convolution layer, BN layer, ReLU layer,
and pooling layer. In the first five blocks, the maximum pooling layer is used to extract
the meaningful features, and the average pooling layer is used in the last block to avoid
erasing the details of the previous feature map. Finally, an FC layer is connected to the
Softmax layer to output the classification decision. The network structure is shown in
Figure 8 below.
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The parameters of feature matrix size and stride size of major layers are listed in
Table 1 below.

Table 1. Network parameters of major layers.

Layer Name Size Stride Size

Input 2 × 1024 × 1 1 × 8
Convolution 1 2 × 1024 × 16 1 × 8
MaxPooling 1 2 × 512 × 16 1 × 2
Convolution 2 2 × 512 × 24 1 × 8
MaxPooling 2 2 × 256 × 24 1 × 2
Convolution 3 2 × 256 × 32 1 × 8
MaxPooling 3 2 × 128 × 32 1 × 2
Convolution 4 2 × 128 × 48 1 × 8
MaxPooling 4 2 × 64 × 48 1 × 2
Convolution 5 2 × 64 × 64 1 × 8
MaxPooling 5 2 × 32 × 64 1 × 2
Convolution 6 2 × 32 × 96 1 × 8

AveragePooling 2 × 32 × 96 1 × 2
FullConnected 1 × 6144

Output 1 × 4

After signal preprocessing, the synthesized signal is put into the CNN network whose
structure is described in Section 2. Next, we use SGDM solver with the small batch size of
256. We set the maximum number of rounds to six, as more rounds will not provide further
training advantage. The initial learning rate is set to 0.3, and the dropout rate is 0.6. After
every four rounds, the learning rate will be reduced by a factor of 0.3. Specific parameters
are listed in Table 2.
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Table 2. Network training parameters.

Parameters Value

Small batch size 256
Maximum number of rounds 6

Initial learning rate 0.3
Reducing period 4

Learning rate drop factor 0.3
Dropout rate 0.6

5. Results and Discussion

In the training process, verification is taken at the end of every epoch, and the final
verification accuracy reaches over 99.99%. The training progress with accuracy and loss
results is shown in Figure 9.
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Figure 9. Training progress with accuracy and loss results.

When the network training is successful, then the test process is carried out. Using the
method of generating training data mentioned above, the random modulated data but with
a different random seed is generated. Another 4000 test frames with random turbulence
strength and AWGN with random SNR are generated for each format.

The trained network is used for recognition, and the test accuracy reaches over
99.99%. Three confusion matrix figures for the test data for three gamma-gamma tur-
bulence strengths are shown in Figure 10. Figure 10a depicts the integrated test accuracy
under different SNR (10–30 dB) in weak turbulent channels, and the test accuracy can reach
100%. Similarly, Figure 10b,c depict the moderate and strong turbulent channel circum-
stances, and the test accuracy can reach 99.9864% and 99.9818%, respectively. Moreover,
Figure 11 shows the same meaning more intuitively.
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6. Conclusions

This paper proposes a novel technique for MFI by applying a convolution neural
network in an FSO link. Four widely used modulation formats (OOK, BPSK, QPSK,
and 16 QAM) were comprehensively investigated. The recognition effect of our training
network demonstrated robustness against atmospheric optical turbulence and suggested
immunity to additive noise. Successful identification with over 99.98% test accuracy was
achieved for studied scenarios.

Although the CNN algorithm achieved high recognition accuracy, the recognition
accuracy cannot reach 100% when the modulation format types are similar. Therefore, in
the future work, we hope to explore the application of recognition for more format types
and feature-based data set construction, to improve the training time cost and accuracy. We
believe that the proposed technique has the potential to be embedded in space networking
and satellite-to-ground laser communication links.
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